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Abstract

Artificial Intelligence (AI) has become ubiquitous, 
transforming numerous domains including traffic sign 
recognition, defect detection, and healthcare. However, 
this widespread adoption has brought about significant 
cybersecurity challenges, particularly in the form of backdoor 
attacks, which manipulate training datasets to compromise 
model integrity. While the integration of AI has proven 
beneficial, there is a lack of comprehensive strategies to 
protect AI models from these covert attacks, necessitating 
innovative approaches for securing AI systems. In this study, 
we demonstrate a novel methodology that integrates image 
steganography with deep learning techniques, aiming to 
obscure backdoor triggers and enhance the resilience of AI 
models against these attacks. We employ a diverse set of 
AI models and conduct extensive evaluations in a traffic 
sign recognition scenario, specifically targeting the STOP 
sign. The results reveal that shallow models are challenged 
in learning trigger information and are sensitive to trigger 
settings, while deeper models achieve an impressive 98.03% 
attack success rate. The image steganography technique 
used requires minimal data adjustments, making the triggers 
more challenging to detect than with traditional methods. 
Our findings underscore the stealth and severity of backdoor 
attacks, emphasizing the need for advanced security measures 
in AI and contributing to the broader understanding and 
development of robust protections against such attacks.

Keywords: Artificial Intelligence security, Backdoor attack, 
Deep learning, Image recognition, Image steganography

1  Introduction

Art i f i c ia l  In te l l igence  (AI)  has  emerged  as  a 
transformative force, significantly impacting various domains 
such as traffic sign recognition, defect detection, unmanned 
stores, and healthcare [1]. This technological revolution 
has led to a rapid and extensive integration of AI models, 
particularly in image recognition, into societal structures and 
industry practices.

The broad adoption of AI has unlocked unprecedented 
advancements, enhancing efficiency, accuracy, and innovation 
across sectors. However, the expansive deployment of AI 

technologies has concurrently introduced new cybersecurity 
challenges, necessitating an urgent and focused examination 
of AI model security. Backdoor attacks on image recognition 
models exemplify a critical threat, posing substantial risks 
across diverse applications [2-7].

Backdoor attacks, a prominent concern in AI security, 
entail covert manipulations of the training dataset to embed 
vulnerabilities into the resultant model. These compromised 
models exhibit dual behavior, functioning normally in 
regular scenarios but misclassifying in a targeted manner 
when a specific trigger is present during inference [4-6]. The 
implications of such attacks are profound, affecting various 
sectors and individuals reliant on AI systems.

Although there have been notable strides in AI security, 
existing countermeasures against backdoor attacks reveal 
limitations, particularly in their ability to detect and mitigate 
these threats effectively. Current approaches have not 
sufficiently addressed the challenge of camouflaging attack 
triggers, leaving them potentially detectable by adversaries 
[4, 6].

This  research  in t roduces  a  novel  method tha t 
synergistically combines image steganography with advanced 
deep learning techniques to obfuscate backdoor attack 
triggers. By embedding the triggers within digital images 
in a concealed manner, image steganography enhances the 
difficulty of detecting these triggers, thereby bolstering AI 
model security [8-9].

To empirically validate the efficacy of the proposed 
solution, this paper conducts an extensive simulation 
involving backdoor attacks on a traffic sign image recognition 
model. The study encompasses seven trigger-setting 
conditions and employs three distinct deep learning models, 
ensuring a thorough and comprehensive evaluation [10-13]. 
The findings underscore the urgent need for robust AI model 
security and the effectiveness of the proposed methodology.

This work contributes significantly to the existing 
literature on backdoor attacks, enhancing the understanding 
of these threats, and introducing innovative strategies 
for concealing attack triggers. The study emphasizes the 
imperative for stringent AI model security and offers valuable 
recommendations for mitigating backdoor attacks, guiding 
researchers, cybersecurity experts, and AI practitioners 
towards developing more secure AI systems [14-16].

As AI continues to evolve and infiltrate various sectors, 
the insights and recommendations from this study gain 
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paramount importance in safeguarding AI-dependent 
societies against backdoor attacks. The strategic application 
of image steganography, coupled with informed AI model 
layer selection, becomes crucial in this context.

