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Abstract

MQTT (Message Queue Telemetry Transport) is one of 
the most popular Internet of Things (IoT) communication 
protocols, owing to its lightweight and easiness to use. The 
previous MQTT standards (including version 3.1 and its 
precedents) do not provide proper security functions; instead, 
they assume the adoption of SSL/TLS in the underlying layer. 
However, it not only incurs larger overhead but also hinders 
the development of suitable authentication/confidentiality 
protection to suit various MQTT deployment scenarios. 
The newest MQTT standard called MQTT 5.0 responds to 
these challenges by supporting the Enhanced Authentication 
framework in which designers can design and implement any 
secure authentication mechanisms within the framework. 

This paper designs and implements two efficient 
authentication protocols, using the MQTT 5.0 Enhanced 
Authentication framework. One is simple challenge-response 
authentication scheme, and the other is an anonymous 
challenge-response authentication scheme. We extend 
HiveMQ platform to implement the schemes and evaluate 
the performance. The results show that the proposed schemes 
demand only hundred few more milliseconds to achieve 
much robust authentication, compared to the simple identity-
password authentication. 

Keywords: Internet of Things, MQTT, Authentication, 
Challenge and response, Anonymity

1  Introduction

The IoT technologies is a very promising area for 
collecting and analyzing data from potential many IoT 
devices. To facilitate the easy transmission of IoT data 
and signals where IoT devices are usually resources-
batteries-limited, an IoT communication protocol is 
expected to be more efficient, compared to conventional 
networking protocols. Among many IoT communication 
protocols, MQTT has become one of the most popular IoT 
communication protocols, owing to its high efficiency and 
simplicity to use. 

Previous MQTT standards [1-3], focusing on being 
lightweight, do not provide enough security protection like 
authentication, integrity, and confidentiality; instead, the 
security of the MQTT deployments are assumed be dependent 
on the use of Secure Sockets Layer (SSL)/ Transport Layer 
Security (TLS) [4] in the underlying layer, which demands 

quite a few cryptographic computations and communication 
overhead of the certificates [5] and lacks the feasibility of 
supporting anonymity. Anonymity is crucial for some IoT 
scenarios where the identities could be used to refer one’s 
movement and possible locations. The weaknesses of the 
previous MQTT standards and improper deployments have 
exposed these MQTT systems to serious threats. Many mis-
configured MQTT servers and the security weakness have 
been extensively reported or evaluated [6-7].

There exist many proposals (like [8-20]) to enhance 
the security of MQTT systems. Some of these security-
enhancement proposals provide hardware/architecture 
support for security protocols, some propose new symmetric-
key-based/asymmetric-key-based security protocols, and 
some aim at designing authenticated key agreement schemes 
that are compatible with the previous MQTT packet formats 
and Application Interfaces (API). Chien [20-21] proposes 
general and efficient client-server authentication and device-
to-device authentication. 

In light of various security concerns and desirable 
function extensions, the new MQTT standards called MQTT 
5.0 have been ratified [23-24]. Regarding the security, MQTT 
5.0 supports the Enhanced Authentication framework in 
which new authentication API (called AUTH API) and new 
parameters (like Authentication method and Authentication 
data) could be used to design/implement authentication and 
key agreement schemes within the MQTT 5.0 context. With 
the new security framework and new functions, MQTT 5.0 
is expected to greatly enhance the security functions and to 
support new application use cases. 

However, none of the previous MQTT enhancements 
like [8-20] target on the MQTT 5.0 systems. In this paper, 
we design and implement two efficient authenticated key 
schemes using the MQTT 5.0 AUTH APIs. We implement 
the two schemes using the HiveMQ’s MQTT platform [25]. 
The evaluation of the prototypes show that the proposed 
schemes ensure much robust authentication security with 
only insignificantly additional more authentication latency, 
compared to the simplest identity-password authentication. 

