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Abstract

This paper has been designed to address the problems 
of slow convergence and low convergence accuracy of 
the pigeon-inspired optimization (PIO) algorithm. The 
evolutionary mechanism of the PIO algorithm contains 
two stages, exploration and exploitation, which also exist 
to solve various numerical optimization problems not well. 
In order to solve the above problems, this paper proposes a 
novel pigeon-inspired optimization (NPIO) algorithm, which 
fuses the two stages of the operator into one stage, where 
exploitation and exploration are carried out simultaneously, 
and can assist the algorithm to find the optimal solution 
better. Numerical optimization problems can be solved with 
a smaller number of iterations. To verify the performance of 
the NPIO, standard test functions and practical application 
scenarios are selected for validation. Firstly, this paper 
uses 23 test functions to test and cross-sectionally compare 
with five optimization algorithms. The experimental results 
show that the NPIO is more competitive than the other five 
algorithms. Secondly, this paper is based on a high-precision 
mathematical model commonly used for wind turbines. It 
uses measurable quantities of wind turbines under actual 
operating conditions for the theoretical analysis of parameter 
identifiability. The results show that NPIO has a strong 
performance in wind turbine parameter identification.

Keywords: Pigeon-inspired optimization, Numerical 
optimization problems, Wind turbine, Parameter extraction

1  Introduction

In industrial engineering and science and technology, 
many real-world problems can be seen as optimization 
problems, and the mathematical models of these problems are 
often complex, and traditional optimization algorithms are 
limited in solving them. Intelligent optimization algorithms 
are able to solve complex optimization problems regardless 
of the nature of the problem, with no special requirements on 
the objective function and constraints.

The PIO algorithm is a new metaheuristic algorithm 
proposed in recent years, which has a good performance in 
the field of Unmanned Aerial Vehicles (UAVs) aviation and 
other areas owing to its unique two-stage search mechanism, 
however, its performance in the parameter identification does 
not meet the needs of the problem. In order to overcome 
the shortcomings of the PIO algorithm in specific problems, 
this paper chooses an improved PIO algorithm to solve the 
parameter identification problem of wind turbines. On the one 
hand, the search performance of the original PIO algorithm is 
improved, and on the other hand, the extraction accuracy of 
the parameter identification problem is also improved.

Cui et. al [52] proposed a multi-objective version of the 
PIO algorithm for solving multi-objective problems. Tian 
et. al [44] proposed a compact form of the PIO algorithm 
that can meet the needs of solving problems with insufficient 
computational resources. In references [53], the hybrid model 
of Edge Potential Function (EPF) and Simulated Annealing 
Pigeon-inspired Optimization (SAPIO) algorithm is proposed 
to accomplish the target detection task for UAVs at low 
altitude. Although previous academics have made significant 
improvements to the PIO algorithm, it suffers from the 
problem of poor performance on some specific problems due 
to its unique evolutionary structure. In this paper, a NPIO 
algorithm is proposed that fuses the two-stage algorithm into 
a single-stage algorithm. the NPIO algorithm can meet the 
needs of the problem solved in this paper.

In recent years, some artificial intelligence methods have 
been proposed to solve some realistic optimization problems 
[1-12, 51]. Tsai et al. proposed cat swarm optimization 
(CSO) [13-16] to solve the optimization problem by studying 
the predatory behavior of cats and thus extracting a model. 
Particle swarm optimization (PSO) algorithm [17-19] 
techniques are successfully used in the problem of designing 
antennas and tuning the parameters of neural network 
systems. The ant colony optimization (ACO) algorithm [20-
21] can be used to solve the Traveling Merchant Problem 
(TSP) problem [22-23]. The pigeon-inspired optimization 
(PIO) algorithm is an algorithm proposed by Duan in 2014, 
which has been very successfully applied to problems such 
as UAV flight. Tsai et. al. successfully introduced Taguchi 



562  Journal of Internet Technology Vol. 25 No. 4, July 2024

method into the crossover process of genetic algorithm and 
proposed a hybrid Taguchi-genetic algorithm [24-26]. 

