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Abstract

A lot of the recently reported malware is equipped with 
the anti-analysis techniques (e.g., anti-emulation, anti-
debugging, etc.) for preventing from being the analyzed, 
which can delay detection and make malware alive for 
a longer period. Therefore, it is of the great importance 
of developing automated approaches to defeat such anti-
analysis techniques so that we can handle and effectively 
mitigate numerous malware. In this paper, by analyzing 
1,535 malicious applications, we found that 18.31% of them 
equipped with anti-analysis techniques. Next, we propose a 
novel, dynamic analyzer, named DOOLDA, for automatically 
invalidating anti-analysis techniques through dynamic 
instrumentation. DOOLDA monitors executions of Android 
applications’ entire code layers (i.e., bytecode and native 
code). Based on monitoring results, DOOLDA finds the code 
related to anti-analysis techniques and invalidates the anti-
analysis techniques by instrumenting it. To demonstrate the 
effectiveness of DOOLDA, we show that it can invalidate all 
known anti-analysis techniques. Also, we compare DOOLDA 
with other dynamic analyzers.

Keywords: Malware analysis, Dynamic analysis, Mobile 
security

1  Introduction

Mobile malware targeting Android devices is not only 
increasing in number but also is evolving to avoid various 
detection techniques. Consequently, it is getting more difficult 
to automatically analyze them. As various code protection 
techniques developed to protect mobile applications began to 
be applied to malware. For example, adversaries started using 
obfuscation and packing techniques to hinder static analyses 
[1-5], which derived security experts to use dynamic analysis 
approaches [6-7]. For thwarting dynamic analyzers, attackers 
are using anti-analysis techniques so that they can prevent 
them from being analyzed.

We have observed several security incidents caused by 
malware implementing anti-analysis techniques. By using 
such anti-analysis techniques, malware called Skinner could 
stay in Google Play for two months without detection. For 
the two months, Skinner tracked a lot of users’ locations and 

actions and can execute code from its command and control 
server without the users’ permission. Specifically, in order 
to avoid detection, Skinner used anti-emulation and anti-
debugging techniques. As another example, Avaddon, which 
was used in various cyber-attacks in 2020 and leaked more 
than 574GB of data from 23 companies, exploited anti-
debugging techniques to protect itself from being analyzed 
by security experts. 

In this work, our goal is to automatically invalidate 
anti-emulation and anti-debugging techniques by which 
we can quickly find malicious behaviors from them and 
respond to them. To this end, we first investigated of 
existing anti-analysis techniques. We, then, reclassified anti-
analysis techniques based on features collected through the 
investigation and we designed an invalidation strategy for 
each technique.

Also, we implemented a dynamic instrumentation 
tool, called DOOLDA, that monitors and instruments an 
Android application, for automatically invalidating anti-
analysis techniques. Because Android applications can 
have two different types of code (i.e., bytecode and native 
code), the architecture of DOOLDA consists of two parts: 
DaBIDA which instruments the bytecode, and DaNIDA 
which instruments the native code. DOOLDA monitors an 
application’s execution to find code implementing known 
anti-analysis techniques. If it found the code, DOOLDA 
hooks the code for instrumenting. And if not, it just skips the 
code instrumenting step. In the instrumenting step, DOOLDA 
instruments the code to invalidate anti-analysis techniques. 
Also, DOOLDA records each instruction with data to help 
security analysts.

To demonstrate the effectiveness of DOOLDA, we 
performed experiments with real-world malware using 
the Android Malware Dataset (AMD) [8], finding and 
invalidating anti-analysis techniques implemented in them. 
Our evaluation results show that how much Android malware 
uses anti-analysis techniques and DOOLDA can effectively 
invalidate anti-analysis techniques in real-world malware.

In summary, this paper makes the following contributions: 
(1) We surveyed the existing studies, reclassified the collected 
signatures, and established an invalidation strategy for each 
of the anti-analysis techniques; (2) We propose a novel 
approach, named DOOLDA, that automatically invalidates 
anti-analysis techniques used in Android malware; (3) We 
evaluate DOOLDA with real-world malware.



196  Journal of Internet Technology Vol. 25 No. 2, March 2024

2  Background

2.1 Executables in Android Applications
Android applications are deployed by using the APK 

file format. The APK file contains has two different types 
of code: Bytecode, and native code. The bytecode is stored 
in a Dalvik executable (.dex) file and the native code is in a 
shared object (.so) file. In Android applications, we use the 
Java Native Interface (JNI) which defines a way to interact 
between the bytecode and native code. Android applications 
can equip anti-analysis techniques (e.g., anti-debugging) 
in each code layer to prevent being analyzed. Malicious 
applications, also, use those techniques to make analysis very 
difficult so that they can hide their internal logic or behaviors. 
Therefore, to successfully analyze such Android malware, we 
should identify and instrument both the bytecode and native 
code.

Listing 1. A motivating example: The Android malware with the 
anti-emulation techniques

1  public class ActivityStart extends Activity { 
2    protected void onCreate(Bundle arg5) { 
3       ... 
4       if(!n.a(this.getApplicationContext())) { 
5         n.b(this.getAppcationContext()); 
6         ... 
7       } 
8   } 
9 
10   public class n { 
11     public static boolean a (Context arg6) { 
12       boolean v1 = false; 
13       boolean v4 = arg6.getSystemService(“phone”) 
14                                        .getDeviceId() 
15                                        .equals(“000000000000000”); 
16       int v0 = (Build.MODEL.contains(“google_sdk”)) || ... ?     
           1 : 0; 
17       int v3 = !Build.DEVICE.startsWith(“generic”) || ... ? 
           0 : 1; 
18 
19       if ((v4) || (v0 != 0) || (v3 != 0)) { 
20         v1 = true; 
21       } 
22       return v1; 
23     } 
24 
25     public static void b (Context arg7) { 
26       if (Build$VERSION.SDK_INT >= 19) { 
27         arg7.getSystemService(“alarm”) ... 
28         new Intent(arg7, AlarmReceiverKnock.class), ... ); 
29       } else { 
30         arg7.startService(new Intent(arg7, knock.class)); 
31       } 
32     ... 
33 }

2.2 Motivating Example
Listing 1 shows a code snippet of real-world Android 

malware that uses anti-analysis techniques. In the code 
snippet, the method b of class n enables the alarm receiver 
to steal the contents of SMS and MMS services of a device. 

It is invoked by onCreate method and onCreate method 
will be invoked when the ActivityStart activity is initialized. 
However, the method b will not be invoked if an application 
executes on an emulator. The method a implements the 
anti-emulation techniques that check whether or not the 
application is running on an emulator because dynamic 
analyzers usually employ an emulator. To this end, it checks 
system properties such as DeviceId, Build.MODEL, Build.
DEVICE, etc. If the method finds that the application is 
not running on an actual device, the method b will not 
be invoked and thus we cannot analyze the application’s 
malicious behavior as a result. The code presented in Listing 
1 can effectively prevent being analyzed from existing 
dynamic analyzers based on the emulator [9-11] and dynamic 
analyzers based on customized system [6-7, 12].