2  Related Work and Background

A MQTT system consists of a set of clients and a broker 
who acts as an intermediary among the clients (publishers 
and subscribers). The message exchange among clients, via 
brokers, is based on the concept of “topic”. A broker would 
forward the published data of a topic from a publisher to 
those subscribers who subscribe the same topic.
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There exist many proposals and publications concerning 
the security of MQTT systems. The works like [6-8] report 
the security weaknesses and evaluate the security threats. 
The MQTT-security-enhancement proposals could be 
classified from several perspectives. From the architecture’s 
perspective, Lesjak et al. [9] integrate an IoT device with a 
TLS-capacity-embedded hardware to relieve the IoT device 
from the burden of handling TLS connections; Rizzardi 
et al. [10] and Neisse et al. [11] respectively focus on the 
key management framework and the policy management 
framework of MQTT systems so that the messages could be 
flexibly and dynamically encrypted and accessed according 
to the flexible policies; Niruntasukrat et al. [12] augment 
MQTT authentication and authorization by integrating with 
OAuth mechanism. For those customized authenticated key 
agreement schemes for MQTT, the previous proposals could 
be classified into two categories- public-key-based schemes 
or symmetric-key-based schemes. In general, symmetric-
key-based schemes like [7, 10-18] might own the benefits of 
lightweight computations and lightweight communication; 
some public-key-based schemes like [19-20] might own the 
benefits of better scalability in terms of key management; 
Singh et al. [20] augmented existent MQTT protocols with 
Key/Ciphertext Policy-Attribute Based Encryption the Key/
Ciphertext Policy-Attribute Based Encryption (KP/CP-
ABE) , which would demand high computational cost and 
poor scalability, even for only a small number of attributes. 
Chien et al.’s two-phase authenticated key agreement scheme 
[16], via a side channel (for example a socket connection), 
establishes an authenticated session key between a client 
and a broker in the first phase; and it uses the hashed value 
of the session key as the password field in the MQTT 3.1 
CONNECT API in the second phase; this arrangement can 
easily integrate any secure key agreement scheme with the 
MQTT 3.1 API. Chien et al. [18] propose a hierarchical 
MQTT architecture with edge computation to improve the 
message latency. Chien et al.’s implementations are based on 
the Mosca platform [26].      

Most of the existent authenticated key agreement 
schemes for MQTT concern the link security- the security 
between a client (a publisher or a subscriber) and a broker, 
and only very few works tackle the end-to-end security 
(from a publisher to a subscriber). The end-to-end security 
can provide some desirable benefits: (1) the broker could get 
rid of the loading of decrypting a message from a publisher 
and then re-encrypting the message several times for all the 
subscribers; (2) the content of MQTT messages could be kept 
secret from a curious broker. Mektoubi et al. [19] propose 
a topic-centric key distribution in which the system assigns 
a specific certificate for each topic, a publisher encrypts its 
messages using the public key of the topic certificate, and a 
legitimate subscriber who owns the corresponding private 
key can decrypt the messages. Chien et al. [17] propose a 
MQTT group communication scheme in which a broker 
automatically generates a topic for topic-centric group 
key updating for any specific topic, and all the legitimate 
clients are automatically registered with this group-key 
updating topic; a trusted daemon periodically updates the 
group keys and securely delivers the newest group keys to 
all legitimate publishers and subscribers, via the broker; a 

publisher encrypts its messages using the group key, and the 
subscribers of this topic decrypt the received messages using 
the same group key.  

Chien [21-22], based on hashing and hash composition, 
propose an anonymous client-to-server authentication and 
an anonymous device-to-device authentication. In this 
paper, we modify and extend the anonymous client-to-
server authentication in [20-21] to design and implement 
an anonymous client-to-broker authentication for MQTT 
5.0. The differences between this work and several MQTT 
precedents are summarized here. (1) The precedents [16-
18] are based on MQTT3.1 and the Mosca platform [25] 
while this work being based on MQTT 5.0 and the HiveMQ 
platform [26]. (2) The precedents handle the management 
works (like user management, topic management, and 
key management) and the challenge-and-response-
based authentication using the two-phase technique to be 
compatible with MQTT 3.1 CONNECT APIs; but this work 
designs and implements two hash-based authentication 
schemes (one is anonymous and the other is not) within the 
MQTT 5.0 Enhanced Authentication framework and APIs.    

The contributions of this work are outlined as follows.
(1) We design and implement two hash-based cli-

ent-to-broker authentication schemes using the 
MQTT 5.0 Enhanced Authentication framework and 
APIs. 

(2) We design and implement the first anonymous cli-
ent-to-broker authentication for MQTT 5.0 to meet 
the identity privacy protection for many IoT applica-
tion scenarios. 

(3) We specify the proposed schemes using the 
High-Level Protocol Specification Language 
(HLPSL) [28], and verify the key security properties 
of the proposed schemes using the formal verification 
tools- the Automated Validation of Internet Security 
Protocols and Applications (AVISPA) [29]. 

(4) We analyze the performance of the protocols, and 
evaluate the performance of the implementations.   