Although there have been many variants of the PIO 
algorithm to increase the global and local search capability 
in various ways, each variants method of PIO has a higher 
time complexity than the original algorithm. Therefore, 
we propose an enhanced PIO algorithm local exploitation 
capability based on Taguchi method. The orthogonal matrix 
is added to the landmark operator of the algorithm. The PIO 
algorithm based on Taguchi method can solve the problem of 
wind turbine parameter extraction very well [27].

Wind energy is a clean and renewable energy source, and 
many issues such as environmental pollution and resource 
scarcity have led to the rapid development of other renewable 
energy sources such as wind power [28]. With the growth 
of the installed capacity of wind turbines, related technical 
issues have become a research hot-spot for the majority 
of researchers, which has also greatly contributed to the 
enhancement and development of wind power technology 
applications [29]. The modeling research of wind power 
systems is a fundamental research topic of key importance 
[30]. The accuracy of the model and internal parameters is 
not only related to the optimal operation and safe and stable 
control of the wind power system, but also to the safe and 
stable operation and control of the power grid [31-35].

Wind power has become the main way to use wind 
resources, as it does not contain any pollutant emissions 
itself is wind energy as a clean energy has the advantage 
of competitiveness, in the process of electricity production 
does not lose a lot of energy, and does not produce any 
environmentally harmful substances [36]. Wind energy is 
a natural source of energy that is less expensive to develop 
and requires no other expensive maintenance once it is in 
use [37]. Therefore, wind energy has become an economical, 
clean and high quality energy option. In the current research 
development commercialization process of new energy 
sources, wind energy has become the most promising one 
[38-39].

2  The proposed Novel Pigeon-inspired 
Optimization (NPIO) Algorithm

In this section, we provide detailed information on the 
NPIO algorithm, including for the basic pigeon-inspired 
optimization (PIO) algorithm, evolutionary framework and 
improvement mechanism [40].

2.1 An Overview of PIO
Pigeons returning home can easily find their way home 

and take very little time to travel. The PIO algorithm is 
based on (1) a map and compass operator and (2) a landmark 
operator. The map and compass operator is used in the early 
stages of the returning home process for pigeons. The map 
and compass will continue to guide pigeon to fly until they 
reach the vicinity of their home location. At this time, the 
role of the map and compass operator is diminished, and the 
landmarks will plays the leading role in pigeon flight. The 
optimization process of the algorithm is based on the behavior 

of pigeons returning home. The position of each pigeon is a 
candidate solution, to the considered mathematical problem. 
During continuous flight, the movement direction and 
respective positions of the pigeons are constantly adjusted to 
obtain the optimal solution [41].

Map and Compass Operator: Previous work has shown 
that pigeons perceive of the magnetic fields and form a map 
in their mind [42]. In addition, the map and compass operator 
is used to adjust the position of each pigeon according to 
the magnetic field map. Each pigeon has a distinct own 
position and speed [43]. The position  of a pigeon 
represents a candidate solution, and the speed  represents 
the movement trend for the pigeon at the next iteration. The 
magnitudes of  and  are determined by the dimension 
of the problem to be optimized. The mathematical model of 
the map and compass operator is expressed by Eq. (1) and 
Eq. (2).

,      (1)

where  is a factor related to the map and compass operator 
that is adjusted based on different problems. The parameter 

 is includes random values between 0 and 1.  is 
the best position which is named the global optimal position 
at iteration .

.                             (2)

 is the iteration number.  and  are the position 

and velocity of pigeon  in the current iteration.
Landmark Operator: Some research has shown that 

pigeons will obtain landmark information when flying. A 
landmark may be a tree, a river, or a building. A mathematical 
model of the landmark operator is shown in Figure 1.

Figure 1. The landmark operator in PIO

(In the landmark operator in PIO, the inside of the pigeon circle at 
the center point represents each generation of excellent solutions, 
and the outside of the circle represents the pigeons that do not have 
the ability recognize the optimal travel path. These pigeons will be 
ignored. The pigeons in the circle will continue to iterate following 
the pigeon in the center of the circle.) 
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The pigeons outside the circle do not have the ability to 
recognize the, optimal travel path and are ignored in iterative 
process. Therefore, half of the pigeons are discarded in each 
iteration. The pigeons in the circle are able to promote the 
convergence of the algorithm, and are included in subsequent 
iterations.

