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Abstract

Secure multi-party computation is a hotspot in the 
cryptography field, and it is also a significant means to 
realize privacy computation. The Millionaires’ problem is 
the most fundamental problem among them, which is the 
basic module of secure multi-party computation protocols. 
Although there are many solutions to this problem, there are 
few anti-malicious adversarial protocols besides protocols 
based on Yao’s garbled circuit. Only a few solutions have 
low efficiency, and there is no protocol for rational numbers 
comparison under the malicious model, which restricts the 
solution of many secure multi-party computation problems. 
In this paper, the possible malicious behaviors are analyzed in 
the existing Millionaires’ problem protocols. These behaviors 
are discovered and taken precautions against through the 
triangle area formula, zero-knowledge proof, and cut-and-
choose method, so the protocol of comparing confidentially 
rational numbers is proposed under the malicious model. 
And this paper adopts the real/ideal model paradigm to prove 
the security of the malicious model protocol. Efficiency 
analysis indicates that the proposed protocol is more effective 
than existing protocols. The protocol of rational numbers 
comparison under the malicious model is more suitable for 
the practical applications of secure multi-party computation, 
which has important theoretical and practical significance.

Keywords: Secure multi-party computation, Malicious 
model, Rational numbers comparison, Real/ideal model 
paradigm

1  Introduction

Data can be collected, used, and calculated more 
conveniently through the popularity of the Internet, big data, 
and cloud computing. But in the network of joint computing, 
data privacy is very easy to leak, resulting in huge losses. 
Privacy-based collaborative computing, which combines 
cryptography, distributed computing, and other technologies, 
is a hot research topic in privacy protection. It can complete 
joint computing tasks under the premise of protecting the 
data security of all parties. Secure multi-party computation 
(MPC) is the core technology to achieve multi-source data 

privacy collaborative computing [1-3].
In 1982, Professor Qizhi Yao proposed the famous 

Millionaires’ problem [4] and introduced the concept of MPC, 
which is the beginning of private data secure comparison. 
The research field of MPC has also been extended to various 
application fields, including blockchain privacy protection [5-
6], confidential data mining [7], and confidential computing 
geometry [8], which makes a large number of confidential 
collaborative computing problems to be solved effectively.

MPC is divided into the semi-honest model and the 
malicious model. Under the semi-honest model, scholars 
have designed many semi-honest MPC protocols, but in 
many real-world application scenarios, the participants are 
not semi-honest, and the protocols under the malicious model 
are more universal [9]. However, the design of MPC protocol 
is difficult under the malicious model, so many problems 
remain unresolved under the malicious model, and need to be 
studied.

The cut-and-choose method is often used to detect 
whether protocol participants have malicious behavior, which 
can reduce the probability of being deceived. In the method, 
Alice first selects m random numbers and uses her private 
data to calculate m sets of results, all of which are sent to 
Bob. Then Bob randomly selected m / 2 groups for validation, 
mainly verifying two aspects: (1) Whether the data provided 
by Alice was calculated from the same private data. (2) Is the 
calculation result of the m / 2 group that Alice sent to Bob 
and was selected correctly? If the verification is successful, 
Bob randomly selects one group from the remaining m / 2 
groups and completes the subsequent protocol steps. If Alice 
sends an incorrect calculation result to deceive Bob, it will be 
discovered during the verification process. Therefore, the cut-
and-choose method used in MPC protocols can reduce the 
probability of semi-honest participants being deceived.

Data secure comparison is one of the most classical 
problems in MPC, which is the basic module of other 
problems. It is of great theoretical and practical significance 
to study this problem. Nevertheless, most of the existing 
solutions are complex and inefficient, most of them can only 
be applied to the semi-honest model and cannot compare 
rational numbers. The main contributions of this paper are as 
follows: 

(1) Firstly, based on Reference [10], we analyze the 
possible attack behaviors of malicious participants. 

(2) To address the issue of the malicious behaviors of 
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adversaries, the MPC protocol under the malicious model 
is designed using the cut-and-choose method and zero-
knowledge proof, which has lower computational complexity 
and higher efficiency. 

(3) The proposed protocol is secure under the malicious 
model, proved by the real/ideal model paradigm. Among the 
existing malicious model protocols, this protocol securely 
realizes the secure judgment of rational number relationships 
under the malicious model.

2  Related Work

The problem of comparing secure data is to obtain the 
result without revealing the private data. This problem is the 
basic module for many MPC problems. 

Reference [9] modified the solution of the Millionaires’ 
problem based on the Paillier encryption algorithm, 
which can resist malicious behaviors but cannot judge the 
relationship of rational numbers. Reference [11] proposed 
a card-based cryptographic protocol by introducing private 
permutations for private operation storage instead of a 
shuffle operation, but it needs the number of cards related 
to the comparison data, which can be considered that 
the computational overhead is too high and cannot resist 
malicious adversaries. Reference [12] designed a solution to 
the Millionaires’ problem under the semi-honest model based 
on the Decisional Diffie-Hellman hypothesis. However, it 
cannot resist malicious adversaries. Reference [13] designed 
a Millionaires’ problem with a 0-1 coding rule based on the 
ElGamal encryption algorithm, but its computational cost 
is large. In addition, it cannot resist malicious adversaries. 
Reference [14] designed secure judgment protocols for two 
equal rational numbers based on the Paillier encryption 
algorithm, and also gave a secure judgment protocol for 
equality of rational numbers under the malicious model, but 
cannot judge rational numbers. 