3  Two Efficient Authentication Schemes 
for MQTT 5.0

In this section, we introduce our two MQTT5.0-
compatible authentication schemes where one provides 
identity privacy protection (anonymity) and the other does 
not. Before describing the protocols, we first give a simple 
review of MQTT 5.0 Enhanced Authentication framework in 
Section 3.1.

3.1 MQTT 5.0 Enhanced Authentication Framework
The MQTT 5.0 Enhanced Authentication Framework 

provides  new AUTH APIs  (and packets)  and new 
authentication-related fields called Authentication method 
and Authentication data (they will be referred as Auth_
id and Auth_data for the rest of this paper for short). With 
this framework, designer and implementors can design and 
implement any secure authenticated key agreement schemes 
within Mthe MQTT 5.0 context. A simplified protocol stack 
with these APIs is shown in Figure 1. 
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Figure 1. MQTT 5.0 enhanced authentication protocol stack

A client (a publisher or a subscriber) initiates its 
connection by sending a CONNECT request in which 
the Auth_id and Auth_data are specified to notify the 
broker which authentication method is chosen. During the 
authentication process, they might exchange several AUTH 
messages which convey the Auth_data for the specified 
AUTH_id. Finally, CONNACK is sent to notify the result 
of the process. During the whole process, AUTH_id should 
be included in each message to ensure the right method is 
referred to. 

3.2 The Proposed Schemes in the MQTT 5.0 Context 
Based on the MQTT 5.0 Enhanced Authentication 

framework, we introduce a hash-based Challenge-Response 
authentication scheme in Section 3.2.1 and a hash-based 
anonymous authentication in Section 3.2.2. The notations are 
summarized in Table 1.
3.2.1 A Hash-based Challenge-Response Authentication 

within MQTT 5.0 Context
In the initialization, a client Ci registers itself at a broker, 

and gets two keys- a device_key and a topic_key; The 
device_key is specifi c to each device; the topic_key is shared 
among all legitimate clients of that topic. In the following 
computations and protocol flow, the two keys would be 
concatenated as one unifi ed key as :=device_key||topic_key. 
This arrangement has the merits that (1) when a client is 
authenticated using the unified key, both the device and its 
authorization to access the specific topic are verified at the 
same time. 

The flow of the first scheme within the MQTT 5.0 
context is depicted in Figure 2. In the fi rst step, a client sends 
its CONNECT request in which the chosen authentication 
AUTH_id=”CR” denoting the specifi c authentication method 
we develop.

In the CONNECT message, the client also sends its 
identity, the topic, and the first challenge denoted as C1. 
When the broker receives the request, it first retrieves the 
corresponding device_key and topic_key from its database 
using the received identity, lets Ki: = device_key ||topic_key, 
computes the response R1 = h1(Ki, C1), randomly chooses its 
challenge C2, and sends back AUTH(Auth_id=” CR”, R1, 
C2) in the second step.

Table 1. The notations
C, B.
IDi,; IDB

Client; Broker. IDi: IDB identities of a client and the 
broker respectively.

h1(),
h2(),
Mac()

Two cryptographic hashing functions. Mac(): 
message authentication code function, which could be 
implemented, using HMAC [27].

device_
key; topic_
key

The secret key between a device and the broker; the 
secret key shared among all clients and the broker for 
a specifi c topic.

Ci,; Ki
Ci: ith device; Ki: = device_key; topic_key the secret 
key shared between Ci and B.

Ni

Ni: Ci′s seed (a random value) for generating the chain 
of seed values. Each seed value is used to generate the 
corresponding pseudonym PNi,k . 

h1 
j(Ni)

h1 
j(Ni) = h1(h1(… h1(Ni))) means h1 being applied j 

times.

PNi,0,
PNi,k

PNi,0 denotes iC s′ pseudonym PNi,0 = h2(Ni). PNi,k =  
h2(h1

k(Ni)) denotes the kth pseudonym successor of 
PNi,0  

PV, PVi

PV: Pseudonym Vector; PVi = {PNi,0 , PNi,1 , …, PNi,k ,
PNi,w1} is the pseudonym vectors pre-calculated by B
for Ci.

w1
the window size of the precalculated pseudonym 
vectors.

GECC, P, q

GECC is a cyclic multiplicative group of an order q, 
where the Computational Diffi  e–Hellman Problem 
(CDHP) is hard; P is a generator of GECC. Here, we 
let GECC be a group in the elliptic curve setting for the 
short key size.