The subsequent sections of this manuscript delve 
deeper into the intricacies of image recognition models, the 
vulnerabilities in AI, backdoor attacks, and the requisite for 
robust security mechanisms. Readers will be provided with a 
detailed exploration of the subject, accompanied by empirical 
evidence and methodological discussions. The paper is 
structured to facilitate a seamless flow of information, 
starting with a comprehensive literature review AI and 
Security Measures in Section II, followed by the proposed 
system in Section III, results and discussion in Section IV, 
and concluding with recommendations and future directions 
in Section V.

AI solidifies its role in critical decision-making and 
societal functions, ensuring the integrity and security of 
its models becomes indispensable. This research stands as 
a foundational step towards a future where trust in AI is 
validated and secured, paving the way for innovative and 
resilient AI security solutions.

2  AI and Security Measures

2.1 Advances in AI Image Recognition
Artificial intelligence image recognition technology 

allows computers to use artificial intelligence models to 
identify images. In 1998, Y. Lecun et al. proposed LeNet 
[17] used convolution, pooling, and fully connected layer 
architecture for the first time in the font image recognition 
and classification task to achieve a good prediction level. 
It is also one of the earliest convolutional neural networks. 
Its model architecture is shown in Figure 1. By introducing 
convolutional layers instead of fully connected layers, the 
number of model parameters is reduced but still comparable 
to that of support vector machines, making convolutional 
neural networks one of the mainstream algorithms in image 
recognition. 

Figure 1. LeNet Architecture [17]

In 2012, A. Krizhevsky et al. proposed AlexNet [18] 
made a significant breakthrough in image recognition 
by deepening the number of model layers, changing the 
nonlinear activation function, and using techniques such 
as dropout to avoid model overfitting. Demonstrate that 
increasing the convolutional neural network layers can bring 
benefits and that the feature information learned by the model 
can exceed the number of human-selected features. Won the 
ImageNet recognition challenge with a considerable lead, 
making the convolutional neural network as a mainstream 

architecture.
In 2014, K. Simonyan et al. proposed very deep 

convolutional networks [19] through data-oriented multiple 
scale training, reducing the size of the convolution kernel 
on the model architecture and superimposing them, and 
importing them into the architecture Max pooling layer. This 
architecture enables convolutional neural networks to reach 
a deeper model layer and achieve better prediction accuracy. 
The study confirmed that the deep neural network using small 
convolution kernels is better than the shallow neural network 
with large convolution kernels, and can use multi-layer small 
convolution kernels to achieve the same receptive field as 
large convolution kernels.

With the development of convolutional neural networks, 
the deeper the model architecture, how to add more model 
layers to improve the model’s performance becomes 
extremely important. In 2016, K. He et al. studied that 
deep convolutional neural networks are difficult to achieve 
reasonable accuracy [20]. To solve this problem, they believe 
each model layer should include the previous function as one 
of the inputs. Based on this, it is proposed to add a residual 
block to the convolutional neural network architecture to 
break through the gradient disappearance problem that will 
occur when the convolutional neural network updates the 
model weight parameters in the deep architecture. At the 
same time, it is proved that using a residual network can 
achieve a better network optimization effect and construct 
a deeper neural network structure to improve the accuracy 
of the model, which will have a profound impact on the 
subsequent deep neural network design.

2.2 Ensuring the Security of AI Models
This section will discuss the artificial intelligence model 

security, including the description of adversarial attacks 
that target artificial intelligence and the MITER ATLAS 
framework that targets artificial intelligence model security. 
Artificial intelligence model deployment can be divided into 
two blocks: model training and model inference. The model 
training stage is when the artificial intelligence model uses its 
neural network to learn and complete a particular job, such as 
traffic sign and face recognition. The model inference stage 
deploys the artificial intelligence model after model training 
to the field for actual use. 

