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Abstract

With advances in communication technology, modern 
society relies more than ever on the Internet and various user-
friendly digital tools. It provides access to and enables the 
manipulation of files, trips, and the Windows API. Attackers 
frequently use various obfuscation techniques PowerShell 
scripts to avoid detection by anti-virus software. Their doing 
so can significantly reduce the readability of the script. This 
work statically analyzes PowerShell scripts. Thirty-three 
features that were based on the script’s keywords, format, 
and string combinations were used herein to determine 
the behavioral intent of the script. Ones are characteristic-
based features that are obtained by calculation; the others are 
behavior-based features that determine the execution function 
of behavior using keywords and instructions. Behavior-based 
features can be divided into positive behavior-based features, 
neutral behavior-based features, and negative behavior-
based features. These three types of features are enhanced 
by observing samples and adding keywords. The other type 
of characteristic-based feature is introduced into the formula 
from other studies in this work. The XGBoost model was 
used to evaluate the importance of the features that are 
proposed in this study and to identify the combination of 
features that contributed most to the detection of PowerShell 
scripts. The final model with the combined features is found 
to exhibit the best performance. The model has 99.27% 
accuracy when applied to the validation dataset. The results 
clearly indicate that the proposed malicious PowerShell script 
detection model outperforms previously developed models.

Keywords: Machine learning, XGBoost, PowerShell, 
Malicious scripts, Behavioral features analysis

1  Introduction

PowerShell provides various functions for connecting 
and manipulating files, programs, and Windows APIs [1]. It 
can help system administrators rapidly operate management 
systems and achieve automation. It is the tool of choice for 
many attackers due to its flexibility, robust structure, and 
ability to execute scripts directly from the command line. 
Attackers have also developed various methods to obfuscate 
PowerShell scripts to avoid detection by anti-virus software 
and have even developed automated tools to obfuscate 

scripts, such as code tags, characters, and abstract syntax 
trees [2].

Since 2016, Fileless Malware, a new attack technique, 
has been attracting much attention in the limelight [3]. While 
system administrators widely use PowerShell to manage 
their computers, attackers frequently use this framework to 
conduct attacks [4]. It has become one of the mainstream 
techniques for attacking native applications [5]. In 2018, a 
significant increase in the number of attacks of this type was 
observed, as attackers used native applications on computers 
to map malicious code directly into memory to attack without 
writing to the disk, including attacks via PowerShell [6]. 
Dual-use PowerShell tools accounted for the largest share, 
23%, of threats that were detected on endpoints in the second 
half of 2020 [7]. Because of the global impact of COVID-19, 
attackers used the theme of the epidemic to motivate victims 
to click on emails and exploit the vulnerability of workers at 
home and telecommuting to conduct cyber attacks, leading 
to the growth of the Donoff Malware threat. The Q3 2021 
Trellix ATR Report found that [8].

This study proposed machine learning approaches 
to malicious PowerShell script detection and feature 
combination analysis has the following contributions. 
(1) This study uses static analysis to detect PowerShell 
scripts and determine their behavioral intent based on their 
keywords, formats, and string combinations. (2) Two feature 
combinations are proposed; they are characteristic-based and 
behavior-based. Behavior-based feature combinations can 
be divided into positive behavior-based, neutral behavior-
based, and negative behavior-based. (3) A feature used 
in a previous study was added to the characteristic-based 
feature combination. (4) The three features are enhanced by 
observing samples and adding keywords, and performance 
analysis was conducted to ensure that the features that are 
proposed in this study are helpful in the more effective 
identification of malicious scripts. (5) A total of 33 features 
support the high performance of the XGBoost algorithm.

