
RDF Subgraph Matching by Means of Star Decomposition 1613

*Corresponding Author: Ying Pan; E-mail: panying@nnnu.edu.cn

DOI: 10.53106/160792642022122307015

RDF Subgraph Matching by Means of Star Decomposition

Mingyan Wang1,2, Qingrong Huang3, Nan Wu1,3, Ying Pan1,3*

1 Guangxi Key Lab of Human-machine Interaction and Intelligent Decision, Nanning Normal University, China

2 School of Physics and Electronics, Nanning Normal University, China
3 School of Computer and Information Engineering, Nanning Normal University, China

wmywangming@163.com, rongronghuang@163.com, wunan_19980802@163.com, panying@nnnu.edu.cn

Abstract

With the continuous development of the network, the scale

of RDF data is becoming larger and larger. In the face of large-

scale RDF data processing, the traditional database query

method has been unable to meet the needs. Due to the limited

characteristics of subgraph matching, most existing

algorithms often have the phenomenon that many subgraphs

are repeatedly traversed during the query process, resulting in

a large number of intermediate result sets and low query

efficiency. The core problem to be solved is how to efficiently

match subgraphs. In order to improve the query efficiency of

RDF subgraphs in massive RDF data graphs and solve the

problem of repeated calculation of some graphs in the query

process of RDF subgraphs, an RDF subgraph query algorithm

based on star decomposition is proposed in this paper. The

algorithm uses graph structure to decompose RDF subgraphs

into stars and uses a custom node cost model to calculate the

query order of the star subgraphs. By decomposing, the

amount of communication among subgraphs is reduced, and

the communication cost for query processing is lowered.

Moreover, utilizing the query order for RDF subgraph

matching can effectively reduce the generation of intermediate

result sets and accelerate the efficiency of subgraph matching.

On this basis, the performances of the proposed algorithm and

several other widely used algorithms are compared and

analyzed on two different datasets. Experiments show that the

proposed algorithm has better advantages in database

recreation, memory size, and execution efficiency.

Keywords: RDF query, Subgraph matching, Subgraph query,

Search problems, Star decomposition

1 Introduction

Resource Description Framework (RDF) is a standard data

model for describing web resources. It was mainly designed to

build the Semantic Web. In the past few decades, there have

been related technologies applied to RDF graph queries in

different fields, such as life sciences, bioinformatics, and

social intelligence. It is suitable for the re-identification of

social network users, socially intelligent transportation, and

the anonymity of social networks in people’s daily lives. In

such an environment, how to query RDF subgraphs more

effectively has become a research focus.

Today, when RDF graph data is getting larger and larger,

the query methods adopted by traditional relational databases

are far from being able to meet the current processing needs.

With the continuous development of the Semantic Web, the

data in RDF format is increasing, and the number of RDF

graphs is also increasing. At present, massive RDF data brings

new problems to RDF graph data management. It is very

important to accurately find the required data in the massive

RDF graphs. Typically, a large number of RDF graphs are

processed by graph mining [1], and the required data can be

obtained. Graph mining is a branch of data mining, which

represents a large amount of complex data in the form of

graphs and infer useful knowledge by mining. Subgraph

matching plays a very important role in the whole process of

graph mining [2]. According to whether the graph has

directionality or not, the graph is divided into the directed

graph and the undirected graph. Subgraph matching refers to

inputting a query graph and a queried data graph and

outputting a set of subgraphs that satisfy the query graph

matching conditions (that is, the matching results are

consistent with the query graph topological structure and

vertex labels). Using the idea of graph matching can

effectively reduce the time of the RDF query. At present, the

efficiency of large-scale RDF graph matching using existing

algorithms is low. Although researchers have proposed many

new methods to improve the current situation, there are still

many deficiencies. Due to the limitations and characteristics

of subgraph matching, most of the current algorithms are

based on node iteration, using the relationship between nodes

for analysis. Existing query algorithms often introduce a large

number of connection operations, and repeatedly traverse

some subgraphs during the query process, resulting in a large

number of intermediate result sets, resulting in low query

efficiency and low query performance. In addition, there are

also great problems with database pre-creation, and memory

storage, the query time is extended [3]. Because of the above

problems, the solution for the current RDF graph query

problem is not perfect, many researchers are seeking new

algorithms to query the RDF graph. Therefore, how to reduce

the generation of intermediate result sets, reduce repeated

calculations and improve execution efficiency has become an

important issue for current RDF graph queries.