With the proliferation of network attacks and the 
widespread application of artificial intelligence, attacks 
against the artificial intelligence model have emerged. 
This attack is called an adversarial attack, including Model 
Evasion, Functional Extraction, Model Poisoning, and Model 
Inversion. Attack stages and descriptions of adversarial 
attacks can see at [21-22]. The purpose of the backdoor 
attack is to embed a hidden backdoor into the deep neural 
network. This will make the attacked artificial intelligence 
model normally perform on benign samples. But when 
the input data contains triggers defined by the attacker, the 
backdoor will be triggered, making the prediction results 
maliciously changed and giving targeted wrong results.  In 
[21] provide lists the detailed descriptions of the expected 
attack behaviors involved in this research according to the 
MITER ATLAS framework, including Reconnaissance and 
Resource Development before the attack, Persistence and ML 
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Attack Staging during the attack, and Impact generated after 
the attack.

2.3 Backdoor Attack in Deep Learning
The purpose of this section is to review the current state 

of research on backdoor attacks in deep learning. Deep 
neural networks have been deployed and applied in various 
fields, and triggers are added to the training data set in the 
model training phase, resulting in changes during the model 
training period so that the trained model produces targeted 
wrong predictions in the inference phase. This kind of attack 
is called a backdoor attack. It is subdivided into Corrupted-
label attacks and Clean-label attacks according to whether it 
involves label manipulation during the interference training 
data set.

Gu et al. first demonstrated the possibility of injecting 
backdoors into DNNs in 2017 [23]. The study made the 
trained model generate backdoors by injecting backdoor 
triggers in the traffic signs and handwritten digit datasets. 
Inputs with triggers are subsequently predicted as targeted 
error classes.

In 2021, Wenger et al. tried to carry out backdoor attacks 
in the physical world through self-collected facial recognition 
data sets. They are bringing backdoor triggers from the data 
level into real life by using common objects, such as stickers, 
earrings, etc. as triggers, proving the possibility of backdoor 
attack risks in the physical world [24].

A study on Clean-label attacks was published by Shafahi 
et al. the following year [25]. This study achieved a backdoor 
attack without changing the labels of the training datasets. 
This study confirms that there is still the danger of backdoor 
attacks when only the eigenvalues of the training datasets are 
interfered with.

Yao et al. studied the backdoor attack in transfer learning 
in 2019 and tested it on traffic signs, handwritten numbers, 
and face recognition datasets [26]. The simulation results 
achieved a high attack success rate. The same year, Chen et 
al. used Activation Clustering to detect backdoor attacks [27]. 
When the trigger setting is clearly different from the normal 
input, it can achieve good detection ability.

Research on backdoor attacks has sprung up like 
mushrooms after rain in recent years. Including the 
implantation of backdoor triggers in the model retraining 
stage proposed by Costales et al. in 2020 to carry out 
backdoor attacks in datasets such as handwritten numbers 
and self-driving cars [28]. Lin et al. utilize normal objects as 
backdoor trigger settings to conceal backdoor attacks [29]. 
And an attack method that can set multiple backdoors at the 
same time was also proposed by Zhong et al. in the same year 
and realized in datasets such as traffic signs [30].

At the same time, there is also research on backdoor 
attacks for federated learning, which was proposed by 
Bagdasaryan et al. in 2020 [31]. Through the model-
poisoning attack in the model aggregation stage, the global 
model is endangered by backdoor attacks. And the backdoor 
attack scheme was studied by Quiring et al. by manipulating 
image zoom so that the backdoor trigger will only appear at a 
specific zoom ratio [32]. Both of the above two studies were 
implemented in data sets such as CIFAR-10.

In 2020, Pang et al. cut into the research from another 

angle by analyzing the interaction between normal samples 
and backdoor samples for the model and by simulating in 
datasets, such as traffic signs and CIFAR-10, to replace 
backdoor attack defense measures [33]. Expand another 
unique point of view. Rakin et al. achieved backdoor attacks 
through a small number of neuron-flipping techniques in the 
CIFAR-10 and ImageNet datasets [34].

Zeng et al. focus on the research of trigger setting, 
explore the impact of trigger setting in different regions of the 
image, and realize backdoor attack in CIFAR-10 by adopting 
trigger setting in different spatial positions [35]. Bagdasaryan 
et al. tried using code poisoning techniques to carry out 
backdoor attacks in multi-task learning tasks, experimenting 
with ImageNet and handwritten digital datasets [36].