Therefore, this paper proposes the secure relationship 
judgment protocol of rational numbers under the malicious 
model. The designed protocol is efficient and can judge         
x < y, x > y, or x = y once time. Compared with the previous 
protocols, the protocol proposed in this paper is more 
efficient and can resist malicious attacks.

3  Preliminary Knowledge

3.1 Zero-Knowledge Proof Based on the Elliptic Curve 
Cryptography
Elliptic Curve Cryptography (ECC). Neal Koblitz [15] 

proposed a method for using elliptic curves in cryptography 
fields in 1987. The security of ECC comes from the discrete 
logarithm difficulty problem, which has many advantages. 
For example, in some cases, using a smaller key can achieve 
higher security than other algorithms. For example, the 
elliptic curve equation on the finite field Zp is y2 = x3 + ax + b, 
there are two points P and Q on the curve. The crossing point 
P and Q is a straight line intersection elliptic curve on point 
R′. Then draw a straight line through R′ perpendicular to the 
X-axis, and the focus of the elliptic curve is R. The elliptic 
curve is shown in Figure 1. 

It can be shown that at any point P and Q ∈EP (a, b) in 
the set EP (a, b) there are: 

(1) P Q R+ = ; 
(2) P O P+ = ; 

Figure 1. Elliptic curve

(3) Repeated addition is the definition of multiplication, 
such as 3P = P + P + P. 

The Zero-Knowledge Proof Based ECC [16]. In this 
protocol, hash functions are used to encrypt a public value 
as an e value to prevent cheating. The program framework is 
shown in Figure 2. 

Figure 2. Non-interactive zero knowledge proof

First, an elliptic curve Ep is selected by Alice, and a point 
on the curve is selected as the base point, denoted as G. 
Alice selects a random number r and calculates R = r ⁎ G,              
X = x ⁎ G, e = hash(R), S = r + e ⁎ x, generates a proof (R, X, 
S), and sends it to Bob. Bob receives the proof that calculates 
e = hash(R) and then verifies that S ⁎ G ? R + e ⁎ X is true 
or not, determining whether Alice knows the message x. The 
proof is as follows: 

S ⁎ G = (r + e ⁎ x) ⁎ G = r ⁎ G + e ⁎ x ⁎ G = R + e ⁎ X .
In the above verification process, Alice uses e = hash(R) 

to construct the e value, if Alice wants to cheat, she needs to 
construct R to meet R = S ⁎ G − e ⁎ X, from the elliptic curve 
of the discrete logarithm difficult problem, through R and 
G to calculate the random number r, the probability can be 
ignored, so she cannot cheat. 

3.2 Security Definition under the Malicious Model 
The widely accepted definition of security for MPC 

protocols under the malicious model is given by Goldreich in 
the Reference [17], which is the real/ideal model paradigm. 

The Ideal Protocol with TTP. P1, P2 have private data 
x, y, and they invoke a trusted third party (TTP) to calculate 
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the function f (x, y) = (f1 (x, y), f2 (x, y)). After the protocol 
is finished, P1 and P2 get f1 (x, y) and f2 (x, y) respectively 
without revealing their private data. The protocol is as 
follows: 

(1) The data is provided to TTP. If the participant Pi is 
honest, Pi always provides real data. If the participant Pi is 
a malicious participant, depending on x or y. The strategy 
adopted by Pi is that Pi does not execute the protocol (no data 
sent) or send false data to TTP during execution. 

(2) TTP sends the result to P1. If TTP receives (x, y), 
he will calculate f (x, y) and sends f1 (x, y) to P1. If not, the 
special symbol ⊥  is sent to P1. 

(3) TTP sends the result to P2. If P1 is not a semi-honest 
participant, P1 can ignore TTP after receiving f1 (x, y). 
Otherwise, the symbol ⊥  is sent to P2. If not, P2 will receive 
f2 (x, y) from TTP.

Because participants can only get fi (x, y) from TTP, the 
above ideal protocol is the most secure. If the security of the 
actual protocol is the same as that of the ideal protocol, the 
actual protocol can also be considered secure. 