Auth_id, 
Auth_data

The specifi ed authentication method in the AUTH API, 
the authentication data within AUTH API.

Client Broker

1. CONNECT(Auth_id=” CR”, 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑖𝑖𝑖𝑖, 
topic, C1)

3. AUTH(Auth_id=” CR”, R2)

topic, topic, ))
2. AUTH(Auth_id=” CR”,R1, C2)

4. CONNACK(Auth_id=” CR”, 
True or False)

Figure 2. The protocol flow of a hash-based Challenge-
Response authentication within MQTT 5.0 context

The client verifies the received R1; if the verification 
succeeds, then it responds AUTH(Auth_id=” CR”, R2) in 
the 3rd step, where R2 = h1(R1, C2, Ki). Finally, the broker 
verifies the received R2 and responds “True(Success)” 
or “False(failure)” accordingly. The final session key is 
defined as Ksess: = hash(Ki, C1, C2, IDi, topic). After the 
authentication process, the client and the broker use the 
session key to encrypt/decrypt messages.
3.2.2 An Anonymous Hash-based Challenge-Response 

Authentication within MQTT 5.0 Context
Here, we aim at designing an anonymous client-broker 

authentication within the MQTT 5.0 framework. The 
channels between clients and brokers are susceptible to 
various attacks. The brokers are trusted, but the clients might 
be compromised. The scheme consists of two phases: the 
registration–initialization phase and the authentication phase. 
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3.2.2.1 The Registration-initialization Phase
The scheme is based on the composited hashing depicted 

in Figure 3. Like the scheme in Section 3.2.1, each client 
registers itself at a broker, and gets two keys- a device_
key and a topic_key, and the unified key as =device_
key||topic_key. Figure 3 shows Ci’s seed and pseudonyms; Ci  

repetitively applies h1() on its seed Ni to update Ni , and each 
active Ni is applied h2() to have the active pseudonym h2(Ni). 

Figure 4 shows the three algorithms used by a client 
and a broker, where the algorithm PN_Seed_Update(Ni) is 
run by Ci to update the seed and to generate the current PN
in each session. The algorithm PV_Iinitialize(Ci, Ni)  is run 
by a broker to initialize a client’s pseudonym vector. When 
a broker (say B) accepts Ci′s registration, it initializes the 

client’s pseudonym vectors PVi = {PNi,0 , PNi,1 , …, PNi,k , 
…, PNi,w1}, where PNi,j = h2(h1 

j(Ni)), j = 0~w1. This design of 
the pseudonym vector consisting of the current pseudonym 
and the future  w1 pseudonyms could properly tackle the 
possible out-of-synchronization issues caused either by the 
unreliable connection or the possible DoS attacks. When 
either the un-reliable connection or the DoS attacks happen, 
a client’s requests might be blocked or be lost, and the client 
would repetitively update its seed and pseudonym, and 
retry its requests. In such situations, the sent pseudonym 
would be still in the range of the broker-prepare additional 
w1 pseudonyms. Of course, the size of the window w1 is 
determined according to tradeoff between the cost of the 
additional storage and the possibility of the threats.

𝐶𝐶𝐶𝐶𝑖𝑖𝑖𝑖

<< Client’s seed chain & pseudonym vector>>

(𝐶𝐶𝐶𝐶𝑖𝑖𝑖𝑖 ,𝐾𝐾𝐾𝐾𝑖𝑖𝑖𝑖 ,𝑁𝑁𝑁𝑁𝑖𝑖𝑖𝑖)

𝑁𝑁𝑁𝑁𝑖𝑖𝑖𝑖 𝑁𝑁𝑁𝑁𝑖𝑖𝑖𝑖𝑁𝑁𝑁𝑁
ℎ1()

𝑁𝑁𝑁𝑁𝑖𝑖𝑖𝑖𝑁𝑁𝑁𝑁
ℎ1() ℎ1()

ℎ2() ℎ2() ℎ2()

𝑃𝑃𝑃𝑃𝑁𝑁𝑁𝑁𝑖𝑖𝑖𝑖,0 𝑃𝑃𝑃𝑃𝑁𝑁𝑁𝑁𝑖𝑖𝑖𝑖,1

……
ℎ1()

𝑁𝑁𝑁𝑁𝑖𝑖𝑖𝑖

ℎ2()