Other than the anti-emulation techniques such as the 
given example, the anti-debugging techniques can thwart the 
dynamic analyzer using debugging features [13-14]. Such 
techniques check if a debugging process exists in the process 
list or checks whether the PTRACE system call is used or not. 
In addition, some techniques scan network ports to examine 
a device is being traced or debugged remotely to avoid 
debuggers.

3  Overview

In this paper, we aim to provide an automated solution to 
thwart anti-analysis techniques used in advanced malware. 
To this end, we propose a dynamic analysis platform, named 
DOOLDA, that can effectively invalidate anti-analysis 
techniques. DOOLDA, also, can be used to dynamically 
instrument the other code of malware. 

Figure 1 shows how DOOLDA analyzes Android 
malware equipped with the anti-analysis techniques via 
instrumenting its code during runtime. DOOLDA first finds 
code that implements anti-analysis techniques and invalidates 
it by dynamically instrumenting it.

The both modules of DoolDA operate based on a 
Dynamic Binary Instrumentation (DBI) framework. DaBIDA 
uses Android’s built-in instrumentation module, and DaNIDA 
uses Valgrind, which dynamically instrument code while 
malware is running. Therefore, there is no need to find the 
code snippet through reversing malware. Also, there is 
no need to recompile after the instrumentation. DoolDA 
simply intervenes between DBI tool’s IR (Intermediate 
Representation) translation and IR compilation phases to 
monitor and instrument code in malware.

(1) Monitoring Code: In the monitoring phase, 
DOOLDA examines the IR translated by the DBI tool. This 
allows DOOLDA to know the actual behavior of the code. 
DOOLDA monitors the code before it executes using IR and 
checks whether the code contains anti-analysis techniques 
or not. If so, DOOLDA hooks the code for instrumenting. 
Otherwise, it just skips the code instrumentation phase. 

(2) Instrumenting Code: In the Instrumenting phase, 
based on the results inspected in the monitoring phase, 
DOOLDA instruments the code to invalidate the anti-
analysis techniques. For invalidating anti-analysis 
techniques, DOOLDA replaces code or data used for anti-
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analysis techniques with code that makes an application 
keeps executing. Furthermore, DOOLDA can be used for 
instrumenting the other code of malware: it can dynamically 
patch code that will execute at any point while runtime.

The above methodology can also be implemented by 
using a static analysis instead of instrumentation through 

DBI. However, there is a limitation that a static analysis-
based approach cannot be used when anti-analysis 
techniques such as obfuscation and packing are applied onto 
applications. Therefore, we designed DOOLDA based on the 
dynamic analysis through DBI.

Figure 1. The workflow of DOOLDA

4  DOOLDA

4.1 Anti-Analysis Techniques
To achieve our goal, we first analyzed real-world malware 

and surveyed state-of-art research work on anti-analysis and 
anti-anti-analysis techniques of Android applications [7, 15-
24]. As the results, we classify the anti-analysis techniques in 
three-fold as follows.

(1) Anti-rooting techniques: To prevent executions on 
a rooted device, the anti-rooting techniques are to figure 
out that the device is rooted or not. The most widely 
used techniques are checking whether the rooting-related 
applications are installed (AR1 in Table 1) and checking the 
existence of binary and directory that only can be seen on 
a rooted device (AR2 in Table 1). Furthermore, there is a 
technique that checks the system properties related to root 
permissions (AR3 in Table 1).

(2) Anti-emulation techniques: In general, the emulation 
environment is used to test or analyze an application. Most 
of automated analyzers run on emulators customized for their 
purposes [6, 10-11, 25]. Hence, for preventing executions on 
an emulator, the anti-emulation techniques check the traits 
that imply the emulation environment. An emulator such as 
Android Virtual Device (AVD) has virtualized hardware and 
a system with arbitrary data. By checking the configuration 
data of Android system, an application can identify whether 
it is running on a real device or not. The well-known 
techniques are checking the hardware configuration (AE1 in 
Table 1), checking build information (AE2 in Table 1) and 
checking system properties (AE3 in Table 1). Also, checking 
files related to an emulator is also widely used to figure out 

an emulation environment (AE4 in Table 1), it is because an 
emulator has specific binaries and directories that cannot be 
seen on a real device. In addition, an emulation environment 
has a lot of additional layers to compose emulated components 
and they make runtime performance low. By using this 
feature, there is an anti-emulation technique that checks an 
execution time of a specific task (AE5 in Table 1).

(3) Anti-debugging techniques: On Android, we can 
check installed or running debugger-related programs (AD1 
in Table 1) and the usage of system calls (AD2 in Table 1) to 
figure out a device is being debugged or not. Also, checking 
the activation status of JDWP (AD3 in Table 1) and checking 
debuggable flags (AD4 in Table 1) can be used to identify 
the existence of a debugger. Moreover, similar to the anti-
emulation techniques, there is an anti-debugging technique 
that checks an execution time (AD5 in Table 1).

The summary of our investigation about the anti-analysis 
techniques is illustrated in Table 1. As a result, we found 
that most of the anti-analysis techniques check the device 
status such as the system properties (AR3, AE2, AE3, 
AD2, AD3, AD4), hardware information (AE1), running 
processes, or files existence (AR1, AR2, AE4, AD1). Also, 
we confirm that the Android malware checks the device 
status in 2 layers not just native system-level but also 
Android Framework’s bytecode level. This means covering 
only 1 layer (instrumenting only bytecode level [26] or 
native system-level [27]) is not sufficient. For obtaining a 
status of the device, anti-analysis techniques use pre-defined 
properties and APIs that the Android framework offers, or 
Linux standard library functions provide. Using this common 
ground, we set up a strategy in DOOLDA (DaNIDA and 
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DaBIDA to cover the bytecode and native code) that always 
returns the correct value collected from a normal real device. 
The collected data is stored with the related properties, APIs, 
and functions. Therefore when anti-analysis techniques try to 
check the device status in a known way, we can deceive the 

checking process by hooking the related code and returning 
the stored correct data. In the case of the timing-based anti-
analysis techniques (AE5 and AD5), we can deceive it by 
returning a fixed time value because they usually check that 
the execution time exceeds the limit or not. 

Table 1. The categorized anti-analysis techniques and detailed classification results
Category Types Description Practical cases

Anti- 
rooting 
techniques

AR1: Check rooting 
applications

Checks whether rooting-
related applications are 
installed.

com.devadvance.rootcloak, 
com.grarak.kerneladiutor, 
com.jrummy.root.browserfree, 
com.koushikdutta.superuser, etc

AR2: Check binary 
files / directories

Check the existence of files 
/ directories that only can be 
seen on rooted device.