There is a probabilistic polynomial-time (PPT) function 
:{0,1} {0,1} {0,1} {0,1}F ∗ ∗ ∗ ∗× → × , and the first and second 

elements of F (x, y) are represented by F1 (x, y) and F2 (x, y), 
respectively. Let = (B1, B2) be a pair of PPT algorithms for 
participant policies in an ideal protocol. If there is at least 
one Bi (i ∈ {1, 2}) during the execution of the protocol for all 
u, z, r, v with Bi (u, z, r) = u, Bi (u, z, r) = v. For Bi, his input 
is u, the auxiliary input is z, the selected random number is 
r, and the local output Fi () obtained from TTP is denoted as 
v. Such B (B1, B2) is considered acceptable. The auxiliary 
information z is held by the participant in the ideal model, 
and the adversary uniformly selects a random number r to 
jointly execute F (x, y) with policy B, the procedure that is 
noted as 

, ( )F B zIDEAL (x, y) = γ (x, y, z, r), γ (x, y, z, r) can be 
defined as follows:

 ● If P1 is honest, then:
1 2 2( , , , ) ( ( , ), ( , , , ( , )))x y z r f x y B y z r f x yγ ′ ′= , where y′ = B2 (y, 

z, r).
 ● If P2 is honest, then: 

1 1 1 1

1 1 2

( ( , , , ( , ), ), ),  ( , , , ( , )) ,
( , , , )

( ( , , , ( , )), ( , )), .
B x z r f x y if B x z r f x y

x y z r
B x z r f x y f x y else

γ
′ ′⊥ ⊥ =⊥

=  ′ ′

in both cases x′ = B1 (x, z, r).
Definition 1 Security of the Malicious Model. ∏ is 

denoted as a two-party protocol for calculating F. A = (A1, 
A2) are two PPT algorithms that represent the strategies of 
participants in the real model. If there is at least one Ai (i ∈
{1, 2}) in the protocol execution that is consistent with the 
policy specified by ∏, A = (A1, A2) is acceptable for ∏. In 
particular, Ai ignores its auxiliary input. If (x, y) is the input, 
z is the auxiliary input, , ( ) ( , )A zREAL x yΠ is denoted as the 
process of implementing protocol ∏ using strategy A. When 
A1 = (x, z) and A2 = (y, z) interact, the generated output 
sequence is defined as , ( ) ( , )A zREAL x yΠ .

For any policy pair A = (A1, A2) acceptable in the actual 

protocol, if the corresponding acceptable B = (B1, B2) can be 
found in an ideal protocol, satisfy the following formula: 

, , , ( ) , ,, ( ){ ( , )} { ( , )}
c

x y z A z x y zF B zIDEAL x y REAL x yΠ≡ ,       (1)

it can be called ∏ securely computes the function F. 

3.3 The MPC Protocol for Comparing Rational Numbers 
under the Semi-honest Model

3.3.1 Problem Description and Solution Ideas
Most of the data being compared in real life are rational 

numbers. Reference [10] proposed a method to compare 
the size of rational numbers confidentially by using the 
calculation formula of the triangle area. The detailed 
explanation is as follows. Suppose there is a triangle ΔP0P1P2 
which is composed of three points P0(x0, y0), P1(x1, y1) and 
P2(x2, y2). Its area calculation formula can be expressed as: 

  [ ]
0 1 2

0 0
1

1 1 0 2 1 0 1 2 1 2 2 12

2 2

1
1 1 ( ) ( ) .
2

1
P P P

x y
S x y y x x x y y x y x y

x y
∆ = = − + − + −    (2)

The sign of the triangle area calculated by the Formula 
(2) is related to the arrangement order of the points P0 (x0, y0), 
P1 (x1, y1) and P2 (x2, y2). If the points P0 (x0, y0), P1 (x1, y1) 
and P2 (x2, y2) are arranged counterclockwise, the area value 
is positive according to the formula; if the points P0 (x0, y0), 
P1 (x1, y1) and P2 (x2, y2) are arranged in a clockwise direction, 
then the triangle area value is negative. 
3.3.2 Specific Protocol

According to Formula (2), the positive or negative 
value of the triangle area is related to the order of vertex 
arrangement. In Protocol 1, two data m and n to be compared 
are encoded on the vertex coordinate values of a certain 
triangle, and the sign of the triangle area value can be 
securely calculated to determine the size relationship between 
m and n [10].

For the convenience of description, define the following 
functions:

1,
1,

   is a positive number;
( )  is a negative number

0,
;

  0.
sign

λ
λ λ

λ =
−=






           (3)

       
1,

1,
  ;

( , ) ;
  .0,

m n
F m n m n

m n

>
= <

=


−



                                  (4)

 Protocol 1 cannot resist malicious attacks. By analyzing 
the malicious behaviors which may be executed in the 
protocol, and aiming at malicious behaviors, design the 
secure comparison protocol of rational numbers against 
malicious adversaries based on the cut-and-choose method 
and other cryptographic tools. 
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Protocol 1. The MPC protocol for comparing rational numbers 
under the semi-honest model
Input: Alice holds data m, Bob holds data n.
Output: F (m, n). 
step 1: The rational number x0 is selected by Alice and Bob as 
abscissa. They constructs the two vertices P0 (x0, m) and P1 (x0, 
n) with private data m and n as ordinates respectively.

step 2: Bob selects a rational number x2, satisfies x2 < x0, and 
selects a random number y2 to construct another vertex P2 (x2, 
y2). 

step 3: The three vertices P0 (x0, m), P1 (x0, n) and P2 (x2, y2) 
form a triangle ∆P0P1P2, as shown in Figure 3. The following 
steps calculate the area of a triangle: Bob randomly selects a 
positive rational number r and calculates: a = r (n – y2), b = r (x2  –  x0) 
and c =  r  (x0 y2   –  x2  n). Bob sends a, b, c to Alice.