,                                (3)

where  is the number of pigeons in the population. At 

iteration  , the change in the number of pigeons in the 

population is obtained by Eq. (3), where  represents 

a rounding operation, that transforms the value of  into 

the integer closest to . Suppose that every pigeon in the 
population can fly directly toward home. Then, the position 
of pigeon  is updated as shown in Eq. (4).

,       (4)

where  represents the real or virtual center pigeon 

position at iteration . and Eq. (5) can be defined as:

.          (5)

 is based on the fitness evaluation standard 
for each pigeon position, and this function differs from the 
maximum function and the minimum function. Notably, 

 is defined as shown in Eq. (6).

.         (6)

2.2 Analysis and Advancement for PIO
The improvements to the original PIO process are 

discussed in this subsection. Additionally, the basic 
optimization method in PIO, the flow of the algorithm and the 
addition of new ideas to establish NPIO are described. This 
new method can improve the performance of the algorithm 
and promote the convergence speed and solution accuracy 
[44].

PIO is an algorithm that simulates the behavior of pigeons 
returning home. On the way home, two operators are used. 
First, the map and compass operator is used the exploration 
phase, then, the landmark operator is for exploitation [45].

When using the PIO algorithm to solve a problem, the 
exploration phase and exploitation phase are implemented 
according to set steps; consequently, it may be difficult to 
determine whether exploration or exploitation approaches 
the global optimal solution. If pigeons are performing 
stage exploration near the optimal solution, they may 
pass the optimal solution after the next iteration, and the 
obtained candidate solution, may not be satisfactory. If 
stage exploitation then occurs, the algorithm may proceed 
to exploit the area near the optimal solution, and may obtain 
a satisfactory result. Therefore, problematic situations with 
stage ambiguities and local optima should be avoided.
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Thus, a new approach in which the two operators can 
perform crossover operations is introduced in this paper. 
When the algorithm runs to generation , and the map and 
compass operator is used to update the candidate solutions, 
A check is then performed to determine if the candidate 
solution has remained the same for a certain number of 
iterations. If there is no charge, the pigeon is considered to 
have found the optimal solution, which may be a local or 
global solutions. The change in the candidate solution will be 
updated according to the landmark operator. The flow chart 
of the NPIO algorithm is shown in Pseudocode 1.

The change in the number of pigeons in Eq. (3) is halved 
for each generation. This reduction process will affect the 
diversity of the population to a certain extent. Consider 
the extreme case here. When the final iteration is reached, 
there is only one candidate solution left in the entire search 
range, so that the candidate solution will not change further. 
This approach based on the maximum number of iterations 
may waste resources and lead to considerable resource 
expenditures. Considering population changes, this paper 
designs a population change function based on the number of 
iterations, as shown in Eq. (7).

.         (7)

3  Wind Turbine Parameter Identification 
Model

The structure of a doubly-fed induction generator 
(DFIG), which can operate at variable speed, consists of a 
wind turbine, a drive train, a doubly-fed induction generator, 
and a control system. The stator winding of DFIG is directly 
connected to the grid, and the rotor winding is connected to 
the external grid through a converter. The voltage frequency, 
amplitude and phase of the rotor winding power supply are 
automatically adjusted by the converter according to the 
operating requirements, so that the power can be generated 
at different speeds with constant frequency, which meets the 
requirements of the electric load and grid connection.

3.1 Mathematical Modeling of Wind Turbines
The wind power  captured by the wind turbine can be 

expressed by Eq. (8) when the wind blows at a certain speed 
towards the wind turbine and the torque generated in the 
wind turbine drives the rotation of the wind turbine.

,                          (8)

where  indicates the wind energy utilization coefficient of 

wind turbine;  is the blade tip speed ratio;  is the wind 

turbine blade pitch angle ( );  is the swept area 

of the wind turbine blade ( ),  is the radius of the wind 

turbine blade.;  is the air density ( );  is the input 

wind speed ( ).
Under the condition of wind speed determination, 

the wind power captured by the wind turbine is mainly 
determined by the wind energy utilization coefficient 

, which represents the efficiency of the wind turbine 
in converting wind energy into electrical energy. For a 
determined wind turbine blade, the wind energy utilization 
coefficient  is determined by the blade tip speed ratio  

and the pitch angle . The eight independent parameters of 
wind turbine variable pitch mathematical model commonly 
used at present are shown in Eq. (9).