/system/xbin/su, /system/bin/su, 
/system/xbin/.../xbin/su, /system/xbin/busybox, 
SuperSU, Magisk, Luckypatcher, etc

AR3: Check system 
properties

Check the value of system 
properties related to root 
permission.

ro.secure, ro.debuggable, 
service.adb.toor, etc.

Anti- 
emulation 
techniques

AE1: Check hardware 
configurations

Checks hardware 
information of the device

TelephonyManager.getDeviceId(), 
TelephonyManger.getNetwork*(), 
TelephonyManager.getSimSericalNumber(), 
Android device ID, IMEI, IMSI, MAC addresss, 
/proc/cpuinfo (goldfish is not allowed), etc

AE2: Checks build 
Information

Checks whether it has the 
build information that real 
devices do not have.

Build.PRODUCT, Build.BOARD, Build.BRAND, 
Build.DEVICE, Build.FINGERPRINT, Build.ID, 
Build.MODEL, Build.TAGS, etc.

AE3: Check system 
properties

Checks whether it has the 
system properties that real 
devices do not have.

ro.bootloader, ro.bootmode, ro.hardware, 
ro.product.model, ro.product.device, 
ro.produce.name, init.svc.qemud, etc.

AE4: Check binary 
files / directories

Checks whether the 
specific files that imply 
the emulation environment 
exists.

/dev/socket/qemud, /dev/qemu_pipe, 
/proc/tty/drivers, /system/lib/libc_malloc_debug_
qemu.so, 
/sys/qemu_trace, /system/bin/qemu-props, etc.

AE5: Timing checking
Checks the delay of 
execution time caused by 
emulation environment.

gettimeofday(), currentTimeMillis(), 
System.nanoTime(), etc.

Anti- 
debugging 
technique

AD1: Check debugger 
programs

Check the debugger 
programs are running or 
installed on the device.

/proc/self/maps, ps 
(for detecting gdb, Frida-agent-*.so, etc).

AD2: Check system 
calls C

Checks the usage of system 
calls such as ptrace, strace, 
etc.

ptrace, strace, /proc/self/status 
(for checking TracePid), etc.

AD3: Checks the 
usage of JDWP

Checks the JDWP is 
activated in Dalvik VM.

DVMGlobals, JdwpAdbState, 
count member of BreakpointSet structure, etc.

AD4: Checks 
debuggable flag

Checks the value of 
debuggable flag of the 
application.

BuildConfig.BUILD_TYPE, 
BuildConfig.DEBUG, android:debuggable, etc.

AD5: Timing 
checking

Checks the delay of 
execution time caused by 
breakpoints.

gettimeofday(), currentTimeMillis(), 
System.nanoTime(), etc

Figure 2. The process of executing a target application
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Table 2. Instrumentation events and handler interfaces in ART
Event Event handler interface

MethodEntered MethodEntered(Thread* thread, Handle<mirror::Object>this_object, ArtMethod* method, uint32_t 
dex_pc)

MethodExited MethodExited(Thread* thread, Handle<mirror::Object>this_object, ArtMethod* method, uint32_t 
dex_pc, const JValue& return_value)

MethodUnwind MethodUnwind(Thread* thread, Handle<mirror::Object>, ArtMethod* method, uint32_t dex_pc)

DexPcMoved DexPcMoved(Thread* thread, Handle<mirror::Object>this_object, ArtMethod* method, uint32_t 
dex_pc)

FieldRead FieldRead(Thread* thread, Handle<mirror::Object>this_object, ArtMethod* method, uint32_t dex_
pc, ArtField* field)

FieldWritten FieldWritten(Thread* thread, Handle<mirror::Object>this_object, ArtMethod* method, uint32_t 
dex_pc, ArtField* field, const JValue& field_value)

ExceptionCaught ExceptionCaught(Thread* thread, mirror::Throwable* exception_object)
Branch Branch(Thread* thread, ArtMethod* method, uint32_t dex_pc, int32_t offset)

InvokeVirtualOrInterface InvokeVirtualOrInterface(Thread* thread, Handle<mirror::Object>this_object, ArtMethod* method, 
uint32_t dex_pc, ArtMethod* target)

Thread

TopManagedStack

ShadowFramesManagedStacks

TopShadowFrame

ShadowFrame

Argument 1

Argument 2

. . .

Register 1

Register 2

. . .

Figure 3. The virtual stack structure in ART

4.2 Application Launcher
DOOLDA uses a dedicated application launcher to 

dynamically instrument an application’s bytecode and native 
code. The module launches an application after loading 
DaNIDA and DaBIDA into a process. We implement it by 
modifying the app_process of Android [28] which performs 
a series of pre-processing to execute an application. With the 
launcher, DOOLDA can control all executable code of an 
application. 

Figure 2 shows the execution process of DOOLDA’s 
application launcher. First, DOOLDA loads DaNIDA when 
it starts. Since DaNIDA aims to instrument native code, it 
needs to be loaded first to gain control overall the various 
shared libraries which are loaded by an application later. 
After that, the Android runtime engine, ART [29], is loaded 
to the process. Then, DOOLDA load DaBIDA that works 
with the runtime. DOOLDA also loads the pre-compiled dex 
file, called dummy dex, at this time. The dummy dex contains 
code and data that are going to be replaced with logic for 
implementing anti-analysis techniques in an application. 
Lastly, the launcher loads the target application and starts an 
application.

4.3 DaBIDA
DaBIDA is a bytecode instrumentation module that 

operates by an event-driven mechanism. Precisely, DaBIDA 
catches an event, such as MethodEntered, which arises when 

ART interprets bytecode that starts executing a method, to 
inspect and instrument an application. Table 2 shows the 
events and interfaces of the event handlers that DaBIDA 
uses. DaBIDA traces an application’s execution by using the 
handlers.

Instrumenting an instruction. To trace each instruction 
being executed, DaBIDA utilizes ArtMethod and dex_pc that 
the most of event handlers use except for ExceptionCaught 
and Branch. ArtMethod object manages the bytecode of a 
method and dex_pc refers to the offset value of an instruction 
to be executed. By combining these two data, DaBIDA can 
trace the bytecode of an application. 