Figure 3. Compare m and n by triangle area symbols

step 4: Alice calculates λ = (ax0 + bm + c). Alice tells Bob to 
calculate the sign(λ) of the result λ. 

step 5: Bob can deduce F (m, n) through sign(λ):
If sign(λ) = − 1, then P0 → P1 → P2 is clockwise, with F (m, n) 
= 1 (m > n); 
If sign(λ) = 1, then P0 → P1 → P2 is counterclockwise, with F 
(m, n) = −1 (m < n); 
If sign(λ) = 0, then F (m, n) = 0 (m, n).

step 6: Bob sent F (m, n) to Alice. 
The protocol ends.

4  The MPC Protocol for Comparing 
Rational Numbers under the Malicious 
Model

4.1 The Idea of Solutions
Under the semi-honest model, Protocol 1 is secure as 

long as the participants do not implement malicious attacks. 
In this section, malicious attacks that may be executed by 
the malicious adversary are analyzed. According to the 
malicious behaviors, the corresponding preventive measures 
are designed, so that the malicious behaviors of the adversary 
cannot be implemented or can be found immediately. 

Under the malicious model, the following three kinds 
of malicious behaviors made by the participant Pi cannot 
be avoided in the ideal protocol, so we do not consider: 
(1) participants use false data instead of input; (2) either 
party chooses not to execute the protocol; (3) either party 
terminates the protocol at any time. In addition, they may 
implement the following malicious attacks:

 ● Possible malicious behaviors of Alice (assuming that 
Bob is honest at this time): Alice tells Bob the false 
sign(λ) in step 4, which makes Bob get a false result;

 ● Possible malicious behaviors of Bob (assuming that 
Alice is honest at this time): There are the following 
situations: (1) In step 3, Bob sends false a, b, and c 
to Alice; (2) In step 6, Bob knows F (m, n) and then 
tells Alice the false result, then Alice will get the 
false result. 

For the possible malicious behaviors of Alice, Bob 
gets the false sign(λ), then he also gets the false F (m, n). 
However, Alice knows F (m, n), then just needs to reverse 
the sign to get the correct result. Malicious behavior may be 
successful. 

For Bob’s possible malicious behavior, (1) Alice gets 
false a, b and c, then the calculated sign(λ) is also false, Bob 
cannot get the correct result, so deception is unsuccessful; 
(2) Bob tells Alice false F (m, n) that it is possible to cheat 
successfully. 

4.2 Specific Protocol
For the above malicious behavior, cryptography tools 

such as the zero-knowledge proof are used to find or avert 
the possible malicious behaviors that may be carried out in 
Protocol 1. Finally, both parties get the result at the same 
time, both parties are equal to ensure the fairness of the 
protocol. 

Protocol 2 is designed to resist malicious adversaries, and 
the detailed steps are as follows:

Protocol 2. The MPC protocol for comparing rational numbers 
under the malicious model
Input: Alice holds data m, Bob holds data n.
Output: F (m, n).

Preparation: The random numbers selected in steps 4, 8, 9 
are either positive or negative. Given an ECC Ep and base 
point G, Alice randomly selects an integer ska on the integer 
field Zq as the private key and obtains the public key PKa = ska 
⁎ G. Bob randomly selects an integer skb on Zq as the private 
key and obtains the public key PKb = skb ⁎ G. The G and the 
respectively public keys may be published. 

step 1: The rational number x0 is selected by Alice and Bob as 
abscissa. They constructs the two vertices P0 (x0, m) and P1 (x0, 
n) with private data m and n as ordinates respectively. 

step 2: The rational number x2′ selected by Alice, satisfies x2′ < 
x0, and selects a random number y2′ to form another vertex P2′ 
(x2′, y2′). 

step 3: Both the random number y2 and the rational number x2 
satisfying x2 < x0 are selected by Bob to construct the vertex P2 
(x2, y2). 

s t ep  4 :  A l i ce  and  Bob  choose  m  po s i t i ve  r andom 
numbers  r ai,  r bi i  (1 ,  …,  m ) ,  ca lcula te  respect ive ly 

1 2 3 2 2 0 0 2 2{ , , } { ( '),  ( ' ),  ( ' ' )},i i i
a a a ai ai aim y x x x y x mr r rα α α = − − −

1 2 3 2 2 0 0 2 2{ ,  ,  } { ( ),  ( ),  ( )},i i i
b b b bi bi bin y x x x y x nr r rβ β β = − − −

and publish 1 2 3{ , , }i i i
a a aα α α , 1 2 3{ , , }i i i

b b bβ β β . 
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step 5: According to the cut-and-choose method, Alice selects 
randomly m  /  2 groups 1 2 3{ , , }i i i

b b bβ β β  from m  groups 

1 2 3{ , , }i i i
b b bβ β β , requires Bob to publish rbi y2 and rbi x2 n. Alice 

verifies that 0 2 2 3 ? i
bbi bix y x nr r β− . Passing the verification is 

the premise of performing the next step, if not, the protocol will 
be stopped. 