,                 (9)

where  can be expressed by Eq. (10).

,                       (10)

where -  are wind turbine parameters and the leaf tip 

speed ratio  is the ratio of the leaf tip speed of the wind 
turbine blades to the wind speed, which can be expressed as 
Eq. (11).

.                                     (11)

3.2 Parameter Identifiable Analysis
The research on the identifiability of parameters can not 

only analyze the theoretical conditions to find the parameters 
can be uniquely identified, but also select the appropriate 
identification method according to the conditions to avoid 
the futile identification work when the parameters are not 
identifiable.

The parameters in the wind turbine model, which 
may be changing at any moment and can be known with 
measurement tools, are , , , ,  and  can be 

calculated according to Eq. (8).  can be calculated from 
the power conversion relationship measured by the generator, 
and the manufacturer will also give the  curve based 
on the actual measurement results. In other words, the wind 
energy utilization factor  is known for different leaf tip 

speed ratios . Here, we need to identify the information 
about the wind turbine internal characteristics parameters. 
The unique characteristic parameters of different wind 
turbines can lead to different power outputs for the same 
input case.
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The parameters of -  can be extracted based on the 
actual measurement data. In this paper, root mean squard 
error (RMSE) is used as the fitness function to compare the 

 values calculated from the extracted information of 

-  with the actual values. The final proposed parameter 
values are output after extracted. The mathematical form of 
RMSE is shown in Eq. (12).

,                (12)

where  is the number of actual data,  is the  value 
calculated from the parameter information after extraction, 
and  is the actual measurable  value.

4  Experimental Results

In this section, the capabilities of the improved PIO 
algorithms NPIO in this paper are tested by 23 benchmark 
functions. In order to verify the efficacious results of the 
NPIO algorithm, it be compared with five algorithms: Particle 
swarm optimization (PSO) [46], Pigeon-inspired optimization 
(PIO) [47], Sine cosine algorithm (SCA) [48], Multi Verse 
Optimizer (MVO) [49], Dragonfly algorithm (DA) [50].

4.1 Simulation Environment
The computer hardware used included an Intel(R) 

Core(TM) i5-8500@3.00 GHz and 24 G memory. The 
programming environment is MATLAB R2019b.

4.2 Experimental Results
To enhance interpretability of the results, although four 

digits for the experimental data, and a rounding rule is used 
to produce integers. 

Table 4 shows the specific parameter information of 
the five algorithms. Each algorithm was run 30 times, the 
population size was set to 60 and the average value was used 
for algorithm comparison. The number of fitness evaluation 
(MaxFES) iterations was the same for all algorithm. Twenty-
three benchmark functions were used to test the performance 
of the improved NPIO algorithm. Table 1 to Table 3 show 
the details of these functions. The column  gives the ID 

numbers of benchmark functions,  

are given in this table. Additionally, the  search range 

of each function is listed,  is the dimension of 

each function and  is the theoretical optimum. 
The twenty-three benchmark functions include unimodal 

functions (F1-F7), multimodal functions (F8-F13) and fixed 
dimension functions (F14-F23). The unimodal functions 
include a global minimum point, which can be used to test 
the global search ability of the algorithm. The multimodal 
functions include a global minimum point and multiple local 
minimum points, which can be used to determine whether 
the algorithm has the ability to avoid local optima. The fixed 
dimension functions are fixed and can be used to test the 
search ability of the algorithm at low latitudes.

Table 1. Unimodal test function

No Function expression Search space Dimension TM

1 [-100, 100] 30 0

2 [-10, 10] 30 0

3 [-100, 100] 30 0

4 [-100, 100] 30 0

5 [-30, 30] 30 0

6 [-100, 100] 30 0

7 [-1.28, 1.28] 30 0
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Table 2. Multimodal test function

No Function expression Search space Dimension TM

8 [-500, 500] 30 -12569

9 [-5.12,5.12] 30 0

10 [-32, 32] 30 0

11 [-600,600] 30 0

12
[-50, 50] 30 0

13

 

[-50, 50] 30 0

Table 3. Fixed dimension function

No Function expression Search
space Dimension TM

14 [-65, 65] 2 1

15 [-5, 5] 4 0.00030

16 [-5, 5] 2 -1.0316

17 [-2, 2] 2 0.398

18 [1, 3] 2 3

19 [0, 1] 3 -3.86
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20 [0, 10] 6 -3.32