In addition, DaBIDA monitors data stored in virtual 
registers used by the bytecode that DaBIDA is tracing. 
The virtual registers are stored in a virtual stack called 
ShadowFrame. To monitor the virtual registers, DaBIDA 
uses the Thread object that exists in all of the instrumentation 
events. As presented in Figure 3, Thread object has a field 
that is pointing to the TopManagedStack and ManagedStack 
has a field pointing to the TopShadowFrame. Hence, DaBIDA 
accesses the ShadowFrame by using the Thread object that 
transferred from the instrumentation event and monitors 
the virtual register value and other data stored in the virtual 
stack. The data stored in virtual registers can be simple data 
such as an integer value or a memory address that points to 
an object such as String, ArtMethod. If the data is a pointer, 
DaBIDA finds an object that the pointer is pointing to and an 



200  Journal of Internet Technology Vol. 25 No. 2, March 2024

exact value of it because it can be an important value used in 
anti-analysis techniques.

DaBIDA repeats the monitoring process for every 
bytecode instruction of a target application. Through the 
monitoring process, DaBIDA identifies the instruction 
related to the anti-analysis techniques such as obtaining 
property information of a device. Also, the DaBIDA handles 
it according to the strategy represented in Section 4.1 by 
replacing it with the dummy method or dummy data to make 
the anti-analysis techniques fail to prevent analysis.

For the case of the instruction that gets the property 
information, we instrument the result of the property data 
after executing the instruction. Figure 4 shows an example 
that how we instrument such instructions with DaBIDA. 

Figure 4. The result of instrumenting virtual registers and opcode 
using DaBIDA

Before the instrumenting, the result of code sget-object 
v0, Ljava/lang/String; android.os.Build.MODEL on Line 
20 is 0x7faae62270 which is the address of a String object 
that stores android.os.Build.MODEL data. However, after 
the instrumentation, the result of the code on line 20 is 
0x7fc74161e0 which is the address of a String object that 
stores our dummy data collected from the normal device. As 
the result, the return value of the method becomes 0x00 from 
0x01.

Instrumenting an invocation of a method. There are 
two ways to invoke a method in the bytecode of an Android 
application. One is to use dexcache and another one is to 
use a dispatch table such as vtable or itftable. Both of them 
have similar mechanisms that find a new method using the 
index of the method represented in the bytecode’s operand. 

DaBIDA handles both cases by using the mechanism that 
replaces the target method referenced by the operand of the 
bytecode with the dummy method.

When a method is invoked by using the dexcache, 
DaBIDA instruments the bytecode as presented in Figure 
5. Before the instrumentation, the method[1234] stored 
in the ResolvedMethods array managed by dexcache 
points to the original Method@1234 method. However, 
after the instrumenting, the method[1234] stored in the 
ResolvedMethods array points to the Dummy Method. As 
the result, when an application invokes the method@1234 
method, Dummy Method will be invoked instead of the 
original one. Likewise, when a dispatch table such as the 
vtable is used for invoking a method, DaBIDA instruments 
the table as illustrated in Figure 6. After DaBIDA instruments 
the table, the table entry that pointed to the method[1234] 
points to the Dummy Method.

Figure 5. In the case of method invocation with dexcache, the 
instrumenting result by DaBIDA

Figure 6. In the case of method invocation with vtable, the 
instrumenting result by DaBIDA
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Figure 7 i l lustrate an example of how DaBIDA 
instruments the code for invalidating anti-emulation 
techniques that checks the DeviceId and Build.MODEL 
information. Through the monitoring process, DaBIDA can 
identify the code related to the anti-emulation techniques that 
using android.telephony. TelephonyManager.getDeviceId 
and android.os.Build.MODEL. The former method is 
invoked through the vtable. Therefore, DaBIDA replaces the 
element of vtable to invoke a dummy method that returns 
996156449799883 string which is the device ID obtained 
from a normal device. Also, after the instruction that gets the 
android.os.Build.MODEL property, DaBIDA overwrites the 
String object to have Nexus 5 string. As a result, the proper 
data will be used and the anti-emulation techniques in the 
application will be invalidated.

Figure 7. Bytecode instrumenting using DaBIDA

4.4 DaNIDA
In Android, the native code starts executing by a request 

from the bytecode through the JNI. Therefore, DaNIDA 
starts monitoring the execution of the native code when the 
JNI is called by an application. To implement DaNIDA, we 

used a dynamic binary instrumentation framework: Valgrind. 
DaNIDA monitors native codes and manages the execution 
flow of an application. To this end, DaNIDA translates the 
native code to VEX Intermediate Representation (IR). VEX 
is an architecture-agnostic, side-effects-free representation of 
a num ber of target machine languages.

Figure 8 shows the translation result of Mov ebp, [esp + 
16] instruction to the IR. The IR uses an internal temporary 
variable on its own, and an IR statement is mapped to a 
computing operation. Accordingly, one machine instruction 
can be represented as multiple IR statements. The IMark 
statement stores the address and length of the instruction 
and the following IRs are as below: (1) Store a value of ESP 
register in t9; (2) Add 16 to t9 and store in t8; (3) Store, in 
t10, a value pointed by the address stored in t8; (4) Store 
the value of t10 in EBP; and (5) Insert an address of the 
instruction to be executed next into EIP. 

00 th | ------ IMark(0x11DAB8BB, 4, 0) ------
01 th | t9 = GET:I32(24)
02 th | t8 = Add32(t9,0x10:I32)
03 th | t10 = LDle:I32(t8)
04 th | PUT(28) = t10
05 th | PUT(68) = 0x11DAB8BF:I32

mov ebp, [esp + 0x16]

Machine Code
(x86)

VEX IR

Figure 8. Example of translating machine code to Vex IR

VEX generates and executes one basic block and 
generates the next basic block according to the execution 
result of the previous basic block. Figure 9 shows the 
structure of the basic block used in VEX. One basic block has 
IR statements corresponding to the plurality of instructions, 
and each IR is distinguished by Tag. There are two ways for 
a basic block to find the next basic block. When an address 
intended to branch is a constant value, the corresponding 
value becomes the start address of the next basic block and 
when the address is not a constant value, the execution result 
of the corresponding basic block is stored in a temporal 
variable and the result value of the corresponding temporary 
variable becomes the start address of the next basic block.

After the translation of a basic block is finished, 
DaNIDA’s monitoring module checks if the anti-analysis 
techniques are implemented in the basic block. To this end, 
we collect and implement known anti-debugging, -emulation, 
and -rooting techniques shown in Table 1. Looking at the 
various signatures collected, we found that most anti-analysis 
techniques use the form of human-readable strings in the 
native code. Therefore, in order to use those signatures, 
DaNIDA checks string constants and function names for 
detecting anti-analysis techniques.

IRTypeEnv * tyenv
IRStmt ** stmts

Int stmts_size
Int stmts_used

IRExpr * next
IRJumpKind jumpkind

Int offsIP

IRStmt * [ IR 1 ]
…

IRStmt * [ IR M ]
…

IRStmt * [ IR N ]

Tag Ist_IMark

UInt len
Addr addr

UChar delta

Tag Ist_Put

IRExpr * data
Int offset

Tag Iex_Const
IRConst * con

Tag Iex_RdTmp
IRTemp tmp

Tag Ico_U32
UInt NextAddr

NextAddr

Is 
Const?