In response to the above problems, this paper proposes an

RDF Node Substitution Value-Star Query (RNSV-SQ)

algorithm based on node cost value. The main contributions of

this paper can be summarized as follows:

1614 Journal of Internet Technology Vol. 23 No. 7, December 2022

1) We propose a star decomposition method, which

decomposes RDF graphs into star subgraphs by using graph

structure, and calculates the query order of these star

subgraphs by using the user-defined node generation value

model.

2) We propose a subgraph matching algorithm based on

above star decomposition. According to the query order of the

star subgraphs, fewer intermediate results can be generated,

and repeated calculations can be reduced, so as to improve the

performance of the RDF subgraph query. It also improves the

database pre-creation, storage memory size, and execution

efficiency.

3) We compare and analyze the performances of the

proposed algorithm and several other widely used algorithms

on two different datasets. Experiments show that the

algorithms proposed in this paper can effectively improve the

query efficiency of RDF subgraphs.

The rest of this article is arranged as follows: The next

section describes the current status of RDF subgraph query

algorithm at home and abroad. Section 3 describes the RDF

subgraph, subgraph matching, and other related concepts, and

introduces our RDF subgraph query algorithm based on star

decomposition in detail. Section 4 proves the superiority of

our algorithm by conducting experiments on two datasets. In

the last section 5, the content of the article is sorted out and

summarized, and the future research direction is further

prospected.

2 Related Work

To solve the RDF subgraph query problem is to solve the

problem of subgraph matching. Its main difficulty is how to

obtain results from polynomial time. When the traditional

subgraph query algorithms are processing, a large number of

intermediate result sets will often appear, resulting in a

prolonged matching time. In recent years, many researchers

have been researching and discussing the problem of subgraph

matching, and have proposed many advanced methods, which

have played a further development role in solving the problem

of subgraph matching. The related research is mainly as

follows:

In 1976, a practical search scheme for subgraph matching

was given for the first time, which was based on the idea of

backtracking. It also used some feasible solutions to iteratively

generate complete solutions, and timely terminate some

infeasible solutions in the query process, such as VF2 [4],

GADDI [5], SPath [6], etc. VF2 used grammatical and

semantic similarity to match nodes, and used specific vectors

as data structures to reduce the time for matching large graphs.

GADDI calculated the neighboring discriminating

substructure (NDS) distance for each pair of adjacent nodes in

the graph, and generated a series of unequal attributes based

on this to eliminate the candidate results. SPath proposed a

one-time path mechanism, which decomposes the query graph

into the shortest path set in units of neighbor nodes, but it is

not a one-time node mechanism. VF3 [7] proposed a

feasibility result set, divided nodes into predecessors and

successors, classified label nodes, and proposed feasibility

rules using node structure information and edge label

frequency. These algorithms filter the candidate set through

different connection sequences, pruning schemes or some

auxiliary information. The disadvantage is that the time

complexity is high, so they are not suitable for the processing

with large amounts of environmental data.

There are a large number of intermediate result sets and

repeated calculations in the subgraph matching process,

resulting in too long execution time. Ren et al. [8] proposed a

general improvement method of existing matching methods

based on the relationship between data nodes. Through

observation and comparison, it was concluded that most of the

subgraph matching algorithms have a large number of

duplications of calculation, which can be avoided by the

relationship between data vertices. Also proposed a novel

method to reduce repetitive calculations. Wang et al. [9]

provided many additional experiments based on the original

subgraph matching search to detect the different effects of

graph compression itself and candidate filtering on query

performance. Experiments showed that the processing time

was significantly reduced by using a separate compression

step, and then the processing time can be further reduced by

using a filtering step. Kyu et al. [10] proposed a chain-star

index scheme and a query method of SPARQL query. In

addition to supporting chain query and star query, this method

also optimizes query time by reducing the memory for

connection operations and storing data, thereby minimizing

query execution time. On this basis, Kyu et al. [11] considered

a search method based on RDF data graph structure, which can

effectively reduce connection operations. It supported chain

and star SPARQL queries, and was optimized for query

performance. By considering the difference in the edge

structure around all vertices, the chain-like and star-like

subgraphs were extracted from the RDF data graph, and search

methods that reduce the number of connections were favored

to speed up query response time.

With the increasing complexity of the current query graph

structure, the efficiency of graph-based query about SPARQL

query processing has gradually been unable to keep up with

the complexity of the graph structure. In analyzing the basic

structure of the RDF graph, Park et al. [12] first conducted a

comprehensive study of the existing cardinality estimation

technology of subgraph matching query. Introduced a new

framework on which all currently known technologies can be

implemented, and an opinion on its performance can be given.