𝑃𝑃𝑃𝑃𝑁𝑁𝑁𝑁𝑖𝑖𝑖𝑖,2 𝑃𝑃𝑃𝑃𝑁𝑁𝑁𝑁𝑖𝑖𝑖𝑖,𝑤𝑤𝑤𝑤1…

Seed chain

Pseudonym vectorcurrent seed
current 
pseudonym

𝑃𝑃𝑃𝑃𝑁𝑁𝑁𝑁𝑖𝑖𝑖𝑖,𝑘𝑘𝑘𝑘 …

)
…

𝑃𝑃𝑃𝑃𝑁𝑁𝑁𝑁𝑖𝑖𝑖𝑖,𝑘𝑘𝑘𝑘+

Figure 3. Ci’s Seed and pseudonyms 

𝐶𝐶𝑖𝑖

B

<The algorithms in a client and a broker>

PV_Iinitialize(𝐶𝐶𝑖𝑖 ,𝑁𝑁𝑖𝑖)[Initialize clients’ pseudonym vectors]
{For each 𝐶𝐶𝑖𝑖 and its active 𝑁𝑁𝑖𝑖
Compute 𝑃𝑃𝑁𝑁𝑖𝑖,𝑗𝑗 = ℎ2 �ℎ1

𝑗𝑗(𝑁𝑁𝑖𝑖)� , 𝑗𝑗 = 0~𝑤𝑤1,

where ℎ1
𝑗𝑗(𝑁𝑁𝑖𝑖) = ℎ1(ℎ1�…ℎ1(𝑁𝑁𝑖𝑖)�) means ℎ1 being applied j times.

Pseudonym Vector (PV) for 𝐶𝐶𝑖𝑖: 𝑃𝑃𝑃𝑃𝑖𝑖 = {𝑃𝑃𝑁𝑁𝑖𝑖,0,𝑃𝑃𝑁𝑁𝑖𝑖,1, … ,𝑃𝑃𝑁𝑁𝑖𝑖,𝑘𝑘 , … ,𝑃𝑃𝑁𝑁𝑖𝑖,𝑤𝑤1}
}

PV_Update(PN, Req): [Update pseudonym vector when an incoming PN matches an entry]
Use the incoming PN to locate a matched entry and verify Req
Assume the incoming PN matches 𝑃𝑃𝑁𝑁𝑖𝑖,𝑘𝑘
Update 𝑃𝑃𝑃𝑃𝑖𝑖 as {𝑃𝑃𝑁𝑁𝑖𝑖,𝑘𝑘 ,𝑃𝑃𝑁𝑁𝑖𝑖,𝑘𝑘+1, … ,𝑃𝑃𝑁𝑁𝑖𝑖,𝑘𝑘+𝑤𝑤1}

[Client’s methods]

[𝐶𝐶𝑖𝑖′𝑠𝑠 Internal state ]
(𝐶𝐶𝑖𝑖 ,𝐾𝐾𝑖𝑖 ,𝑁𝑁𝑖𝑖 , ). 

PN_Seed_Update(𝑁𝑁𝑖𝑖) [𝐶𝐶𝑖𝑖′ internal state update when it launches a request.]PN_Seed_Update( 𝑖𝑖) [ 𝑖𝑖 update
{Generate pseudonym 𝑃𝑃𝑁𝑁 = ℎ2(𝑁𝑁𝑖𝑖), Update 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 𝑁𝑁𝑖𝑖 = ℎ1(𝑁𝑁𝑖𝑖)}

Client_init(𝐶𝐶𝑖𝑖)[𝐶𝐶𝑖𝑖′𝑠𝑠 initialization]

𝐶𝐶′ Internal ]

Client_initClient_initClient ( 𝑖𝑖)[ 𝑖𝑖
{(𝐶𝐶𝑖𝑖 ,𝐾𝐾𝑖𝑖 ,𝑁𝑁𝑖𝑖)}

Figure 4. The algorithms used by a client and a broker
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3.2.2.2 The Anonymous Authentication Phase
Figure 5 shows the authentication fl ow of the anonymous 

scheme within the MQTT 5.0 context. Basically, Ci sends 
its current pseudonym PN = h2(Ni) for B (the broker) to 
identify the client, and they use the secret key Ki to perform 
a Challenge-Response authentication where the exchanged 
Diffie-Hellman keys are used to generate the session keys. 
The details are described as follows.