This study uses static analysis to detect PowerShell 
scripts and determine their behavioral intent based on 
their keywords, formats, and string combinations. Two 
types of feature combinations are proposed; they are 
characteristic-based and behavior-based. Behavior-based 
feature combinations can be divided into positive behavior-
based, neutral behavior-based, and negative behavior-based. 
A feature that was used in a previous study was added 
to characteristic-based of feature combination. The three 
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features are enhanced by observing samples and adding 
keywords, and a performance analysis was conducted to 
ensure that the features that are proposed in this study are 
helpful in the more effective identification of malicious 
scripts. A total of 33 features support the high performance of 
the XGBoost algorithm.

2  Related Works

2.1 PowerShell Malware Threats
This section reviews the current status of the PowerShell 

malware threat. Kumar et al. [9] investigated and listed 
research questions on new fileless malware. Afreen et al. 
[10] observed a shift in information security threats. Afreen 
et al. concluded by presenting the critical elements of the 
AVT response strategies and techniques, such as behavioral 
analytics, logging, least privilege rule, and content filtering.

2.2 De-obfuscation Techniques
Liu et al. [11] performed the detection and anti-

obfuscation for malicious PowerShell malware. They 
proposed a method for the anti-obfuscation and analysis of 
malicious PowerShell scripts that are embedded in Word 
files. Ugarte et al. [12] introduced a static and dynamic multi-
level de-obfuscator for PowerShell attacks that was named 
PowerDrive. They also provided a taxonomy of behavioral 
models that are used to analyze the code and a complete list 
of malicious domains that are contacted during the analysis.

2.3 Detection of Malicious PowerShell Scripts
In recent years, PowerShell de-obfuscation techniques 

have matured, and many studies have focused on using 
artificial intelligence to detect and analyze PowerShell 
scripts. Hendler et al. [13] analyzed PowerShell malicious 
scripts using a neural network detector. 

Rusak et al. [14] proposed a hybrid approach that 
combines traditional program analysis with abstract syntactic 
trees and deep learning. Li et al. [15] designed a semantics-
aware PowerShell attack detection system to identify 31 new 
semantic signatures using classical target-oriented association 
mining algorithms for PowerShell attacks. Tajiri et al. [16] 
construct word-level language models. 

Fang et al. [17] proposed a hybrid feature-based 
model. The model analyzes malicious and benign scripts. 
They also used a word embedding and text classification 
model, FastText, to extract semantic features and to detect 
automatically malicious PowerShell scripts. They emphasized 
that a mixture of manual and automatic features can 
effectively enhance the performance of a detection model.

Song et al. [18] proposed an AI-based approach to 
feature optimization to improve the accuracy of detection 
of malicious PowerShell scripts. The optimized features are 
trained in models of machine learning and deep learning. 
Choi [19] proposed a GCN-based approach to detecting 
malicious PowerShell scripts by extracting feature data from 
previously identified PowerShell scripts and calculating 
the Jaccard similarity between the new PowerShell and the 
existing PowerShell scripts. Alahmadi et al. [20] presented 
the MPSAutodetect model for the automatic detection of 

malicious PowerShell scripts using stacked denoising auto-
encoders (SdAs). Their model extracts meaningful features 
and feeds the valuable ones into the XGBoost classifier. The 
main feature of MPSAutodetect is that the model does not 
require the manual extraction of features, eliminating the 
need for the manual finding of features.

3  Proposes System

The system architecture consists of five parts which are 
data collection, data processing, feature definition, model 
training, and model prediction. Figure 1. shows the system. 
The proposes system includes data collection module, data 
processing module, feature definition module, model training 
module and model prediction module. In the data collection 
phase, the malicious script uses psencmds, which is a public 
dataset that was provided by the Unit 42 team of Palo Alto 
Networks [21]. The benign script for this work is a crawler 
for obtaining PowerShell-type scripts on the GitHub platform, 
and the two are mixed in datasets of similar numbers of 
benign and malicious scripts. In the data processing stage, 
the content of the scripts is tagged, and incomplete data are 
filtered out.