Severi et al. extended the object of backdoor attacks to 
target malware recognition models. Using EMBER, Contagio 
and Drebin datasets for simulation, further information 
changes are made to achieve attack behavior by analyzing 
the degree of influence of features [37]. Li et al. designed an 
autoencoder for trigger settings to hide triggers and simulated 
backdoor attacks on datasets such as ImageNet and Ms-Celeb 
[38].

In 2022, Salem et al. proposed a method of randomizing 
trigger settings for datasets such as handwritten numbers 
and face recognition and further completed the backdoor 
generation network and conditional backdoor generation 
network to develop backdoor attacks [39]. Tian et al. tried 
a new backdoor attack on the traffic sign and CIFAR-10 
datasets in the same year, specifically for the backdoor attack 
on the lightweight model stage. The backdoor will not appear 
until the original model is lightweight [40].

2.4 Steganography
Steganography is a covert communication technique that 

hides information such as documents, messages, or images 
so that the hidden information is invisible to observers. 
Unlike cryptography, which transforms data into another 
form of protection, steganography is the practice of hiding 
information within another. Take image steganography as 
an example. Specifically, it is to hide the information to be 
hidden into the normal image through algorithm design and 
then extract the hidden information from the image through 
algorithm design.

For image steganography, the common practice is the 
least significant bit (LSB) substitution [41]. The principle is 
that the lower bit information in the image item will not have 
a significant color change to the human eye. By replacing the 
LSB information, you can put the information you want to 
hide and extract it when needed.

Another steganography technique works by reading the 
pixel values of two images in binary and combining their 
most significant bits (MSB). Since MSB contains more image 
information than LSB, this method can largely preserve the 
features of the image to be hidden [42].

3  Method

3.1 System Architecture
This study presents a system comprising five stages: data 
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collection, trigger settings, data preprocessing, model training 
and tuning, and model prediction and evaluation as shown at 
Figure 2. The German Traffic Sign Recognition Benchmark 
(GTSRB) dataset is used, encompassing 43 different traffic 
sign labels. Triggers are then set up and added to images, 
followed by data preprocessing which includes normalization, 
segmentation, and augmentation. Three deep neural network 
models, each representing different architectural depths, 
are then trained and tuned. The impact and effectiveness of 
backdoor attacks on these models under different scenarios 
are evaluated in the final stage.

Figure 2. System architecture

3.2 Data Collection
This research uses the German Traffic Sign Recognition 

Benchmark (GTSRB) dataset from Kaggle, which consists of 
over 50,000 images across 43 distinct traffic sign categories, 
to simulate and analyze backdoor attacks on an image 
recognition model. Table 1 show GTSRB Dataset Overview 
for this research. The dataset’s variety in image sizes, lighting 
and weather conditions, rotations, and occlusions accurately 
represent real-world scenarios, making it an ideal choice for 
studying real-world applicable traffic signs (Figure 3) [43-
44].

Figure 3. GTSRB dataset schematic

Table 1. GTSRB dataset overview
Dataset Object Source Image size Number of 

categories
Amount 
of data

GTSRB Traffic 
signs

Kaggle 15x15 to 250x250 43 51,838

3.3 Trigger Settings
This study focuses on the strategic implementation of 

a threat model and backdoor triggers. The threat model 
conceptualizes a backdoor attack scenario in which 
an adversary alters the training dataset to misclassify 
future inputs with triggers. Adversaries may range from 
malevolent dataset suppliers to external model training 
service providers. The research emulates varying triggers 
and model architectures to assess backdoor attack risks. 
The impacts of image scale and trigger size on backdoor 
attacks are analyzed with two image scales (100 x 100 x 3 
and 224 x 224 x 3 pixels) and seven trigger sizes. Image 
steganography improves trigger concealment, reserving the 
last three bits of an image for trigger settings. The backdoor 
trigger’s application extends to the full image and label 
category modification, generating a dataset of clean and 
backdoor data. The traffic sign “STOP” at Figure 4 is used 
as the trigger image, aimed to misclassify input images with 
triggers. Subsequently, backdoor samples are created for 
further training and risk evaluation. 