A new realization has also been achieved with the

representative cardinality estimation technology of graph

databases and relational databases. Bi et al. [13] proposed a

new framework of the delayed Cartesian product based on the

structure of a query to minimize the redundant Cartesian

products. A new path-based auxiliary data structure was also

proposed, which performs subgraph matching through the

generated matching order, thereby significantly reducing the

exponential size of the existing path-based auxiliary data

structure.

The study found that frequent subgraph mining (FSM) in

graph mining can quickly find all subgraphs of the graphs.

Frequent Subgraph Patterns (FSPs), which work well for

graph mining on small and medium-sized graphs, can speed

up query time for subgraphs on complex graph structures.

Rehman et al. [14] proposed a new optimization method to

show the association between frequent and optimized

subgraph patterns. This approach explored whether there was

a potential correlation between FSPs and optimized subgraphs,

and can further reduce FSPs. In order to improve the efficiency

of the algorithm, a new conceptual framework A-RAnked

Frequent pattern-growth Framework (A-RAFF) was proposed

RDF Subgraph Matching by Means of Star Decomposition 1615

[15], this framework adds a sorting function to the mining

process, which can sort the found frequent subgraphs. In

addition, A-RAFF embedded the ranking of FSGs found in the

mining process [2], so that A-RAFF can reduce the work of

generating a large number of useless frequent subgraphs under

the premise of efficient computation. To deal with a large

number of FSPs challenges [16], a new ranking method FSP-

Rank was used by A-RAFF, which effectively reduces the

repetition and huge frequent patterns, and effectively speeds

up the processing time.

Researchers also improve the execution efficiency by

graph division. Guan et al. [17] proposed a subgraph matching

method based on the structure segmentation of query graph.

By disassembling a complete query graph into many simple

query subgraphs, the search space was reduced through the

adjacent subgraph structure, and matching subgraphs were

found in the data graph according to the search area. Finally,

output the resulting graph by adding related subgraphs. This

method can improve query time and efficiency when

processing complex query graphs. Ning et al. [18] proposed a

dominance-partitioned strategy under the premise of load-

balancing on subgraph division, which partitions large RDF

graphs without affecting the knowledge structure. The

subgraph matching algorithm through a dominance-

partitioned strategy to perform all matching subgraphs on the

RDF graph of the cluster partition.

In addition to the above methods, Li et al. [19] solved the

problem of answering queries about fuzzy RDF data graphs.

By modeling the RDF data onto the fuzzy graph, the RDF

queries and the query search of the subgraph of the fuzzy

graph can be regarded as equivalent, and these subgraphs were

highly likely to match the given query graph. Sakr et al. [20]

designed many centralized RDF query processing systems. In

these query systems, the storage and query processing of RDF

datasets were managed on a single node. An overview of

various technologies, systems, and a large number of RDF

data models for centrally querying RDF datasets were efficient,

and scalable RDF query processing solutions.

Although the above methods have made a lot of

achievements in RDF subgraph processing, they still spend a

lot of time in many aspects when processing data, resulting in

low efficiency. For example, in the preprocessing of the

relational structure of RDF data, there are still a large number

of intermediate result sets, which will consume a lot of time,

and the efficiency of database pre-creation, storage memory

size, and execution speed is not high [3].

3 RDF Subgraph Matching Algorithm

Based on Star Decomposition

In the process of RDF subgraph matching, the

intermediate result set is one of the important factors that

affect the query efficiency, so it is very important to study how

to reduce the generation of the intermediate result set to

improve the query efficiency. Because for queries, different

orders will lead to different results. In this section, the cost

value of the structure between nodes and the degree of analysis

was used to obtain the optimal order for the query, thereby

reducing the generation of intermediate result sets, and

improving the efficiency of the subgraph query.

3.1 Related Concepts

Definition 1 (RDF data graph) RDF data graph 𝐺 =
(𝑉, 𝐸, 𝐿, 𝜑) is a directed label graph, where V represents the

set of nodes. E represents the set of directed edges connected

to the nodes in V. 𝐸: (𝑣, 𝑣′) represents a directed function,

representing a directed edge from 𝑣 to 𝑣′, where 𝑣, 𝑣′ ∈ 𝑉.

L is the label set of edges and nodes. 𝜑: 𝑉 ∪ 𝐵 → (𝐿 ∪ 𝑣𝑎𝑟)

represents a label function that maps nodes or edges to

corresponding labels, B represents blank node.