21 [0, 10] 4 -10.1532

22 [0, 10] 4 -10.4028

23 [0, 10] 4 -10.5363

Table 4. Parameter setting
Algorithm Parameter

DA
PSO
MVO
PIO R = 0.02

NPIO

4.3 Experimental Analysis
Table 5 and Table 6 shows the results of the NPIO 

and PIO, PSO, MVO, and DA methods for the twenty-
three benchmark functions. In the comparison process, if 
an algorithm performed better than the other algorithms 
for a benchmark function then it was labeled, labeled top 
performers are shown in blue font in Table 5 and Table 
6. Unimodal functions F1-F7, were used to judge the 
convergence speed of the algorithm, and NPIO performed 
well based on the unimodal functions. This result suggests 
that NPIO provides a fast convergence speed and strong 
development ability for unimodal functions. 

Figure 2 shows the iteration speed curves of the six 
algorithms during the iterative process. For the unimodal test 
functions, the convergence speed and convergence ability 
of NPIO are greater than the other five algorithms. For 
multimodal test functions, NPIO does not perform as well 
as MVO and PIO algorithms in F8 and F9, the convergence 
speed in other functions is greater than the five algorithms. 
For fixed dimension functions, the performance of NPIO 
is not outstanding, especially for F21-F23 functions, the 
convergence speed of NPIO is less than that of MVO 
algorithm. In terms of convergence speed, the NPIO 
algorithm is weaker, which enhances the exploitation ability 

of the algorithm.
Multimodal functions F8-F13 include, many local 

optima traps, so they are suitable for evaluating whether the 
algorithms can avoid local optima. The performance of the 
NPIO algorithm was satisfactory for the multimodal function 
and NPIO outperformed the other algorithms. The NPIO 
algorithm searches for candidate solutions at other locations 
in a larger space, therefore, it has strong local exploitation 
and global search capabilities, and it can avoid local optima 
to a large extent. This result indicates that the improved 
evolutionary framework introduced in this paper largely 
balances the capabilities of exploitation and exploration. 
The structure of multimodal functions is complex, which 
poses a challenge for optimization algorithms. Based on the 
comparison of the six algorithms above, each algorithm does 
not reach the overall optimal value, but the performance of 
NPIO is satisfactory.

The fixed dimension functions considered included only a 
few local minima, and the number of dimensions was small. 
The NPIO algorithm, only outperformed other algorithms for 
F14, F15 and F22, and its performance for F16, F17 and F18 
was basically the same as other that of the other algorithms. 
The performance of NPIO was not as good as that of the 
MVO algorithm for F23.
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Figure 2. Performance for DA, PSO, PIO, MVO and NPIO under test functions
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Table 5. Test comparative results of the PIO, PSO and proposed NPIO algorithm for selected 23 functions