Basic Block
IR Statements IR Statement

Yes

No

IR Expr

IR Expr

IR Const

Figure 9. The basic block structure of VEX IR.
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Normally, by monitoring IRs translated from the 
native code, DaNIDA cannot know what the method is 
or what string is used. There are two main reasons for 
this. First, there are only addresses or const values in IRs. 
Second, applications are published after removing symbols 
unnecessary to execute the native code. Therefore, it is 
difficult to obtain string information directly from the native 
code.

To overcome the challenge, we map the address of a basic 
block monitored by DaNIDA and library functions because 
the symbol table of a native library contains addresses and 
names of functions. By using /proc/<pid>/maps file, we 
can check where the starting address of the basic block, and 
we can find out which native library has the current basic 
block. Similarly, if the library is identified, the offset of 
the method can be known through the symbol table of the 
library. Through the previously extracted information, it is 
possible to identify which method in which the library was 
called based on the starting address of the basic block during 
the execution. In the monitoring stage, when a function is 
called, an address value is converted into human-readable 
information that tells us which function is executing. 
DaNIDA compares the information with the signatures 
collected in advance to determine whether anti-analysis 
techniques are used by an application.

When DaNIDA detects anti-analysis techniques, it selects 
a invalidating function of the corresponding anti-analysis 
techniques. DaNIDA’s IR instrumentation module changes 
basic blocks to bypass anti-analysis techniques by modifying 
execution flows. Figure 10 illustrates how DaNIDA 
instruments a function by using a code snippet for checking 
the su binary to figure out the device is rooted or not. When 
the corresponding method is executed, the same result 
produced as hooking of the corresponding function may be 
performed by deleting the existing IR, inserting 0 into EAX 
and modifying IR to run the termination instruction. In this 
way, DaNIDA can change the content of a function before it 
executes.

Function : boolean 
com.example.sample.MainActivity.checkForSuBinary()
00 th | ------ IMark(0x11FBF00C, 7, 0) ------
01 th | t18 = GET:I32(24)
02 th | IR-NoOp
03 th | t2 = GET:I32(8)
04 th | IR-NoOp
05 th | IR-NoOp
06 th | ------ IMark(0x11FBF013, 3, 0) ------
07 th | t4 = Sub32(t18,0x2C:I32)
08 th | PUT(24) = t4
09 th | PUT(68) = 0x11FBF016:I32
...
51 th | ------ IMark(0x11FBF037, 2, 0) ------
52 th | t48 = CmpEQ32(t39,0x0:I32)
53 th | t47 = 1Uto32(t48)
54 th | t45 = t47
55 th | t49 = 32to1(t45)
56 th | t40 = t49
57 th | if (t40) { PUT(68) = 0x11FBF06C:I32; exit-Boring }

Function : boolean 
com.example.sample.MainActivity.checkForSuBinary()
00 th | PUT(8) = 0x0:I32
01 th | t50 = 0x11D46055:I32

Figure 10. Method hooking with IR using DaNIDA

For another example, using the PTRACE function is 
a widely-used technique by anti-debugging techniques. If 
the target process is a process executed by the debugger, 
PTRACE returns -1 with an error and 0 on success. Anti-
debugging techniques can use this feature to whether the 
process is debugged or not. However, with DaNIDA, if the 
PTRACE function is called, DaNIDA changes IR to return 
0 instead of executing the original code of the PTRACE 
function so that detecting a debugger is not possible.

5  Evaluation

In this section, we evaluate DOOLDA with Android 
malware provided by the argus group [8]. Specifically, we 
address the following three research questions.

• RQ1. How much Android malware uses anti-analysis 
techniques?

• RQ2. Can DOOLDA automatically invalidate real-
world malware equipped with anti-analysis techniques?

• RQ3. What does DOOLDA do better than the other 
dynamic analyzer?

5.1 Implementation
We implemented the prototype of DOOLDA with dual 

instrumentation modules, DaBIDA and DaNIDA. DaBIDA 
is implemented based on the instrumentation module in ART 
and DaNIDA is implemented based on the VEX module of 
Valgrind. DOOLDA’s instrumentation modules are loaded 
into a process and trace the execution of an application, 
invalidating anti-analysis techniques. Because DOOLDA 
uses the same virtual memory space with a target application, 
it can manipulate the target application’s data and code 
without any restriction.

5.2 Experimental Setup
Setup. Our evaluations were performed on the Android 

Virtual Device (AVD) and a mobile device (Nexus 5) with 
the Android system (version 5.1). Also, we used the device 
with remote gdb for detecting malware equipped with anti-
debugging techniques.

Malware dataset. Since there was no verified dataset of 
malware equipped with anti-analysis techniques, we need 
to extract samples from a reliable malware dataset. We, 
thus, used Android malware provided by the argus group 
[8]. The dataset contains 24,650 android malwares (as APK 
files), and each of them is classified into each category. 
Among them, we first found malware samples that use anti-
analysis techniques and were executable. First, by using 
the signatures in Table 1, we checked whether the signature 
exists each application. After that, we checked whether the 
app is executable and whether the execution result changes 
according to the execution environment. For example, there 
are samples that run when it execute on a mobile device, but 
not on the emulator. Consequently, we could select 1,535 
samples in total.
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5.3 Measuring Anti-Analysis Techniques
We performed experiments to find how many Android 

malware is using anti-analysis techniques with the dataset. In 
this experiment, we directly checked behaviors of malware 
in various execution environments (i.e., on a normal device, 
Android Virtual Device (AVD), and with the remote gdb). 
The classification result presents in Table 3. 16.87% of 
malware applies anti-emulation techniques, and 2.28% 
of malware applies anti-debugging techniques. The most 
commonly used technique is anti-emulation techniques and 
the malware that applies at least one type of anti-analysis 
technique accounts for 18.31% of the dataset.

Usually, if an anti-analysis technique is used by an 
application, it first executes the technique to check whether 
the application is running on an analyzer. Therefore, 
we checked whether the main activity of an application 
normally executes in various environments. We note that this 
experiment does not aim to observe malicious behaviors of 
malware, but to analyze whether the anti-analysis techniques 
were successfully bypassed by DoolDA, and which anti-
analysis is used by malware.

Because we use the sampled data, two cases can occur 
when running a malicious application using DoolDA: Either 
the app runs because an anti-analysis technique was bypassed 
by DoolDA, or the app does not execute because DoolDA 

could not bypass an anti-analysis technique. Also, after 
launching each malware, we can check the log of DoolDA to 
see if the anti-analysis technique was successfully bypassed. 
When we met a case where an application does not run 
occurs because DoolDA fails to bypass the application’s anti-
analysis technique, we added a signature so that DoolDA can 
bypass the anti-analysis technique by manually analyzing 
the application. By repeatedly performing this process, we 
performed measurements on all malware samples, adding 
signatures. In addition, the samples that we chose from 
the dataset contain only malware that equips anti-analysis 
techniques. Consequently, it is worth noting that, in our 
measurement results, there are no false-positives.