In the feature definition stage, 33 features are extracted 
and categorized as characteristic-based or behavior-based, 
based on observations of the results of labeling after data 
processing, for subsequent training of the model used in 
this work. In the model training and prediction stages, the 
XGBoost model is used herein to evaluate the importance 
of various combinations of features. In order to ensure 
the stability of the model and prevent overlearning, it was 
validated during the training process. The final results of this 
system in the detection of benign and malicious scripts are 
presented.

Figure 1. Proposed system architecture

3.1 Data Collection
The section introduces basic information about datasets 

that are used in this work. First, the main techniques used 
to obtain the data are described. The datasets that are used 
in this study have two kinds of sources. The first kind is 
open-source code platforms from which are obtained a large 
number of random scripts that are identified and verified 
as benign. The other source is a well-known information 
security team, which provided samples of malicious attacks.

The benign scripts are collected from GitHub, using 
crawling techniques to collect open-source PowerShell-type 
scripts on its platform. Validation that the samples collected 
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are benign is performed through two malware detection and 
analysis services, Windows Defender and Virustotal. A total 
of 5,189 scripts were collected.

The malicious scripts were obtained using psencmds, a 
public dataset that is provided by the Palo Alto Networks 
Unit 42 team, using AutoFocus, which is the Palo Alto 
Networks’ highly realistic threat intelligence service. A total 
of 4,100 PowerShell-type samples contained both command 
and script-type content. These samples reveal which 
techniques are widely used in PowerShell attacks.

3.2 Data Preprocessing
In the experiment, incomplete scripts and samples that 

cannot be adequately run with PowerShell are discarded 
to ensure that all data are available for subsequent tagging. 
The source of the malicious scripts that are used in this 
study was the Unit 42 team, who obtained them in 2017 
using AutoFocus, which is a high-fidelity threat intelligence 
service. The benign scripts were obtained on GitHub using 
crawler technology. To ensure the integrity of the dataset by 
assimilating the data from different sources, we followed the 
Unit 42 team’s behavior tagging approach for PowerShell 
scripts to merge benign and malicious datasets.

The number of datasets that were used in this study is 
9289. Pre-processing to filter out invalid samples left a total 
of 8197 datasets. The datasets are split into 80%: 20% by 
Scikit-learn. 80% of datasets are used for training, and 20% 
are used for model validation.

3.3 Feature Definition
Table 1 lists the main contributions of this study. A 

total of 33 features are divided into two types, which are 
characteristic-based and behavior-based. Behavior-based 
features can be subdivided into positive, neutral, and negative 
behavior-based. The algorithm that is used in machine 
learning focuses depends on the weighting of the feature data, 
so feature extraction is crucial. In addition, the proposed and 
reinforced features are marked in red in the table.

Table 1. Thirty-three features

3.3.1 Characteristic-based Features
Characteristic-based features are calculated or described 

in a state based on the content presented in the PowerShell 
script. F1 to F3 are intuitive features that observe or calculate 
states to measure and mark the script. F4 and F5 are the 
results that are obtained by calculating various attributes, 
the simultaneous annotation of which requires a large 
amount of data and allows the machine learning model to 
perform grouping and generalization. Table 2 presents the 

characteristic-based features.
F5 Information Entropy is the average amount of 

information content of all words in a text. Obfuscated 
scripts are to make it challenging to understand the intention 
and content. According to Choi et al. [22], the presence of 
obfuscated characters reduces entropy. Fang et al. [17] also 
applied a method to calculate the information entropy from 
PowerShell scripts.

Table 2. Characteristic-based features
ID Name Description

F1 One Liner The script that solely exists on one line.

F2 Variable 
Extension

The wildcard «*» is used when setting 
the variable in the script.

F3 Abnormal 
Size

The size of the script is abnormal, the 
word count is too large or the line count 
is too high.

F4 Obfuscation

Calculate various properties of 
obfuscated scripts and observe 
the unique properties of malicious 
obfuscated scripts.

F5 Information 
Entropy

The average amount of information 
contained in each script received.