Func name
PIO PSO NPIO MVO DA

Mean Std Mean Std Mean Std Mean Std Mean Std

F1 4.56×10-4 1.92×10-4 3.40×102 1.07×102 3.00×10-5 8.32×10-5 1.38×10-1 4.14×10-2 4.00×104 6.67×103

F2 1.17×10-2 3.75×10-3 1.08×101 2.03×100 9.54×10-7 2.73×10-4 2.58×10-1 8.43×10-2 4.20×101 6.32×100

F3 9.37×10-3 7.82×10-3 2.41×103 5.92×102 2.50×10-4 6.45×10-4 1.59×101 5.09×100 5.77×104 1.10×104

F4 1.60×10-2 4.43×10-3 1.16×101 3.11×100 6.31×10-3 7.41×10-3 4.18×10-1 8.68×10-2 8.53×101 2.33×100

F5 2.90×10-1 3.30×10-2 1.72×104 4.74×103 2.88×101 2.00×10-1 2.26×102 2.81×102 2.07×108 3.00×107

F6 7.14×100 3.76×10-1 3.54×102 6.50×101 1.36×10-1 1.09×100 4.59×100 2.48×10-2 4.17×104 6.25×103

F7 2.80×10-3 1.72×10-4 2.61×10-2 9.27×10-3 1.46×10-4 2.62×10-3 1.12×10-2 3.34×10-3 1.14×102 1.59×101

F8 -6.25×10-3 7.73×10-2 -5.37×103 9.56×102 -8.32×103 1.02×103 -6.36×103 4.22×102 -3.74×103 1.49×102

F9 2.33×101 1.84×10-2 1.81×102 1.80×101 3.30×10-2 2.59×101 1.65×102 1.76×101 1.24×102 1.40×101

F10 8.43×103 3.98×10-3 5.83×100 4.63×10-1 6.31×10-3 1.49×10-2 1.89×101 1.57×10-1 1.82×101 3.71×10-1

F11 3.44×10-2 2.47×10-3 4.27×100 1.20×100 1.66×10-3 1.09×10-1 3.33×10-1 8.24×10-2 3.50×102 4.80×101

F12 1.48×100 2.43×10-1 5.76×100 1.66×100 5.37×10-1 4.21×10-1 1.19×100 1.25×100 5.03×108 1.59×108

F13 3.04×100 7.12×10-2 6.30×102 1.84×103 2.45×10-2 7.49×10-1 2.45×100 1.70×10-2 9.75×108 1.29×108

F14 2.88×100 1.43×100 2.65×100 1.99×100 9.98×10-1 3.24×100 3.75×100 4.48×10-12 8.24×100 5.02×100

F15 8.44×10-4 3.80×10-4 2.84×10-3 3.13×10-3 6.37×10-4 6.24×10-3 2.64×10-3 1.32×10-4 7.86×10-2 6.16×10-2

F16 4.56×10-4 4.56×10-4 -1.03×100 2.99×10-3 -1.03×100 2.22×10-16 -1.03×100 5.01×10-8 -4.16×10-1 4.49×10-1

F17 4.56×10-4 4.56×10-4 3.98×10-1 9.29×10-4 3.98×10-1 0 3.98×10-1 2.03×10-7 1.21×100 1.04×100

F18 4.56×10-4 4.56×10-4 3.02×100 1.24×10-2 3.00×100 3.19×10-15 3.00×100 1.97×10-7 2.32×101 1.69×101

F19 4.56×10-4 4.56×10-4 -3.79×100 5.86×10-2 -3.86×100 2.23×10-2 -3.86×100 1.72×10-7 -3.46×100 3.12×10-1

F20 4.56×10-4 4.56×10-4 -1.97×100 3.55×10-1 -3.32×100 2.45×10-1 -3.32×100 3.02×10-7 -1.95×100 4.88×10-1

F21 4.56×10-4 4.56×10-4 -2.19×100 1.12×100 -4.86×100 1.78×100 -9.14×100 2.13×100 -5.77×10-1 1.76×10-1

F22 4.56×10-4 4.56×10-4 -1.58×100 6.10×10-1 -5.55×100 2.79×100 -1.04×101 3.61×10-5 -8.28×10-1 2.68×10-1

F23 4.56×10-4 4.56×10-4 -2.43×100 1.58×100 -4.52×100 2.26×100 -9.46×100 2.26×100 -9.51×10-1 2.40×10-1

4.4 Applied for Parameter Identifiable Analysis
As mentioned in Section 3.1, the wind turbine model 

can fit the undetermined parameters of  -  in the model 
by a set of data. The specific search range of these eight 
parameters is shown in Table 6.

For wind turbine model parameters, there is already a 
complete theory to derive the identifiability of the parameters. 
However, due to its large number of dimensions, the 
calculation process is too complicated. In addition, this topic 
mainly studies the influence analysis of the double feedback 
wind turbine on the parameter sensitivity. Put the assessment 
standard on the sensitivity analysis after parameter extraction. 
The parametric model of the wind turbine has been given in 
section 3, and now the model is revised as shown in Eq. (13).