Figure 4. Trigger image schematic

3.4 Model Training & Tuning
This study compares the impact of backdoor attacks 

on This study evaluates the impact of backdoor attacks on 
different neural network models, namely shallow, middle, 
and deep layer models. The models are trained on clean 
datasets, then on datasets composed of clean and backdoor 
data to study the effect of network depth and trigger scales 
on backdoor attacks. The shallow layer model uses a 
configuration of four convolutional layers, two pooling 
layers, and two fully connected layers, with ReLU and 
Softmax activation functions and the Adam optimizer. The 
middle layer model employs the VGG-16 framework with 
13 convolutional layers, interspersed with pooling layers and 
three fully connected layers. The deep layer model, based 
on ResNet-50, addresses network degradation through a 
residual network design comprising 16 residual blocks and a 
single convolutional layer. The study leverages these models 
to provide an insightful risk assessment of backdoor attacks 
across various network depths.
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3.5 Model Evaluation & Prediction
This study revolves around the dual optimization 

problem of learning clean data and backdoor trigger features 
in a model’s training process. The trained models are then 
evaluated using two key metrics - Attack Success Rate (ASR) 
and Clean Data Accuracy (CDA). They are tested on two 
datasets, the clean test dataset (Dclean test) and the backdoor 
test dataset (Dbackdoor test). ASR measures the success rate 
of backdoor attacks on the model, observing if the input 
with triggers can be accurately predicted to the target label 
“STOP”. On the other hand, CDA gauges whether learning 
trigger-related features impacts the prediction of clean 
data. Another metric, Test Accuracy Loss, is calculated as 
the difference between the CDA of the clean and backdoor 
models. Overall, this study explores how ASR and CDA 
metrics are impacted by seven different trigger settings across 
three models, with ASR results compared to previous studies.

 
4  Analysis Performance and Discussion

4.1 Shallow Layer Model
This section presents the experimental outcomes of the 

shallow layer model subjected to backdoor attacks, with 
metric details enumerated in Table 2. Post experimentation, 
the model yielded an accuracy of 96.96% on the clean 
dataset, as visualized in Figure 5, illustrating the accuracy and 
loss function curves during training along with the prediction 
results. The model displayed proficient classification 
capabilities for a majority of images, struggling only with 
darker, complex road signs. In backdoor attack trials, varying 
trigger configurations resulted in significant fluctuations 
in the Attack Success Rate (ASR) between 60.93% and 
92.63%, with the Clean Data Accuracy (CDA) remaining 

more consistent, ranging from 93.84% to 96.53%. Figures 5 
display confusion matrices for the experimental outcomes of 
backdoor and clean test datasets, respectively, indicating that 
the model can mispredict a small portion of clean data after 
trigger information learning, suggesting even simple network 
structures can be compromised with a well-designed trigger 
setup. In Figure 6 we can see backdoor test confusion matrix 
and clean test confusion matrix.

4.2 Middle Layer Model
The experimental results from the middle layer model’s 

backdoor attack experimentation are presented herein, with 
specific evaluation metrics detailed in Table 3. Following 
experimental trials, the model achieved an accuracy of 
97.07% on clean datasets. The progression of training 
accuracy, loss function curve, and test dataset predictions 
are captured in Figure 7. This model’s superior performance, 
vis-a-vis the shallow layer model, becomes evident when 
it accurately predicts images that its predecessor failed to. 
Its ability to identify blurred and dark images is attributed 
to the enhancement in model parameters and architecture. 
Backdoor attack experiments revealed that certain middle 
layer models could reach an ASR of 90.06%~95.63% and a 
CDA of 96.43%~98.11% across seven trigger settings. Unlike 
the shallow layer model, variation in triggers and image 
resolution caused only a 5.57% change in ASR and halved 
the fluctuation in CDA for the middle layer model. Figure 8 
respectively depict the confusion matrix for the backdoor and 
clean test datasets in the configuration with the highest ASR. 
The model achieved an ASR of 95.63% for trigger-containing 
samples, impacting the clean data less than the shallow layer 
model. However, as the network architecture deepens, the 
model becomes more sensitive to trigger settings and more 
vulnerable to backdoor attacks.