Step 1.  Ci → B: CONNECT(AUTH_id = “anon”, PN, 
IDB, X, mac1)  Ci executes PN_Seed_Update(Ni) to generate 
the pseudonym PN and to update Ni ; Ci  chooses x∈

R
*
qZ , and calculates X = xP and mac1 = Mac(Ki, PN, X). Ci

sends the CONNECT(AUTH_id = “anon”, PN, IDB, X, mac), 
where AUTH_id = “anon” denotes the anonymous 
authentication method.

Step 2. B → Ci: AUTH(AUTH_id = “anon”, IDB, PN, Y, 
mac2) B calls PV_Update(PN, mac1), which uses the 
received PN to search a matched entry in its pseudonym 
vectors to identify the client, and to update the client’s 
pseudonym vectors. B chooses y∈ R

*
qZ , and calculates Y = yP

and its response mac2 = Mac(Ki, PN, IDB, X), which is a 
response to Ci′s challenge PN and X). S wraps the messages 
in AUTH API specifi ed in Step 2.

Step 3. Ci → B: AUTH(AUTH_id = “anon”, PN, IDB, 
mac3) Ci verifies the received mac2, calculates mac3 = 
Mac(Ki, PN, IDB, Y), and computes the session key Ksess = 
h1(“KEY”, IDB, PN, Ki, xyP). It sends the AUTH packet 
specified in Step 3. Upon receiving iC s′ response, B verifies 
mac3, and sends back the verifi cation result in Step 4. If the 
verifi cation succeeds, then it computes the session key.

Client Broker

1.CONNECT(Auth_id=” anon”, PN, 
IDB, X, mac1)

3. AUTH(Auth_id=” anon”, 
𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃, 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐵𝐵𝐵𝐵 ,𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚3)

2. AUTH(Auth_id=” 
anon”, 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐵𝐵𝐵𝐵 ,𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃,𝑌𝑌𝑌𝑌,𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚2)

4. CONNACK(Auth_id=” anon”, 
True or False)

Figure 5. The protocol flow of an anonymous PN-based 
authentication within MQTT 5.0 context

4  The Implementations and Performance

We implement our proposed schemes by extending 
the opensource MQTT 5.0 platform provided by HiveMQ 
[25]. In the implementation, when the broker initializes, 
it loads the Enhanced Authentication Provider from the 
AuthExtensionMain module; when the broker receives a 
connection request, it retrieves the Authentication_method 
field from the request, and it instantiates the corresponding 
Authenticator from the Enhanced Authentication Provider to 
handle the authentication process specifi ed in Section 3.2.1 
and Section 3.2.2 respectively. 

Figure 6 shows the network setting of the experiments 
for evaluating the performance of the prototypes. We arrange 

the broker and the clients locating in two subnetworks of 
the same building; the arrangements let the communication 
between a broker and a client to be two-hop. The clients are 
running on a raspberry pi model 4. The brokers are running 
on a notebook “HP Laptop 14s-cf0xxx” with Windows 10. 

Figure 6. The network setting of the experiments

Table 2 lists the software of the clients and the 
broker. To evaluate the proposed schemes, we set up 
several authentication schemes in two different running 
environments: one is the programs compiled into executable 
commands, and the other is programs running in the 
Integrated Development Environment (IDE).

Table 2. The software settings of several client-broker 
authentications
Authentication 
method

Broker Client

Simple identity-
password

hivemq-ce-2021.1 
(execution command)

MQTT CLI 
(execution command)

Simple identity-
password

hivemq-mqtt-
serverSimpleAuthentication
(application in IDE)

hivemq-matt-client-
SimpleAuthentication

Enhance
Authentication - 
Challenge and 
Response

hivemq-mqtt-
serverCRChallenge_
Anonymous
(application in IDE)

hivemq-mqtt-
clientPublisher&
Subscriber-
CRChallenge

Enhance
Anonymous - 
Challenge and 
Response

hivemq-mqtt-
serverCRChallenge_
Anonymous
(application in IDE)

hivemq-mqtt-
clientPublisher_
AnonymousAsync

In Table 2, the authentication method with “simple 
identity-password” is the simplest authentication which uses 
client’s identity and password to authenticate the client. 
The method with “EnhanceAuthentication - Challenge and 
Response” is the implementation of our first scheme- the 
classic challenge-response authentication in the MQTT 5.0 
context. The method with “EnhanceAnonymous - Challenge 
and Response” is the implementation of our anonymous 
challenge-response authentication in the MQTT 5.0 context. 
The “MQTT CLI” is one MQTT client execution command 
provided by HiveMQ team and it has been optimized to 
get better running performance. The other clients are those 
programs which we modify from the opensource. A program 
running as an executable command demands much less time 
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than the same program running in the IDE, as an executable 
command has already bound and loaded the required 
libraries. 

