Open Access Open Access  Restricted Access Subscription Access

Document Classification Using Lightweight Neural Network

Chung-Hsing Chen,
Ko-Wei Huang,

Abstract


In recent years, OCR data has been used for learning and analyzing document classification. In addition, some neural networks have used image recognition for training, such as the network published by the ImageNet Large Scale Visual Recognition Challenge for document image training, AlexNet, GoogleNet, and MobileNet. Document image classification is important in data extraction processes and often requires significant computing power. Furthermore, it is difficult to implement image classification using general computers without a graphics processing unit (GPU). Therefore, this study proposes a lightweight neural network application that can perform document image classification on general computers or the Internet of Things (IoT) without a GPU. Plustek Inc. provided 3065 receipts belonging to 58 categories. Three datasets were considered as test samples while the remaining were considered as training samples to train the network to obtain a classifier. After the experiments, the classifier achieved 98.26% accuracy, and only 3 out of 174 samples showed errors.

Keywords


Documents classification, CNN, IoT, Deep learning, Edge computing

Citation Format:
Chung-Hsing Chen, Ko-Wei Huang, "Document Classification Using Lightweight Neural Network," Journal of Internet Technology, vol. 24, no. 7 , pp. 1505-1511, Dec. 2023.

Full Text:

PDF

Refbacks

  • There are currently no refbacks.





Published by Executive Committee, Taiwan Academic Network, Ministry of Education, Taipei, Taiwan, R.O.C
JIT Editorial Office, Office of Library and Information Services, National Dong Hwa University
No. 1, Sec. 2, Da Hsueh Rd., Shoufeng, Hualien 974301, Taiwan, R.O.C.
Tel: +886-3-931-7314  E-mail: jit.editorial@gmail.com