Table 2. Shallow layer model experimental results

Triger size /Original image size Clean Data 50/100 60/100 75/100 100/100 100/224 150/224 200/224
Clean data accuracy 0.9696 0.9384 0.9629 0.9606 0.9594 0,9653 0.9552 0.9566
Attack success rate - 0.6200 0.6093 0.6176 0.8133 0,9263 0.9210 0.9036
Test accuracy loss - 0.0312 0.0067 0.009 0.0102 0,0043 0.0144 0.01300

Figure 5. Shallow model training process diagram
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Figure 6. Backdoor test confusion matrix and clean test confusion matrix

Table 3. Shallow layer model experimental results

Triger size /Original image size Clean data 50/100 60/100 75/100 100/100 100/224 150/224 200/224
Clean data accuracy 0.9707 0.9811 0.9761 0.9807 0.9671 0,9735 0.9643 0.9798
Attack success rate - 0.9060 0.9356 0.9253 0.9006 0,9563 0.9533 0.9386
Test accuracy loss - -0.0104 -0.0054 -0.0100 0.0036 -0.0028 0.0064 -0.0091

Figure 7. Middle layer model training

Figure 8. Backdoor test confusion matrix for middle layer model and clean test confusion matrix for middle layer model
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4.3 Deep Layer Model
In this section will present the experimental results of 

the deep layer model’s performance in a backdoor attack 
scenario as we can see at Table 4, Figure 9 and Figure 10. 
The model achieved an accuracy of 98.18% on a clean 
dataset, demonstrating improved performance on more 
complex images. During the backdoor attack experiment, 
the model showed variable Attack Success Rate (ASR) 
between 88.3% and 98.03% and Clean Data Accuracy 

(CDA) between 95.15% and 96.5% across seven different 
trigger configurations. Compared to shallower models, 
the deep model was more sensitive to trigger settings, 
showing stronger learning of the hidden trigger information 
with minimal impact on clean data, thus making it more 
susceptible to potential backdoor attacks. Confusion matrices 
were constructed to illustrate these results for both clean and 
test datasets.

Table 4. Shallow layer model experimental results

Triger size /Original image size Clean data 50/100 60/100 75/100 100/100 100/224 150/224 200/224
Clean data accuracy 0.9818 0.9515 0.9616 0.9567 0.9517 0,9650 0.9611 0.9574
Attack success rate - 0.8830 0.9590 0.9540 0.9160 0,9793 0.9803 0.9753
Test accuracy loss - 0.0303 0.0202 0.0251 0.0301 0.0168 0.0207 0.0244

Figure 9. Deep layer model training process

Figure 10. Deep model backdoor test data confusion matrix and shallow model clean test data confusion matrix

4.4 Backdoor Trigger
This study utilizes a backdoor trigger setup that 

is virtually imperceptible to the human eye. Figure 9 
demonstrates the process of trigger setup, comparing the 
clean image, the trigger schematic, and the image post trigger 
addition, revealing a significant degree of concealment. The 
trigger’s impact on the image’s RGB channels is illustrated 
in Figure 10, further highlighting the stealthy nature of the 

trigger setup. Despite their low visibility, these triggers 
provide fixed features for model learning, thereby increasing 
the vulnerability of models to backdoor attacks.

4.5 Results Summary
This research analyzes the impact of backdoor attacks 

through simulations on three different model architectures 
under varied trigger configurations. Special attention is 



472  Journal of Internet Technology Vol. 25 No. 3, May 2024

given to the configuration of the triggering mechanism, as 
illustrated in Figure 11, which depicts the trigger setting 
schematic. Furthermore, the complexity of the system is 
enhanced by the introduction of a three-channel trigger 
setup, detailed in Figure 12, offering a more comprehensive 
understanding of the operational dynamics. The clean data 
accuracy (CDA) metric remains largely stable across shallow 
and medium-deep layer models, even when backdoor triggers 
are introduced, indicating their subtle impact. However, the 
attack success rate (ASR) varies, with shallow layer models 
showing sensitivity to trigger size changes in low-resolution 
images due to their limited learning capabilities. Conversely, 
middle and deep layer models display a strong fitting ability, 
achieving high ASR in low-resolution images, and their 
learning capacity grows with the increase in image resolution 
and complexity of trigger information, with the ASR reaching 
up to 98.03%.