In addition to anti-emulation and anti-debugging 
techniques, there is a well-known anti-analysis technique 
called anti-rooting. Commercial applications such as 
banking applications usually use the technique. As shown 
in Table 4, in our dataset, no malware uses anti-rooting 
techniques. However, there is 77 malware that checks the 
root permission. Listing 2 shows a code snippet of malware 
that requires the root permission (AR2 in Table 1). If there is 
a file in the path, the FALSE value will be returned, and the 
application will show a message that the application cannot 
run because it does not have the root privilege. Such malware 
checks the root permission and utilize it to do malicious 
actions.

Table 3. The applying rate of anti-analysis techniques for the dataset

Category Anti-emulation tech Anti-debugging tech Not applied Sub-total

AndroRAT 0 (0%) 0 (0%) 30 (100.00%) 30
Minimob 14 (21.53%) 6 (9.23%) 48 (73.84%) 65
BankBot 26 (6.87%) 0 (0%) 352 (93.12%) 378
FakeDoc 0 (0%) 13 (86.66%) 2 (13.33%) 15
Vidro 14 (77.77%) 11 (61.11%) 3 (16.66%) 18
Nandrobox 10 (31.25%) 0 (0%) 22 (68.75%) 32
Penetho 4 (30.76%) 0 (0%) 9 (69.23%) 13
DroidKungFu 1 (2.00%) 0 (0%) 49 (98.00%) 50
Utchi 0 (0%) 0 (0%) 10 (100.00%) 10
Svpeng 1 (25.00%) 0 (0%) 3 (75.00%) 4
Winge 0 (0%) 0 (0%) 5 (100.00%) 5
GingerMaster 1 (4.00%) 0 (0%) 24 (96.00%) 25
Mtk 7 (28.00%) 0 (0%) 18 (72.00%) 25
Lotoor 61 (66.30%) 5 (5.43%) 26 (28.27%) 92
Jisut 0 (0%) 0 (0%) 90 (100.00%) 90
SimpleLocker 0 (0%) 0 (0%) 56 (100.00%) 56
Opfake 2 (50.00%) 0 (0%) 2 (50.00%) 4
Triada 1 (3.44%) 0 (0%) 28 (96.55%) 29
Youmi 86 (22.63%) 0 (0%) 294 (77.37%) 380
Dowgin 31 (14.48%) 0 (0%) 183 (85.51%) 214
Total 259 (16.87%) 35 (2.28%) 1,254 (81.69%) 1,535
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Listing 2. Case study - root detection: source code of malware 
that runs malicious script

1   protected void onCreate(Bundle arg10) { 
2     ... 
3     if(!hasRootPermission()) { 
4       v1.setTitle(«Check root permission»); 
5       v1.setMessage(«Sorry, you don\’t have root permission ... 
«); 
6     } else { 
7       ... 
8       new AppInitializer(((Context)this), ... ).start()); 
9     } 
10 } 
11 
12 public static boolean hasRootPermission { 
13   Boolean v2 = true; 
14  
15   if(!new File(«/system/bin/su»).exists() 
16         && !new File(«/system/xbin/su»).exist() 
17         && !new File(«/system/sbin/su»).exist()) { 
18           v2 = false;  
19   } 
20   ...  
21 
22 public class AppInitializer extends Thread { 
23   public void run() { 
24     v1.exec( 
25       «chmod 755  
26        /data/data/com.aps.hainguyen273.app2card/.app2card_
tmp/getinfo.sh\n 
27        /data/data/com.aps.hainguyen273.app2card/.app2card_
tmp/getinfo.sh info» 
28     ) 
29   } 
30 }

5.4 Analyzing the Malware Equipped with Anti-Analysis 
Techniques using DOOLDA
DOOLDA discovered and invalidated all anti-analysis 

techniques successfully in 281 malware as in Table 3. 
In this section, we show how DOOLDA analyzes the 
malware equipped with anti-analysis techniques through the 
following case studies. The case studies consist of malware 
implementing anti-emulation, anti-debugging techniques. 
DOOLDA defeats each case of the anti-analysis techniques 
by instrumenting the target malware successfully.
5.4.1 Case Study: Anti-Emulation Techniques

Listing 3 shows the code of malware using anti-
emulation techniques. In the code, the method setAlarm 
of class n enables the alarm receiver to steal the contents 
of SMS and MMS. Therefore, setAlarm is the main target 
to analyze and we have to execute the code to analyze it 
dynamically. It is invoked by onCreate method and onCreate 
method will be invoked when the ActivityStart activity is 
initialized. However, the method setAlarm is not always 
invoked. setAlarm method will be invoked according to 
the result of method isEmulator of the class n. It will be 
invoked according to the result of the method isEmulator 
of the class n. The method isEmulator has the code related 
to the anti-analysis techniques especially blocking the 
analyzer with a virtual environment. In this case, there are 
techniques corresponding to AE1 and AE2 in Table 1. It 
checks the information such as DeviceId, Build.MODEL, 
Build.DEVICE, etc. If at least one of the information implies 
that the application is running on an emulator, the method 
isEmulator will return TRUE and the method setAlarm will 
not be invoked. 

Table 4. The applying rate of anti-rooting techniques for the dataset
Category Desiring root Anti-rooting tech Do not need root Sub-total
AndroRAT 2 (6.66%) 0 (0%) 28 (93.33%) 30
Minimob 5 (7.69%) 0 (0%) 60 (92.31%) 65
BankBot 0 (0%) 0 (0%) 378 (100.00%) 378
FakeDoc 0 (0%) 0 (0%) 15 (100.00%) 15
Vidro 0 (0%) 0 (0%) 18 (100.00%) 18
Nandrobox 9 (28.12%) 0 (0%) 23 (71.88%) 32
Penetho 2 (15.38%) 0 (0%) 11 (84.62%) 13
DroidKungFu 15 (30.00%) 0 (0%) 35 (70.00%) 50
Utchi 0 (0%) 0 (0%) 10 (100.00%) 10
Svpeng 0 (0%) 0 (0%) 4 (100.00%) 4
Winge 0 (0%) 0 (0%) 5 (100.00%) 5
GingerMaster 8 (32.00%) 0 (0%) 17 (68.00%) 25
Mtk 0 (0%) 0 (0%) 25 (100.00%) 25
Lotoor 19 (20.65%) 0 (0%) 73 (79.35%) 92
Jisut 5 (5.55%) 0 (0%) 85 (94.44%) 90
SimpleLocker 2 (3.57%) 0 (0%) 54 (96.42%) 56
Opfake 0 (0%) 0 (0%) 4 (100.00%) 4
Triada 1 (3.44%) 0 (0%) 28 (96.55%) 29
Youmi 7 (1.84%) 0 (0%) 373 (98.16%) 380
Dowgin 2 (0.93%) 0 (0%) 212 (99.07%) 214
Total 259 (16.87%) 35 (2.28%) 1,254 (81.69%) 1,535
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Listing 3. Case study of the anti-emulation: malware steals the 
contents of the message in java code