Table 3. Average authentication latencies (in ms) for several 
MQTT 5.0 authentication schemes
Authentication method Average auth. delay 

(only normal cases)

Simple identity-password 
in command mode

0.15375

Simple identity-password 
in IDE mode

1.015

EnhanceAuthentication-Challenge-
Response in IDE

1.254

EnhanceAnonymous-Chal lenge-
Response in IDE

1.786

We use the simple identity-password authentication 
as the baseline, and compare the proposed schemes with 
this baseline. The reason for providing the latencies of the 
simple identity-password authentication in the two different 
running modes is because, even if we make the simple 
identity-password authentication from the IDE into the 
command-line version, our make version still cannot have 
the same performance as that provided by the HiveMQ 
team. We speculate that the command-line version provided 
by the HiveMQ has been further fine-tuned to optimize 
its performance. Therefore, we first compare the proposed 
schemes with the baseline to get the rough ratio of the 
comparison, and then further use the data to speculate the 
possible latencies if they have been commercially optimized.

Table 3 lists the latencies from the experiments. From 
the table, we can see that the same simple identity-password 
authentication scheme demands quite different authentication 
latencies in two different modes- the command mode and the 
IDE mode. The command mode requires only 0.153 seconds 
while the IDE mode requiring 1.015 seconds; that is, the IDE 
mode latency is almost 6.6 times the latency in the command 
mode for the simple identity-password authentication. We 
would like to evaluate the latency of the proposed schemes, 
compared to the simple identity-password scheme. In the 
IDE mode, the simple identity-password scheme demands 
1.015 seconds, the classic challenge-response scheme 
requires 1.254 seconds, and the proposed anonymous 
challenge-response scheme takes 1.786 seconds. Compared 
to the simple identity-password scheme in the IDE mode, the 
classic challenge-response scheme demands only extra 239 
ms, and the anonymous challenge-response scheme requires 
only extra 771 ms. Compared to the simple identity-password 
scheme, the proposed schemes demand only few more 
milliseconds, and it achieves much robust authentication 
security. If we use the scale factor 6.6 to estimate the 
latencies of the proposed schemes in the command mode, 
then they will be 0.19 seconds and 0.27 seconds respectively. 
Table 4. summarizes the security properties of the related 
schemes.

Table 4. Summary of related work
Properties
Scheme

Target at MQTT 
3.1 or 5.0

Goals & functions Anonymity

[6-8] 3.1 Security 
weaknesses

No

[9] 3.1 TLS-embedded 
hardware

No

[10] 3.1 Key management No

[11] 3.1 Policy management No

[7, 10-20] 3.1 Customized key 
agreement

No

[21-22] 3.1 Customized key 
agreement

YES

Ours 5.0 Customized key 
agreement

YES

5  Security Analysis and Verification

This section examines the security of the proposed 
schemes. The proposed first scheme is a classic challenge-
response authentication being implemented within the MQTT 
5.0 Enhanced Authentication context; the session key of the 
first scheme is defined as Ksess: = hash(Ki, C1, C2, deviceid, 
topic), where the standard HMAC is suggested as the hash 
function. Therefore, its security is ensured as the classic 
challenge-response authentication and HMAC have been 
well studied and proved.  

We therefore focus on verifying and analyzing the 
security of the second scheme. Here, we adopt two 
approaches. First, we specify the second scheme using the 
HLPSL specification/language, and then verify its mutual 
authentication, session key privacy, and forward secrecy 
using the AVISPA tool. Following that, we anlsyze the 
anonymity and the unlinkability because AVISPA tool cannot 
verify the two security properties. 

We specify the second scheme using two HLPSL 
instances, where two roles- “server” for the broker and 
“device” for the client- are defined. 

In the first specification, we specify one session in each 
role- server and device. The goal of this instance is to verify 
the properties of mutual authentication, session key privacy, 
and forward secrecy. Mutual authentication can be modeled 
using the predicate “authentication_on”, and session key 
privacy can be modeled using the predicate “secrecy_of”. 