  

Figure 11. Trigger setting schematic

   

Figure 12. Three-channel trigger setup schematic

4.6 Comparison with Other Studies
This section compares the experimental results of this 

study with those of previous studies.
Table 5 presents the model metrics of this study compared 

with previous similar studies using the same dataset or 
similar model architectures. The experiments were conducted 
using different depth convolutional neural networks and 
trigger setups with the dataset GTSRB and evaluated by 

keeping the test set data in advance. The evaluation metrics 
include Poison Rate, Test Accuracy Loss and ASR.

The first comparator is a backdoor attack by adding a 
perturbation mask to the image proposed by H. Zhong et al 
[30]. The second one is a backdoor attack by E. Wenger et al. 
that collects real face data in the physical world and sets up 
real objects as triggers [24]. The third one is A. Salem et al. 
used a backdoor generation network to combine the means 
of setting up a backdoor attack trigger with a generation 
countermeasure network to perform a backdoor attack [39]. 
Finally, Y. Tian et al. proposed a backdoor attack technique 
by activating backdoors in the process of model lightweight 
[40].

All of these approaches have their own advantages and 
disadvantages and their own means to hide the triggers. Still, 
some of them require a higher Poison Rate, meaning that the 
data with triggers need to have a more significant percentage 
in the training set, and some of them are more complicated 
and cumbersome in setting the triggers, or have room for 
growth in the final ASR metric.

Table 5 shows that the proposed method does not differ 
significantly from other studies in terms of test accuracy loss, 
and increases at least 2.9% in the evaluation metric ASR, and 
decreases at least 2.7% in the percentage of backdoor triggers 
set in the dataset. These metrics perform well compared to 
related studies, further confirming the feasibility and risk of 
backdoor attacks.

5  Conclusion

In conclusion, this study has successfully presented an 
innovative solution to address the critical issue of backdoor 
attacks in AI models, utilizing the synergistic combination 
of image steganography and deep learning techniques. By 
integrating image steganography, we have introduced a novel 
approach to obscure backdoor triggers, thereby enhancing 
the resilience of AI models against these insidious attacks. 
Our method has demonstrated its effectiveness in a traffic 
sign recognition scenario, providing a robust response to the 
challenges posed by backdoor attacks.

The concept of our proposed solution revolves around 
the strategic use of image steganography to conceal backdoor 
triggers within digital images, making them significantly 
more challenging for adversaries to detect. This approach 
not only fortifies AI models against covert manipulations 
but also maintains the integrity of the model’s performance 
in clean data scenarios. Through extensive evaluations and 
diverse trigger-setting conditions, our solution has showcased 
its ability to effectively mitigate the risks associated with 
backdoor attacks, particularly in complex deep learning 
models.

The most notable result from our empirical studies is the 
varying degrees of susceptibility among different AI models, 
with deeper models exhibiting a 98.03% attack success rate, 
highlighting the stealth and severity of backdoor attacks. 
However, the implementation of our image steganography 
technique has proven to be a formidable countermeasure, 
requiring minimal data adjustments and thus ensuring the 
triggers remain inconspicuous.
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By re-emphasizing the performance claims, it is evident 
that our proposed methodology stands out in its ability to 
secure AI models from backdoor attacks, ensuring a robust 
and resilient AI security landscape. The application of image 
steganography, in conjunction with deep learning, marks a 
significant advancement in the field, setting a new benchmark 
for AI security measures.

As we move forward, the imperative for innovative 
and effective security measures becomes increasingly 
critical. This research lays the groundwork for future 
endeavors, guiding the way for the development of more 
secure and trustworthy AI systems. With the insights and 
recommendations provided in this study, the AI community 
is well-equipped to tackle the challenges of backdoor attacks, 
ensuring a secure and reliable future for AI applications 
across various domains.
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