1   public class ActivityStart extends Activity { 
2     ... 
3     protected void onCreate(Bundle arg5) { 
4       super.onCreate(arg5); 
5       ... 
6       if(!n.a(this.getApplicationContext())) { 
7         n.b(this.getAppcationContext()); 
8         ...  
9       } 
10   } 
11 
12   public class n { 
13     ...  
14     public static boolean isEmulator (...) { 
15       boolean v1 = false; 
16       boolean v4 = arg6.getSystemService(«phone”) 
.getDeviceId() 
17                                      .equals(«000000000000000»); 
18       int v0 = (Build.MODEL.contains(«google_sdk»)) || ... ? 
1 : 0;  
19       int v3 = !Build.DEVICE.startsWith(«generic») || ... ? 0 : 
1; 
20    
21       if ((v4) || (v0 != 0) || (v3 != 0)) { 
22         v1 = true; 
23       } 
24       return v1; 
25     }  
26 
27     public static void setAlarm (Context arg7) { 
28       if (Build$VERSION.SDK_INT >= 19) { 
29         arg7.getSystemService(«alarm») ... 
30         new Intent(arg7, AlarmReceiverKnock.class), ... ); 
31       } else { 
32         arg7.startService(new Intent(arg7, knock.class)); 
32       } 
34     } 
35   } 
36 }

For a successful analysis, we have to make the result of 
method isEmulator to be FALSE. In this case, DOOLDA 
invalidated the anti-emulation techniques by instrumenting 
the bytecode of the isEmulator method with DaBIDA to make 
the method returns FALSE. As a result, with DOOLDA, we 
can successfully found the malicious behavior as in Figure 
11 that llustrates the malware leaks SMS information after an 
SMS message is received.

For a successful analysis, we have to make the result of 
method isEmulator to be FALSE. In this case, DOOLDA 
invalidated the anti-emulation techniques by instrumenting 
the bytecode of the isEmulator method with DaBIDA to make 
the method returns FALSE. As a result, with DOOLDA, we 
successfully found the malicious behavior as in Figure 11 
that illustrates the malware leaks SMS information after an 
SMS message is received.

 boolean isEmulator(android.content.Context)
  reg6(obj) - android.app.Application
 ...
 [10] invoke-virtual {v0}, java.lang.String
      android.telephony.TelephonyManager.getDeviceId()
  String com.dummy.Dummy_method.getDeviceId()
   [0] sget-object v0, com.dummy.Dummy_string.deviceId
   [1] return v0
  RETURN-V(String) : “996156449799883”
 [13] move-result-object v0
 [14] const-string v3, "000000000000000"
 [16] invoke-virtual {v0, v3}, boolean
      java.lang.String.equals(java.lang.Object)
 [19] move-result v4
 [20] sget-object v0, Ljava/lang/String; android.os.Build.MODEL
        // overwrited to “Nexus 5”
 [22] const-string v3, "google_sdk"
 [24] invoke-virtual {v0, v3}, boolean java.lang.String.contains
       (java.lang.CharSequence)
 [27] move-result v0
 ...
 RETURN-V(uint_8) : <0x00> // FALSE

 ...
 void m.a(android.content.Context, java.lang.String)
  reg3(obj) - android.app.Application
  reg4(string) - {“module”:”sms”,”tel”:”01002102410”,
                  “body”:”Your Google verification code is 
                   G-554053”, ”time”:”Wed Jul 08 22:58:19 EDT}
 ...
 java.lang.String r.a(java.lang.String, org.json.JSONObject)
  reg5(string) - http://childgura.in/beloado/index.php
  reg6(obj) - org.json.JSONObject
  ...

Figure 11. The analysis result of DOOLDA with code instrumenting 
of DaBIDA

5.4.2 Case Study: Anti-Debugging Techniques
Listing 4 presents the code of malware equipped 

with anti-debugging techniques. In the code, the method 
rootShell executes shellcode and installs a new application 
for conducting malicious behaviors. Therefore, rootShell is 
the main target to analyze and we have to execute the code 
to analyze it dynamically. It is invoked by onClick method 
and onClick method will be invoked after the MainActivity 
is created. In the control flow of this application, there is 
no restriction of invoking rootShell method. However, it 
has a pre-configuration step in the native library. When the 
MainActivity is created, the DBGChecker instance is also 
created. DBGChecker is a class defined in a native library and 
it has the function named wwx. The wwx function preempt the 
PTRACE system call for denying the analysis with PTRACE 
as in AD2 of Table 1.

DOOLDA can analyze the malware by invalidating the 
anti-debugging techniques with DaNIDA. If the analysis 
target program uses the  PTRACE system call shown in 
Listing 4, it can be easily detected and invalidated through 
DaNIDA. First, DaNIDA knows the names and locations of 
other libraries with the process map. With this information, 
before the library code is executed, by using the offset of 
the functions included in the library based on the execution 
address, it is possible to know which function is scheduled to 
be executed next. Through this, DaNIDA can notice that the 
PTRACE system call is the next function to be executed.

Then, DaNIDA modifies IR statements in the PTRACE 
system call to return right after the system call executes.

The instrumentation and analysis results are shown in 
Figure 12. After DaNIDA modified the original PTRACE 
system call’s IR statements, the malware returns from the 
PTRACE system call, and then, installs the systemservice.
apk.
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Listing 4. Case study of the anti-debugging: malware installs 
another malicious application
1   // sec.cpp 
2   void wwx() { 
3     if(ptrace(PTRACE_ATTACH, p_pid, NULL, NULL) == 0)
{ 
4       ... 
5       ptrace(PTRACE_CONT, p_pid, NULL, NULL); 
6     } 
7   } 
8  
9   jint JNI_OnLoad(JavaVM* vm, void* reserver) { 
10   … 
11   wwx(); 
12 } 
13      
14 // MainActivity.java 
15 protected void onCreate(Bundle savedInstanceState) { 
16   ... 
17   DBGChecker v11 = new DBGChecker(); 
18 } 
19   
20 public void onClick(DialogInterface arg10, int arg11) {   
21   InputStream v2 = this.getAssets().open(“assets/libx86.so”); 
22   FileUtils.copyInputStreamToFile(v2, new File(“/sdcard/
       fc.key”)); 
23   ... 
24   new shell_m().rootShell(); 
25 }  
26 
27 public void rootShell() { 
28   sh.execCommand(new String[]{“mount -o rw,remount /
       system”, ..., 
29     “mv /sdcard/fc.key/system/app/systemservice.apk”, 
30     “chmod 644 /system/app/systemservice.apk”, “reboot”},
           true); 
31   … 
32 }

void com.smsbombardment.MainActivity$100000001
       .onCreate(Bundle savedInstanceState)
 ...
 [17] invoke-direct {v0}, void 
com.smsbombardment.scurity.DBGChecker.<init>()