step 6: Bob selects randomly m / 2 groups 1 2 3{ , , }i i i
a a aα α α  

from m groups 1 2 3{ , , }i i i
a a aα α α , requires Alice to publish rai y2

′  

and rai x2
′ m. Bob verifies that 0 2 2 3' '  ? i

aai aix y x mr r α− . Passing the 

verification is the premise of performing the next step, if not, 
the protocol will be stopped. 

step 7: Alice and Bob randomly choose one  1 2 3{ , , }j j j
b b bβ β β

a n d 1 2 3{ , , }j j j
a a aα α α f r o m  t h e  r e s t  1 2{ , ,i i

b bβ β 3 }i
bβ a n d 

1 2 3{ , , }i i i
a a aα α α . 

step 8: It is agreed that the k digits number shall be retained 
after the decimal point of the calculated result of λ, and that 
the original result shall be expanded 10k  fold. According to 
the zero-knowledge proof: Alice chooses the positive random 
number a to calculate 1 0 2 3( }j j j

B b b ba x mλ β β β= + + , then λB′ = 
λB × 10k, selects a random number rA, and calculates RA  = rA  ⁎ 
G, XA  = λB′   ⁎ G, ea = hash(RA), SA = rA + ea ⁎ λB′ . Alice sends 
(RA, XA, SA) to Bob. 

step 9: Bob chooses the positive random number b to calculate 

1 0 2 3( }j j j
A a a ab x nλ α α α= + + , then λA′ = λA × 10k, selects a 

random number rB, and calculates RB = rB ⁎ G, XB  = λA′   ⁎ G, eb 
= hash(RB), SB = rB + eb * λA′ . Bob sends (RB, XB, SB) to Alice. 

step 10: Bob calculates ea = hash(RA) after receiving the 
certificate, and verify whether  ? A A a AS G R e X∗ + ∗ . 

step 11: Alice calculates eb = hash(RB) after receiving the 
certificate, and verify whether  ? B B b BS G R e X∗ + ∗ . And 
they send the calculated results to each other. 

step 12: Both parties prove that the calculation is correct 
through 8-11 steps of the zero-knowledge proof, that is, verify 

 ? A A a AS G R e X∗ + ∗  and  ? B B b BS G R e X∗ + ∗ . If one 
of them fails to pass the proof, the party who fails to pass the 
proof is malicious. 

step 13: If both parties pass the proof, they will tell each other 
λB′ and λA′, according to the sign of the result of the calculation 
sign(λA′) and sign(λB′), Alice and Bob know F (m, n). 
The protocol ends. 

4.3 Correctness Analysis
(1) The first four steps in Protocol 2 are the process of 

calculating partial factors in the triangle area formula by 
Alice and Bob after selecting their auxiliary points. In the 
process, both parties will not get valuable information about 
each other’s auxiliary points and private data. 

(2) The purpose of steps 5-7 in this protocol is to 
determine whether there is a malicious adversary between 
the two parties. Verify only the correctness of 3

i
aα  and 3

i
bβ  

to avoid information disclosure. If one of them provides the 
false 1 2 3{ , , }i i i

a a aα α α  or 1 2 3{ , , }i i i
b b bβ β β , he will not get the 

right result by himself according to the following steps. 
(3) In step 8, keep the k digits number after the decimal 

point of the value of λ and it shall be expanded 10k fold to 
ensure that λ is an integer. We can find the deception behavior 
by the zero-knowledge proof based on the hash function and 
ECC, and the final judgment result is based on the symbols 
of λA′ and λB′, and the expansion does not change the sign 
of positive or negative, so the effect of the expansion on the 
numerical accuracy is negligible.

(4) In steps 8-11, malicious participants can be found. 
For instance, Alice uses the hash function to encrypt the 
public value RA in step 8 to construct ea, if Alice wants to 
cheat, she needs to construct RA to satisfy  A A a AR S G e X= ∗ − ∗

( )A A AS G hash R X= ∗ − ∗ . According to the difficulty of the 
discrete logarithm of ECC, Alice is difficult to construct such 
RA to eliminate the impact of XA equivalence and make it 
permanent, so Alice cannot cheat. The same is true for Bob. 

(5) In step 13, Alice and Bob obtained λA′ and λB′ 
respectively, which can verify the authenticity. For example, 
Alice calculates λA′ ∗ G ? XB , and if it is equal, it is the correct 
result.

4.4 Security Proof
Security analysis. In Protocol 2, the two parties share the 

same status and perform the same attacks, so Alice’s possible 
malicious behaviors as an example are analyzed. 

(1) Step 4 of Protocol 2 requires that Alice selects 
positive random numbers and calculates 1 2 3{ , , }i i i

a a aα α α  using 
the same m, x2

′, y2
′, and x0. However, if she uses different m, 

x2
′, y2

′, and x0, Bob cannot find it in step 6. It may lead to that 
the 1 2 3{ , , }j j j

a a aα α α  selected by Bob in step 7 is calculated 
with false data. This situation is equivalent to Alice changing 
her input, and the ideal protocol can’t avoid this situation, so 
it will not be considered. If Alice deceives in this step, the λA 
calculated in step 9 is also false, which will lead Alice not to 
get correct results. 