Definition 2 (RDF subgraph) When querying the RDF

data graph, it can be found that each RDF graph used for the

query can be regarded as a subgraph 𝐺𝑔, 𝐺𝑔 ∈ 𝐺. In the RDF

subgraph 𝐺𝑔 = (𝑉𝑔, 𝐸𝑔, 𝐿𝑔, 𝜑𝑔), Vg is the node-set of 𝐺𝑔, Eg

is the edge set of 𝐺𝑔, Lg is the label mapping set of Vg, and 𝜑𝑔

represents the label mapping function of Vg→Lg, any node 𝑠

and the label in Lg can correspond to each other.

The processing of RDF graphs can be abstractly regarded

as directed graph processing, and each query RDF graph can

be regarded as an RDF subgraph.

Definition 3 (Subgraph matching) Given two graphs 𝐺 =
(𝑉, 𝐸, 𝐿, 𝜑) and 𝐺𝑔 = (𝑉𝑔, 𝐸𝑔, 𝐿𝑔, 𝜑𝑔) , the subgraph

matching mapping f: 𝑉𝑔 → 𝑉 represents the mapping from

the nodes of 𝐺𝑔 to the nodes of G. For any node 𝑢 ∈ 𝑉𝑔, there

is 𝜑𝑔(𝑢) = 𝜑(𝑓(𝑢)). For each edge (𝑢𝑖 , 𝑢𝑗) ∈ 𝐸𝑔 ((𝑢𝑖 , 𝑢𝑗)

represents a directed edge from 𝑢𝑖 to 𝑢𝑗), there is an edge

(𝑓(𝑢𝑖), 𝑓(𝑢𝑗)) ∈ 𝐸.

Definition 4 (RDF star-shaped subgraph) Given a

subgraph 𝐺∗ = (𝑉∗, 𝐸∗, 𝐿∗, 𝜑∗) of an RDF graph 𝐺 , if and

only if there is a 𝑣 in 𝑉∗ that satisfies: ∀𝑢 ∈ 𝑉∗ −
{𝑣}, 〈𝑣, 𝑢〉 ∈ 𝐸∗ or 〈𝑢, 𝑣〉 ∈ 𝐸∗. 𝐺∗ is called the star-shaped

subgraph of 𝐺, and 𝑣 is called the central node of 𝐺∗.

Definition 5 (Star-shaped subgraph matching) Given a

star-shaped graph 𝐺∗ = (𝑉∗, 𝐸∗, 𝐿∗, 𝜑∗) and data graph 𝐺 =
(𝑉, 𝐸, 𝐿, 𝜑), the subgraph matching mapping 𝑓: 𝑉∗ → 𝑉 of

the star graph are defined as follows: For the star-center node

𝑣𝑠, there is 𝐿∗(𝑣𝑠) = 𝐿(𝑓(𝑣𝑠)). For the neighboring point of

the star-center, there is |𝑎𝑑𝑗(𝑣𝑠, 𝜑)| ≤ |𝑎𝑑𝑗(𝑢, 𝜑)|. Where f

represents the mapping from the nodes of 𝐺∗ to the nodes of

𝐺, 𝐿∗(𝑣𝑠) is the label representing the center of the star in the

star pattern, |𝑎𝑑𝑗(𝑣𝑠, 𝜑)| represents the number of adjacent

points of the star-center 𝑣𝑠 with a label of 1.

3.2 Node Cost Model

In the RDF star graph, the node cost model of the central

node 𝑣 is specifically defined:

()= ()+ ()W v α deg v t NE v . ()

Where, α takes a value of [0-1], α refers to the appearance

frequency of all out-degrees of the star S in the data graph. The

higher the frequency of occurrence, the closer to 1, whereas

the closer to 0. deg(𝑣) represents the number of nodes that all

out-degrees of star S with 𝑣 as the center node coincided with

all out-degrees of another node at the same time in the data

graph. t is the weight, 𝑡 ∈ [0,1], NE(𝑣) represents the edges

(including in-degree and out-degree) owned by the node

matching the query result of star 𝑠′ in the last round, which

are consistent with star s.