Table 3. Positive-behavior features
ID Name Description

F6 Positive 
Content

Keywords with positive meaning, such 
as: the official development package 
name.

F7 Script 
Logging Use commands related to logging.

F8 FunctionBody Use Annotated Functions in the script.

F9 License Annotate copyright notices in the script.

3.3.2 Positive Behavior-based Features
Behavior-based type of features are used to observe the 

function or keyword of each command in the script, and 
they are classified into three types. Positive behavior-based 
means that the command or keyword has a positive meaning, 
indicating that the script has used the command correctly. 
F6 is a keyword that is observed to have positive behavioral 
meaning, and F7 to F9 are instructions or syntax that are 
observed to have positive behavioral meanings. Table 3 
presents positive behavior-based features.

F6 Positive Content mainly refers to management-
type scripts that commonly perform management functions 
on enterprise endpoints. Such scripts will appear in the 
command or keyword, such as ToolTip or Readme. We 
have enhanced the feature of F6 with new keywords for the 
MessageBox and WinGet functions.  MessageBox means that 
the script has designed the user interaction function with the 
purpose of building a GUI interface; WinGet implies that the 
script has used the official package management module.
3.3.3 Neutral Behavior-based Features

Behavior-based type of features are used to observe the 
function or keyword of each command in the script, and 
they are classified into three types. Neutral behavior-based 
features are those the instruction or keyword is in a neutral 



170  Journal of Internet Technology Vol. 25 No. 1, January 2024

position and may exist in both malicious scripts and benign 
scripts. Table 4 presents neutral behavior-based features.

Table 4. Neutral-based features
ID Name Description

F10 Downloader Commands to download files locally or 
load files into memory.

F11 Start Process Commands to start one or more 
processes on the local computer.

F12 Script 
Execution

Commands to execute commands or 
expressions on the local computer.

F13 Crypto Commands to create symmetric and 
asymmetric encryption sub-objects.

F14 Enumeration
Commands to search for shared 
resources and user information in the 
system.

F15 Hidden 
Window

Commands to set the window of the 
session to be hidden.

F16 Custom Web 
Field

Commands to insert the new header 
and its value into the HttpHeaders 
collection.

F17 Persistence Commands to set the process using 
schtacks or windows service.

F18 Registry Commands to working with Registry 
Keys.

F19 Sleeps
Commands to suspends the activity in a 
script or session for the specified period 
of time.

F20 SysInternals
Commands to use Windows Sysinternals 
tools host  advanced system utilities and 
technical information. ex: ProcDump.

F21 Compression Commands to compress or decompress 
data.

F22 Uninstalls 
Apps Commands to uninstall the app.

F23 Byte Usage Commands to writes the specified byte 
array to the file.

Table 5. Negative behavior-based features 
ID Name Description

F24 Negative 
Content

Keywords with negative meaning, 
commands frequently used in malicious 
scripts.

F25 Known 
Malware

Regnex patterns or collections of 
keywords that uniquely identify known 
malicious scripts.

F26 Code 
Injection

A combination of commands and 
keywords means code injection software 
attacks.

F27 DNS C2
A combination of commands and 
keywords means use DNS to gain 
control of C2 (Command and Control).

F28 AppLocker 
Bypass

A combination of commands and 
keywords means bypassing some 
warnings and tools using the regsvr32 
registry.

F29 AMSI Bypass
A combination of commands and 
keywords means bypassing ant i-
malware scanning tool AMSI.

F30 Embedded 
File

Keywords for embedding in DOS MZ 
executables.

F31 Clear Logs Commands to clears event log records 
executed by scripts.

F32 Disabled 
Protections

Commands to  disable  protect ion 
p r o g r a m s  s u c h  a s  a n t i - s p y w a r e 
programs, malware scanners.

F33 Screenshot Commands to execute the action of the 
screenshot.