(2) The protocol requires Alice and Bob to agree that the 
random numbers rai, rbi, a and b are either positive or negative 
(to counteract the impact of random numbers on the positive 
and negative value of the triangle area). If Alice chooses rai 
and a in violation of the protocol, this situation is equivalent 
to providing false input, which cannot be avoided in the ideal 
protocol and will not be considered. 

(3) In step 11, Alice needs to prove (RB, XB, SB) with the 
zero-knowledge proof. After obtaining λA′, she can judge 
whether λA′ is correct according to the proof obtained in step 
9. This step cannot be deceived. 

(4) After Alice gets λA′, she can deduce to get λA, but even 
if λA is the exact value, Alice cannot know Bob’s private data 
n (for 1 0 2 3( }j j j

A a a ab x nλ α α α= + + , there are two unknowns b 
and n in an equation). 
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We use the real/ideal model paradigm to prove that 
Protocol 2 is secure. 

Theorem 1: Under the malicious model, Protocol 2 
(denoted as ∏ ) is secure. 

Proof: To prove that ∏ can securely calculate the PPT 
function, we need to find the acceptable policy pair A = (A1, 
A2) adopted by both parties when ∏ is executed so that the 
acceptable policy pair B = (B1, B2) in the ideal protocol 
satisfy (1) in Definition 1. 

If the protocol is to be secure and feasible, we will not 
allow both parties to be dishonest at the same time. The 
following are two situations: (1) A1 is honest, A2 is dishonest; 
(2) A1 is dishonest, A2 is honest. 

Case One: A1 is honest, A2 is dishonest. When A1 is 
honest, execute ∏, then: 

2 2 1 2 3, ( , ) { ( , ( )), (( , , ), ', )},i i i
a a a BAREAL m n F m A n A Sα α α λ

Π
=

where S is the sequence of messages generated by A2 in the 
process of the zero-knowledge proof. 

A1 performs ∏ honestly, in which B1 is determined by the 
protocol and it performs the protocol correctly according to 
the protocol steps. At this point, we only need to convert A2 
into B2, which means we should find an acceptable strategy 
under the ideal model for B = (B1, B2) so that its output is 

indistinguishable from 
, ( , )AREAL m n

Π
 calculations. (Also 

note: The ideal model malicious adversary B2 does not know 
how the actual protocol adversary A2 will make decisions 
when facing a certain problem. We should determine the B2’s 
behavior according to the behavior of A2.)  

(1) In the ideal model, B1 behaves according to the 
protocol, he sends the true m to TTP (when B1 receives the 
message, he also allows TTP to send the message to B2, that 
is, B2 must receive the message eventually). B2 is not honest, 
so his message to TTP depends on the B2’s strategy, because 
it is consistent with A2, so we call A2 to get B2’s strategy. In 
summary, we know that the information that B2 sends to TTP 
is A2(n), and the information that B2 gets from TTP is F (m, 
A2(n)) (B1 also gets this result). 

( 2 )  N e x t ,  B 2  u s e s  F  ( m ,  A 2( n ) )  t o  o b t a i n  a 

2 2( , ( ))B
Fview m A n , which is indistinguishable from the 

2
2( , ( ))

B
view m A n∏

 obtained by A2 when actually executing the 

protocol. And it is handed over to A2, and the output of A2 can 
be obtained. We want B2 to use his input to assume that the 
other party’s input satisfies the result to execute the protocol, 
the following is the specific process: 

a. 2B  randomly selects m′ as the other party’s input to 

get 2 2( ', ( ))= ( , ( ))F m A n F m A n . Let B2 dresses up as 
A1 with A2 to perform the protocol ∏; 

b. 2B  sends the message 2 1 2 3{ ( ', ', ')}i i i
a a aA α α α  obtained 

in step 4 to A2; 
c. In step 5, when A2 publishes the message, B2 verifies; 
d. In step 6, the data required by A2 is published by B2; 
e. 2B  and  A 2 pe r fo rm the  r e s t  s t eps ,  ge t  t he 

corresponding λB
′′ and enable A2 to prove  ? AS G∗

A a AR e X+ ∗  according to the zero-knowledge proof 
in the protocol, so as to prove λB

′′ is correct. All 
message sequences issued during the certification 
process are marked as S′; 

(3) B2 uses 1 2 3(( ', ', '), '', ')i i i
a a a B Sα α α λ  to call A2’s strategy, 

o u t p u t s  2 1 2 3(( ', ', '), '', ')i i i
a a a BA Sα α α λ ,  a n d  w e  c a n  g e t 

2 2 1 2 3, ( , ) { ( , ( )), (( ', ', '), '', ')}.i i i
a a a BF BIDEAL m n F m A n A Sα α α λ=

For A2, the same algorithm is used in steps 4-11 of the 

protocol, so 1 2 3 1 2 3( , , )  ( ', ', ')
c

i i i i i i
a a a a a aα α α α α α≡ , '   ''

c

B Bλ λ≡ , 

and the zero-knowledge proof can guarantee   '
c

S S≡ , then it 

is easy to get: 
, ,{ ( , )}  { ( , )}.