====================================================================
Object : /data/app/xxx.zzzz.cccc/lib/x86/libSec.so
0 th | ------ IMark(0x120F8864, 2, 0) ------
...
42 th | ------ IMark(0x120F86C0, 6, 0) ------  // jump to ptrace()
43 th | t30 = Add32(t21,0x20:I32)
44 th | t11 = LDle:I32(t30)

object : /system/lib/libc.so
0 th | ------ IMark(0x4A246C0, 1, 0) ------  // 0x4A246C0 == PTRACE
1 th | PUT(8) = 0x0:I32
2 th | t42 = 0x11D46055:I32 // ret
====================================================================
...
void com.smsbombardment.MainActivity$100000001
       .onClick(android.conetent.DialogInterface, int)
 ...
 void com.smsbombardment.shell_m.rootShell()
  reg9(obj) - com.smsbombardment.shell_m
 ...
 [9] const-string v7, “mount -o rw,remount /system”
 [11] aput-object v7, v5, v6
 . . .
 [16] const/4 v6, #+1
 . . .
 [65] const-string v7, “chmod 644 /system/app/systemservice.apk”
 [67] aput-object v7, v5, v6
 ...
 [71] const/4 v5, #+7
 [72] invoke-static {v4, v5},
        com.smsbombardment.shell_m$CommandResult
        com.smsbomardment.shell_m.execCommand(java.lang.String[],
                                              boolean)

Figure 12. The analysis result of DOOLDA with code instrumenting 
of DaNIDA

5.4.3 Case Study: Comparison with Other Dynamic 
Analyzers
In order to show differences from other dynamic 

analyzers, we compare analysis results of DOOLDA with 
other analyzers by using applications to which anti-emulation 
and anti-debugging techniques are applied. The comparison 
results are summarized in Table 5.

As presented in Figure 13 to Figure 16, DOOLDA can 
analyze all the cases successfully. However, DexMonitor [6], 
DroidScope [11] and Frida [14] failed to analyze some cases 
of the anti-emulation and anti-debugging techniques.

Table 5. The analyzability of dynamic analyzers including DOOLDA

DexMonitor DroidScope Frida DoolDA

Anti-emulation 
techniques

Checking 
device properties ✓ ✗ ✓ ✓

Checking 
system properties ✗ ✗ ✓ ✓

Checking 
signature files ✓ ✓ ✓ ✓

Anti-debugging 
techniques

Checking 
debugging flag ✓ ✓ ✓ ✓

Checking 
process list ✓ ✓ ✗ ✓

Ports scanning ✓ ✗ ✗ ✓

System calls ✓ ✓ ✗ ✓
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6  Limitations

DOOLDA is a novel system that has dual instrumentation 
modules to cover the whole code of the Android applications 
and can handle the malware equipped with anti-analysis 
techniques. In this paper, we presented the prototype of 
DOOLDA and proved its superiority in Section 5. However, 
as in other analyzers, some limitations still exist in DOOLDA 
and we leave them as future work.

DOOLDA can invalidate only known anti-analysis 
techniques. For invalidating anti-analysis techniques, 
DOOLDA has to detect the code related to anti-analysis 
techniques first. However, the detection is based on the 
information that was previously reported. Therefore, 
DOOLDA cannot handle unknown anti-analysis techniques. 
In addition, DaNIDA cannot support the latest version of 
the Android system. Because DaNIDA is implemented 
based on the VEX module of Valgrind and the VEX module 
supports up to Android system version 5.1. To overcome this 
limitation, we can change the base module of DaNIDA from 
Valgrind to Address Sanitizer (ASAN) [30].

7  Related Work

In this section, we discuss previously proposed systems 
for dynamically analyzing Android malware.

There are dynamic analyzers implemented by modifying 
the Android operating system [6-7, 12, 25, 31]. Such in-the-
box analyzers can directly monitor executions of malware 
without a semantic gap. Also, as far as they run on bare-
metal, they can minimize the risk of being detected by 
analyzed applications. However, they have a couple of 
limitations. First off, in-the-box analyzers have Android 
system version dependency as they run in a specific version 
of Android system. For example, if the system is updated, 
there is a hassle of analyzing the updated Android system 
code and re-creating an analysis tool based on it. In addition, 
execution environments for using such analyzers can be 
limited to actual devices. This is because, if they run on an 
emulator, anti-emulating techniques can hinder analysis.

Dynamic analysis tools based on the emulator have 
the advantage of being able to configure environmental 
conditions [9-11]. Also, another advantage is that they 
can even analyze the most privileged attacks because they 
analyze malware in a controllable sandbox. However, their 
downsides are that (1) they should rebuild the semantic 
information; and (2) they can be thwarted by anti-emulation 
techniques.

Dynamic code instrumentation approaches do not have 
environmental limitations related to executions of applications 
as in the in-the-box and emulator-based analyzers [14, 32-
33]. However, as far as they use a debugging bridge or 
system calls for debugging such as PTRACE, those analyzers 
cannot analyze applications implementing anti-debugging 
techniques without bypassing them.

8  Conclusion

In this paper, we propose DOOLDA, a novel system 
using dual instrumentation modules for handling both the 
native code and bytecode, to analyze the malware equipped 
with anti-analysis techniques. Through our evaluations, 
we showed that DOOLDA can invalidate anti-analysis 
techniques by automatically instrumenting code that is about 
to be executed. We believe that DOOLDA can be used as an 
effective dynamic malware analysis framework for analyzing 
advanced malware.
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Appendix

(a) The Analysis result of DOOLDA

(b) The analysis result of DexMonitor

Figure 13. The analysis result of the malware with anti-emulation of DOOLDA and DexMonitor.
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(a) The analysis result of DroidScope

(b) The analysis result of Frida

Figure 14. The analysis result of the malware with anti-emulation of DroidScope and Frida.
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(a) The analysis result of DOOLDA

(b) The analysis result of DexMonitor

Figure 15. The analysis result of the malware with anti-debugging of DOOLDA and DexMonitor.
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(a) The analysis result of DroidScope

(b) The analysis result of Frida

Figure 16. The analysis result of the malware with anti-debugging of DroidScope and Frida.