3.3.4 Negative Behavior-based Features
Behavior-based type of features are used to observe the 

function or keyword of each command in the script, and they 
are classified into three types. Negative behavior-based refers 
to an instruction or keyword that has a negative meaning or is 
characterized by aggressive intent in their execution. Table 5 
presents negative behavior-based features.

F24 Negative Content refers to a keyword that is 
commonly found in malicious scripts but cannot be classified 
by function. Attackers often use text storage sites such as 
Pastebin to download actual malware. Some red teams release 
scripts for penetration testing on the network, and attackers 
may intercept or use fragments of these scripts directly. This 
feature compares the behavior of scripts to determine whether 
it is used in penetration testing scripts. Two additional 
security analysis scripts are added to strengthen this feature.

F25 Known Malware compares scripts with known 
malicious scripts such as PowerSploit, nishang, and others, to 
determine if the script of interest includes a known malicious 
script. The new known malicious script PowerMemory is 
added to strengthen this feature.

3.4 Architecture of Detection Model
The two standard algorithms in ensemble learning are: 

bagging and boosting. The XGBoost classification model, 
based on the boosting algorithm, is used in this study [23]. 
Although the training speed and memory consumption are 
not comparable to those of LightGBM, the overall accuracy 
of XGBoost is superior, and the model is well developed. 
XGBoost has excellent parameter tuning and is less prone 
than LightGBM to overfitting. 

The experiment that focuses on the classification of 
benign and malicious scripts is performed. The boosting 
calculation is performed using a tree-based model that is 
called gbtree. The maximum depth of the tree is initially set 
to a default value of six. The optimal number of trees in the 
XGBoost is 100.

4  Performance Analysis

The XGBoost model was used to obtain the feature 
importance scores of each feature type to evaluate the ability 
of the model to detect malicious PowerShell scripts.

4.1 Analysis of Performance in Strengthening Features
This section presents feature-based analysis and 

experiments using the XGBoost model. Its purpose is 
to analyze the main feature items that affect the model 
and evaluate the performance thereof. Finally, results are 
presented for a mixture of various feature types.
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4.1.1 Analysis of Characteristic-based Features
F1 to F5 are characteristic-based features. Figure 2 

show the results of performance analysis by XGBoost. 
Information Entropy (F5) is the most robust feature, followed 
by OneLiner (F1) and Obfuscation (F4). Therefore, the 
value of the new Information Entropy feature in this work 
has differs between benign and malicious scripts. The 
accuracy, precision, recall, F1 score, log loss and AUC are 
77.38%, 100%, 55.19%, 71.13%, 7.8133 and 77.60% before 
strengthening. The accuracy, precision, recall, F1 score, log 
loss and AUC are 81.04%, 100%, 61.46%, 76.13%, 6.5497 
and 80.73% after strengthening.

Figure 2. Performance of characteristic-based features

4.1.2 Analysis of Positive Behavior-based Features
F6 to F9 are positive behavior-based features. Figures 

3 present the results of the feature importance analysis by 
XGBoost. The Positive Content (F6) was the worst feature. 
The experimental results showed that the enhanced Positive 
Content (F6) improved the detection effect. The accuracy, 
precision, recall, F1 score, log loss and AUC are 98.48%, 
98.68%, 98.33%, 98.50%, 0.5265 and 98.48% before 
strengthening. The accuracy, precision, recall, F1 score, log 
loss and AUC are 99.09%, 99.04%, 99.16%, 99.10%, 0.3159 
and 99.08% after strengthening.

Figure 3. Performance of positive behavior-based features

4.1.3 Analysis of Negative Behavior-based Features
F24 to F33 are negative behavior-based features. Figure 

4 show the results of the feature importance analysis by 
XGBoost. The enhanced Negative Content (F24) and Known 
Malware (F25) exhibited improved effectiveness. Known 
Malware (F25) identifies known malware, and Negative 
Content (F25) enhances the keywords in the red team 
exercise scripts. The accuracy, precision, recall, F1 score, log 
loss and AUC are 99.06%, 83.83%, 99.52%, 91.00%, 3.4328 
and 89.97% before strengthening. The accuracy, precision, 
recall, F1 score, log loss and AUC are 92.07%, 86.73%, 
99.64%, 97.74%, 2.7378 and 91.95% after strengthening.