c

F B AIDEAL m n REAL m n
Π

≡

Case Two: A1 is dishonest, A2 is honest. At this situation, 
the strategy of B2 is determined by the protocol. Real model 
opponent A1 needs to be converted into an ideal adversary 
B1. The output of A1 when the protocol ∏ is executed is 
completely determined by A1’s strategy and the 

1A
view∏  it 

obtains, then there are two cases: 
 ● The result is not published by A1 or the zero-

knowledge proof (deemed as A1 aborts the protocol) 
fails to pass. In this case, TTP sends ⊥ to A2, there is 

1 1 2 3, ( , ) { (( , , ), ', ), }i i i
b b b AAREAL m n A Sβ β β λ

Π
= ⊥  ;

 ● Conversely, TTP sends 1( ( ), )F A m n  to A2, then: 

1 1 2 3 1, ( , ) { (( , , ), ', ), ( ( ), )}i i i
b b b AAREAL m n A S F A m nβ β β λ

Π
=

, where S is the sequence of messages received by A1 

during the zero-knowledge proof process.
(1) A2 is honest, then B2 in the ideal model also executes 

honestly and outputs the correct result according to the 
protocol. At this point, A1 only needs to be converted into 
B1, which means it should find an acceptable strategy 
under the ideal model for B = (B1, B2) so that its output is 

indistinguishable from 
, ( , )AREAL m n

Π
 calculations. 

(2) B1 requires A1 to obtain the input information A1(m) 
during the real protocol execution and sends A1(m) to TTP 
to obtain F (A1(m), n). Then B1 makes use of F (A1(m), n) to 
invoke the strategy of A1 and provide all messages expected 
by A1, so that we can get 

1 1( ( ), )B
Fview A m n , we want to make 

it indistinguishable from the 
1

1( ( ), )
A

view A m n∏  calculation 
by A1 when executing the real protocol, and give it to A1 to 
obtain the output of A1. B1 want to use his input to assume 
that the other party’s input satisfies the result to execute the 
protocol. The following is the specific process:

a. 1B  randomly selects an n′ satisfying F (A1(m), n′) =  
F (A1(m), n) and simulates the protocol step with n′.

b. That is, B1 dresses up as A2 and A1 to execute 
protocol ∏ .

c. 1B  s e n d s  t h e  i n f o r m a t i o n 1 1 2 3{ ( ', ', ')}i i i
b b bA β β β  

required to be published in step 4 of the protocol to 
A1; 
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d. In step 5, B1 publishes the validation information 
required by A1; 

e. In step 6, when A1 publishes the information required 
for verification, B1 verifies; 

f. 1B  and A1 perform the rest steps of the protocol 
to obtain the corresponding λA

′′. According to the 
zero-knowledge proof in the protocol, A1 can prove 

 ? B B b BS G R e X∗ + ∗ , so as to prove to A1 that λA
′′ 

is correct. All message sequences issued during the 
certification process are marked as S′; 

(3) At this point, B1 gets the message 1 2 3(( ', ', '),i i i
b b bβ β β

'', ')A Sλ . Because the information A1 needs when actually 
executing the protocol has been obtained, and its output 
can be determined according to the A1’s strategy, we will 
not consider the possible subsequent malicious behavior of 
A1. The only difference in the final result is whether A2 can 
receive F (A1(m), n). 

(4) B1 leverages 1 2 3(( ', ', '), '', ')i i i
b b b A Sβ β β λ to require A1 and 

outputs 1 1 2 3(( ', ', '), '', ')i i i
b b b AA Sβ β β λ . There are two situations:

 ● In the ideal model, when B1 notifies TTP that 
it will not send the final results to B2, then: 

1 1 2 3, ( , )} { (( ', ', '), '', '), };i i i
b b b AF BIDEAL m n A Sβ β β λ= ⊥

 ● In the ideal model, when B1 notifies TTP that it 
will not send the final results to B2, it can obtain: 

1 1 2 3 1, ( , )} { (( ', ', '), '', '), ( ( ), )}i i i
b b b AF BIDEAL m n A S F A m nβ β β λ= .

In both cases, the output of A2 and B2 are the same and 
jus t  prove that  1 2 3(( ', ', '), '', ')i i i

b b b A Sβ β β λ and 1 2(( , ,i i
b bβ β  

3 ), ', )i
b A Sβ λ calculations are indistinguishable. Obviously, 

for A1, the same algorithm is used in steps 4-11 of the 

protocol,  so 1 2 3 1 2 3( , , )  ( ', ', ')
c

i i i i i i
b b b b b bβ β β β β β≡ , '   ''

c

A Aλ λ≡  

and the zero-knowledge proof can ensure   '
c

S S≡ , then: 

, ,{ ( , )}  { ( , )}.
c

F B AIDEAL m n REAL m n
Π

≡

In summary, any acceptable PPT algorithm in the real 
protocol can find an acceptable strategy in the ideal model 
for 1 2( , )A A A= , and the acceptable strategy for B = (B1, B2) 

satisfies , ,{ ( , )}  { ( , )},
c

F B AIDEAL m n REAL m n
Π

≡  therefore, under 

the malicious model, Protocol 2 is secure.