Table 6. Search range of eight parameters
Parameters Search range

c1 [55.6, 166.8]
c2 [0.206, 0.618]
c3 [0.005, 0.015]
c4 [0.775, 2.325]
c5 [4.85, 14.55]
c6 [9.2, 27.6]
c7 [1.0×104, 3.0×104]
c8 [1.7×103, 5.1×103]

                (13)

Let ,

 

Then it can be calculated:

                  (14)

Now set the control target of the bonus pitch angle, and 
make the pitch angle constant as zero, it is calculated as 
follows:

                       (15)
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At this time,  and  are constants, and 
becomes a function expression with three parameters     

,  and  only about the variable . Therefore, 
we only need to randomly select a few sets of data in the 
wind speed disturbance operating data to obtain 

,  and . Therefore, the identifiability of  can be 
proved. Similarly, the identifiability of other parameters can 
be proved. However, this mathematical analysis method 
is simple but not applicable, because factors such as the 
environment have a relatively large impact on the wind 
turbine, so we will design a method to deal with it according 
to different environments.

In the process of solving some of the above equations, 
since the equations are transcendental equations, a computer 
must be used to solve them, and multiple candidate solutions 
may be generated in the process. In this paper, the NPIO 
algorithm is used to extract the specific values of the wind 
turbine parameter model.

Figure 3 shows the relationship between the tip speed 
ratio  and the wind energy utilization coefficient  at 

different wind turbine blade pitch angles .
The relevant reference gives the values of  c1-c8  as 

111.2, 0.412, 0.01, 1.55, 9.7, 18.4, 0.0002, 0.0034. We 
can bring these eight values into Eq. (12), and the result is 
0.4970. Therefore, according to the experimental results, it 
can be seen that there is a problem in the method of using 
the identification method to extract the parameters of the 

wind turbine. We use a meta-heuristic algorithm for further 
parameter extraction to improve the model accuracy of the 
wind turbine.

Figure 3. The relationship between the wind energy utilization 
coefficient  and tip speed ratio 

Table 7 shows the parameter values and fitness function 
values of the final wind turbines of several algorithms. It can 
be seen from the table that the NPIO algorithm has higher 
convergence accuracy and can better extract the model 
parameter values of the wind turbine. It can be seen from 
the figure that the NPIO algorithm proposed in this paper 
has satisfactory results in the extraction of wind turbine 
parameters.

Table 7. Results of several algorithms in wind turbine parameter extraction
PIO PSO NPIO MVO DA Reference

114.7292 117.2625 107.0926 144.3476 119.5412 111.2

0.4146 0.4233 0.3958 0.2219 0.3585 0.412

 0.0090 0.0099 0.0097 0.0061 0.0082 0.01

1.5104 1.6079 1.5904 1.0189 1.3382 1.55

8.7987 9.9862 9.8720 6.6985 9.2927 9.7

9.5774 9.5713 18.2396 9.2 2.0475 18.4

0.000197 0.000184 0.000192 0.000283 0.000167 0.0002

0.0031 0.0035 0.0036 0.0050 0.0033 0.0034
RMSE 0.4970 0.4970 0.3757 0.4970 0.4965 0.4970

5  Conclusion

The pigeon-inspired optimization (PIO) algorithm suffers 
from low optimization accuracy and slow convergence 
in solving numerical optimization problems. This paper 
addresses this problem by proposing a single-stage iterative 
framework for improving the algorithm, with alternating 
exploitation and exploration phases. The novel pigeon-
inspired optimization (NPIO) algorithm can choose different 
methods for convergence at the right time, preventing the 
PIO algorithm from still performing exploration work 

when exploitation is required. The algorithm performance 
evaluation based on twenty-three test functions indicated that 
the convergence speed of NPIO is faster and the convergence 
accuracy is higher than those of other algorithms. In addition, 
simulation experiments involving the extraction of internal 
parameters related to Wind turbine systems and a doubly-fed 
wind turbine (DFIG) model was applied. The results show 
that in terms of solar energy parameter extraction, NPIO 
outperforms other algorithms based on convergence and 
accuracy. 

In the future, for other aspects of the PIO algorithm, 



Parameter Extraction Model of Wind Turbine Based on A Novel Pigeon-Inspired Optimization Algorithm   571

such as the requirement to design higher performance 
algorithms in specific problem scenarios, we can insert 
mechanisms that assist in the convergence of the algorithm 
to achieve a superior optimal solution. The impact of the 
objective function on the accuracy of parameter extraction by 
considering the signal-to-noise ratio and additional prediction 
methods; additionally, the RMSE, will be further minimized 
to accurately extract internal parameter information from 
Wind turbine systems models.
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