Figure 4. Performance of negative behavior-based features

4.2 Comparison of Study
Table 6 compares the predictive performances of models 

that are proposed in this and previous studies that are based 
on the same dataset. The XGBoost algorithm is applied to the 
same dataset for training and testing. The malicious scripts 
in this and the comparative studies are based on the public 
dataset psencmds, and the benign scripts are extracted from 
the GitHub platform.

Table 6. Comparison with the results of different studies

Effective method for 
detecting malicious 
PowerShell scripts 

based on hybrid features 
(2021)

Our proposed 
system

Dataset GitHub + Psencmds

Algorithm Random Forest XGBoost

Accuracy Original scripts: 98.93%
Mixed scripts: 97.76% 99.27%

Precision 97.79% 99.52%

Recall 97.69% 99.04%

F1 Score 97.73% 99.28%

The proposed detection model outperforms other 
models with respect to accuracy by 0.3%, precision by 
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1.7%, recall by 1.3%, and F1 score by 1.5%. Therefore, the 
proposed detection model, based on the XGBoost algorithm, 
excellently classifies benign and malicious PowerShell 
scripts.

4.3 Summary
In this study, 33 features were divided into five groups, 

which are characteristic-based, positive behavior-based, 
neutral behavior-based, negative behavior-based, and All. 
The features that were enhanced in this study effectively 
improved the performance of the model over that achieved 
using the original set of features. The new features are 
Information Entropy (F5), and the enhanced features are 
Positive Content (F6), Negative Content (F25), and Known 
Malware (F25).

To conclude this section, Table 7 presents the five groups 
of features in this study. Several particular phenomena can 
be observed in the table. The model with positive behavior-
based features does not identify benign scripts well, resulting 
in more FPs (false positives). The model with negative 
behavior-based features does not identify malicious scripts 
well, resulting in more FNs (false negatives). The All-
Features model performs best with an accuracy of 99.27%, a 
precision of 99.52%, a recall of 99.04%, and an F1 score of 
99.28% with the validation dataset.

Table 7. Performance summary for feature combination

Testing Features Acc
(%)

Precision
(%)

Recall
(%)

F1 
Score
(%)

AUC
(%)

Characteristic-
based 99.09 99.04 99.16 99.10 99.08

Positive 
behavior-based 92.07 86.73 99.64 92.74 91.95

Neutral 
behavior-based 96.46 98.99 94.00 96.43 96.50

Negative 
behavior-based 81.04 100 61.46 76.13 80.73

All features 99.27 99.52 99.04 99.28 99.27

5  Conclusions

This work proposed an identification and classification 
system, based on the XGBoost algorithm, for detecting 
malicious PowerShell scripts. Two types of features, 
characteristic-based and behavior-based features, are 
investigated. The behavior-based features can be subdivided 
into positive behavior-based, neutral behavior-based, and 
negative behavior-based. A total of 33 features are proposed 
for training models to identify malicious PowerShell scripts. 
Four features are enhanced; these are Information Entropy 
(F5), Positive Content (F6), Negative Content (F24), and 
Known Malware (F25). Feature analysis shows that the 
processing of features improves model performance, the 
accuracy of threat detection, and attack intent identification. 
In the future, the author will conduct research on unbalanced 
sets and repeated random cross-validations for improve the 
system effectiveness. Based on the experimental results in 
this study, three main goals are for future work are proposed; 

they are the collection of more sample data to increase the 
generalizability of the model; the proposal of an automated 
approach to feature extraction to reduce labor and time costs, 
and the application of the results herein to real-life situations 
to achieve the study’s original purpose and to reduce the 
number of actual victims of, and the damage done by, 
malware.
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