5  Analysis and Comparison of Protocol 
Efficiency

5.1 Computational Complexity
In  Reference  [9] ,  10m lg  N  +  2  t imes  modular 

multiplication is required (where m represents the modular 
exponents generated by the participants having m groups, and 
N represents the modular number of the Paillier encryption 
protocol). In Reference [13], [(2m + 3) lg P + 5m] times 
modular multiplication is to be performed. In Reference [14], 
(b1 + b2 + λ) times modular multiplication is to be performed 
(b1 and b2 are the numbers of bits of both input data). 

The computational complexity of Protocol 2 mainly 
includes: Alice and Bob have performed three ECC 
encryption operations, 2(3 4)mm + +  ordinary addition, 

2(3 7 6)mm + × + ordinary multiplication respectively. Because 
the computational complexity of ordinary multiplication 
and addition is low and can be ignored compared with 
modular multiplication. A total of 12 modular multiplication 
operations are performed, in which m represents the number 
of verification data groups generated during the cut-and-
choose process. 

5.2 Communication Complexity
In Reference [9], the number of interaction rounds is 

3. In Reference [13], the number of interaction rounds is 3. 
In Reference [14], the number of interaction rounds is 3m 
− l. Protocol 2 has four rounds of communication. Table 1 
compares the overall performance of the protocol. 

Table 1. Protocols’ performance comparison

Protocol Computational complexity 
(modular multiplication)

Communication
rounds

Resist the malicious 
adversary

Reference [9] 10 lg 2m N + 3 Yes

Reference [13] (2 3) lg 5m P m+ + 3 No

Reference [14] 1 2( )b b λ+ + 3 1m − Yes

Protocol 2 12 4 Yes

Reference [9] can resist malicious attacks, but it has 
high computational complexity and cannot compare rational 
numbers. Reference [13] cannot resist malicious adversaries, 
and the protocol efficiency is also low. The computational 
complexity of Reference [14] is slightly lower, but it can 
only be judged whether the rational numbers are equal or 
not, and the size relationship is not obtained. Among the 

existing protocols, Protocol 2 has the lowest computational 
complexity and fewer communication rounds, and the 
efficiency is the highest compared to other malicious 
models. Moreover, it can compare rational numbers. In 
conclusion, Protocol 2 is more efficient when the number of 
communication rounds does not differ significantly. 



362  Journal of Internet Technology Vol. 25 No. 3, May 2024

Note: the cut-and-choose method is widely used in 
protocols under the malicious model. Nevertheless, for 
Protocol 2, the zero-knowledge proof is the main source 
of its computational complexity. Service outsourcing or 
preprocessing can be used to further improve the efficiency 
of Protocol 2. 

5.3 Experimental Simulation
In order to intuitively compare the complexity of 

each protocol, experimental simulations are carried out 
in references [9, 13-14], and Protocol 2. The experimental 
environment is as follows: processor Intel(R) Core(TM) 
i5-6300HQ CPU @ 2.30GHz   2.30 GHz, memory 8GB, 
windows 10 (64 bit) operating system, programming 
language select python. 

In the experiment, let the modulus of the Paillier 
algorithm and ElGamal algorithm be the same, ignoring the 
time of protocol preprocessing. During the experiment, each 
participant holds a rational number in the range of 0 to 100 
and carries out multiple experiments on each protocol under 
four modulus of 128, 256, 512, and 1024 bit respectively. Ten 
results are randomly selected from 100 test results, and the 
average execution time is taken to draw the following Figure 
4.

The experimental result indicates that the average time 
consumption of Protocol 2 in different moduli is lower than 
protocols in references [9, 13], and [14]. Protocol 2 can 
compare rational numbers, which cannot be done by other 
protocols. While resisting malicious adversaries, Protocol 
2 is more efficient than the protocols of references [9] and 
[14], and the greater the modulus, the greater the advantage. 
For Protocol 2, the computational complexity is mainly due 
to the increased zero-knowledge proof and cut-and-choose 
method. If these calculations are outsourced, the efficiency 
of the protocol will be greatly improved. Protocol 2 is more 
efficient and practical. 

Figure 4. Comparison of running time with different modulus

6  Conclusion 

The Millionaires’ problem is the cornerstone of MPC, 
and many MPC protocols are built on this basis. The 
Millionaires’ Protocol achieves confidentiality in comparison 

of data and is the fundamental protocol for solving many 
other MPC problems such as geometric position relationship 
determination, electronic auction, and graphic similarity 
determination. There are many malicious participants in real 
life, however, few existing protocols are feasible under the 
malicious model, and the efficiency limits the application of 
security protocols (Almost all universal protocols that can 
be applied to all scenarios come at the cost of sacrificing 
efficiency). The MPC protocol for comparing rational 
numbers under the malicious model proposed in this paper 
(Protocol 2) cannot only resist malicious adversary attacks, 
but also take into account the size comparison of rational 
numbers, and compared with the existing protocols greatly 
improves efficiency. Therefore, the protocol proposed is 
efficient and secure, with practical value. In the future, we 
will improve some MPC protocols in specific scenarios based 
on this protocol. In addition, studying how to improve the 
efficiency of Protocol 2 is also a focus of our future research.
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