In the second specification, we model the forward secrecy 
property by specifying two successive sessions in both the 
server role and the device role in their respective HLPSL 
specifications to have two session keys. The specifications let 
the intruder have the secrets of the second session, and then 
verify whether the intruder can derive the secret keys of the 
first session. The goal is to verify whether, even if the intruder 
has the secrets of the 2nd session, the goals of authentication 
and session key privacy of the 1st session are still achieved 
in AVISPA verification. If the goals are satisfied, then it 
achieves the forward secrecy property. In AVISPA, the 
channel between the server and the device is modeled as 
the Dolev-Yao channels, where the intruder may divert sent 
messages and send new ones impersonating other agents. Figure 
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7 shows the message fl ows of the fi rst specifi cation where the 
device and the server achieve 3-step authentication process. 
Figure 8 shows the result of the OFMC verifier which is a 
formal security property verifi cation tool in AVISPA; the OFMC 

reports “SAFE”—no successful attacks can be plotted within the 
protocol specifi cation. It means the protocol achieves its goals of 
mutual authentication and session key privacy.

Figure 7. The message fl ow of the 1st HLSPL specifi cation of the 2nd scheme

Figure 8. The result of On-the-Fly-Model-Checker (OFMC) on the 1st specifi cation of the 2nd scheme

Figure 9. The message fl ows of two successive authentications accomplished by the server and the device
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Now we discuss the simulation of the 2nd specification 
which concerns the forward secrecy. Figure 9 shows the 
message fl ow, where “device d-3” and “server s-4” fi nish two 
runs of authentications, which means that the scheme can 
successfully complete two authentication sessions. Figure 
10 shows that OFMC verifi er could not plot any successful 
attacks on the 1st session, even if it lets the intruder gets the 
secrets of the 1st session. The result was “SAFE” in Figure 
10. This means it achieves the forward secrecy property.

In addition to the above formal verifications of some 
security properties, we now analyze the security of the 
schemes. The first challenge-response authentication is a 
classic authentication scheme which has been well studied; 
we, therefore, focus on the security properties of the second 
anonymous authentication scheme in the following. 

Mutual authentication between a client and the broker:
The rationale of the scheme is basically a classic challenge-
response authentication where the broker uses the pseudonym 
PN to identify a client and its corresponding secret key. The 
challenge from the client is the fresh PN and the X = xP, 
and the challenge from the broker is Y = yP. As long as the 
challenges are fresh and the secret key is secret, then the 
two entities can achieve mutual authentication through the 
challenge-response process. 

Session key security and perfect forward secrecy: The 
session key is defined as Ksess = h1(“KEY”, IDB, PN, Ki, 
xyP), where xyP is the computational Diffi  e-Hellman values 
derived from the two Diffi  e-Hellman values from the client 
and the broker. Therefore, the security of the session key is 
ensured owing to the secret key Ki, the forward secrecy is 
achieved owing to the Diffi  e-Hellman value xyP. 

Anonymity of the clients: The second scheme always 
use the updated pseudonyms PN in the communications to 
achieve the anonymity.

Unlinkability among devices’ successful connections: A 
client generates its pseudonym as PN = h2(Ni) and updates its 
seed Ni = h1(Ni), where h1 and h2 are two independent one-
way hashing functions. The preimage resistance property of 
the one-way hashes and the freshness of the seed Ni ensures 
the unlinkability of the client.

Resistance to desynchronization-based DoS attacks: A 
client (say Ci) keeps its current pseudonym with the past w1

pseudonyms while the broker keeping its recorded iC s′ active 
pseudonyms and the future w1 pseudonyms. This facilitates 
the two parties the capacity of coping with the situations of 
w1 successive out-of-synchronization sessions, due to 
possible attacks or unreliable connections. The robustness of 
desynchronization-based-DoS-resistance depends on the 
window size w1; the choice of the size should consider the 
threat severity, the desirable robustness, and the storage 
space.

6  Conclusions

MQTT 5.0 defines the Enhanced Authentication 
Framework  to  suppor t  the  des ign  o f  cus tomized 
authentication schemes. It is expected to greatly enhance 
the security supports for various scenarios. In this paper, we 
have proposed and implemented two effi  cient authentication 
schemes for MQTT 5.0. The first scheme is a classic 
challenge-response authentication within the MQTT 5.0 
context. The second scheme is a hash-based anonymous 
authentication scheme which protects the client’s identity 
privacy. The security of the proposed schemes has been 
verified using the formal verification tool AVISPA. The 
authentication latencies of the implementations have been 
evaluated. The results show that the implementations with 
much robust security only require, even in the IDE mode, 
few hundred milliseconds, compared to the simple identity-
password authentication.  
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