The node cost value model follows the following rules:

1616 Journal of Internet Technology Vol. 23 No. 7, December 2022

1) First consider the star pattern with the highest degree

of the central node 𝑣. If there are multiple star patterns with

the same out-degree, then follow (2). The higher the out-

degree of the central node 𝑣 , the stronger the constraint of

node 𝑣, the smaller the candidate set, and the lower the query

cost;

2) Select the star with the largest 𝑊(𝑣). The greater the

deg(𝑣) and NE(𝑣), the greater the 𝑊(𝑣). This indicates that

the star s with 𝑣 as the central node in the data graph has a

larger number of nodes that match all the out-degrees of the

star s, the more the same number of edges as the previous

matching star 𝑆′ , the greater the constraint, the fewer the

number of nodes dominated, the lower the query cost, and the

fewer intermediate results.

3.3 Star Decomposition of RDF Graph

In the previous section, a node cost value model was

proposed. Using this model to sort the matching order for RDF

subgraphs that have passed star decomposition can effectively

reduce the generation of intermediate result sets, and improve

query efficiency.

Figure 1 shows the main steps of the star decomposition

algorithm:

Figure 1. The main steps of star decomposition

The main idea of star decomposition is as follows:

1) Query the set of triple statements 𝑑𝑄 from subgraph

d, and select node c as the first star-shaped center node 𝑣𝑠1

by the node cost model. Unselected nodes will remain in

subgraph d, waiting for the next query;

2) Let the star S1 take 𝑣𝑠1 as the central node, find the

corresponding edges and leaf nodes in the corresponding

query subgraph d and get all the triples of S1, and then add S1

to the star decomposition queue R. Delete the triplet

information in the query subgraph d that has been added to R;

3) Check whether all triple information in d has been

decomposed, if decomposed, proceed to step 5), if not

decomposed, keep the rest of the remaining information in d

for the next lookup, proceed to step 4);

4) Continue to obtain the central node in the remaining

subgraphs through the node cost model, then repeat steps 1),

2), and 3);

5) Return the star decomposition queue R.

For example, we perform a star decomposition query in the

data graph G0 shown in Figure 2 and the RDF subgraph d0

shown in Figure 3. The star decomposition method is

described in detail below. The star patterns S1, S2, and S3 as

shown in Figure 4 will be obtained. If these star patterns are

respectively queried on the data graph G0, the following

results will be obtained:

The query results of 𝑆1 are: {𝐴 = 𝑎, 𝐵 = 𝑏, 𝐶 = 𝑐, 𝐷 =
𝑑}, {𝐴 = 𝑙, 𝐵 = 𝑚, 𝐶 = 𝑛, 𝐷 = 0}

The query results of 𝑆2 are: {𝐸 = 𝑒, 𝐴 = 𝑎, 𝐹 = 𝑓}

The query results of 𝑆3 are: {𝐸 = 𝑓, 𝐺 = 𝑔}, {𝐹 =
𝑗, 𝐺 = ℎ}

RDF Subgraph Matching by Means of Star Decomposition 1617

Figure 2. RDF data graph G0

Figure 3. RDF subgraph d0

Figure 4. Stars S1, S2 and S3

The query order for these star types is not random, and the

number of intermediate result sets often depends on the

arrangement order. S3 is not associated with S1, if the matching

order is S1, S3, and S2, four matching intermediate results will

be generated. According to the designed node cost value

model, firstly, the star S1 with the most out-degree is

considered, and S1 is ranked first in the query sequence.

Secondly, compare the node cost value of S2 and S3, and put

the node with the largest node cost value in the second place.

According to the node cost value model formula, the value of

t is 0.5, and the node cost value of the central node of star S2

can be obtained as 𝑊(𝑣𝑠2) =
3

14
× 1 + 0.5 × 1 =

5

7
, the node

cost of the central node of star S3 is 𝑊(𝑣𝑠3) =
2

14
× 2 +

0.5 × 0 =
2

7
. Because S2 has the largest value, it is used as the

priority query matching object, and the query order (star

decomposition queue) is S1, S2, S3. Querying in this order will

only produce one intermediate result set. Therefore, finding an

optimal matching query order is very important to reduce the

generation of intermediate result sets.

3.4 Star Query Algorithms for RDF Subgraph

When performing query matching operations on the data

graph, in order to obtain the optimal execution order, it is

necessary to perform star decomposition on each RDF

subgraph to obtain a star queue. When matching, the matching

order for the stars was arranged through the node cost value

model.

Definition 6 (Partial query subgraph) Obtain a subgraph g

in the RDF graph G, use the star decomposition algorithm for

g to obtain the star decomposition queue P, and give the

matching order S1, S2, …, Sn, which satisfies ∪1≤𝑖≤𝑗 𝑉(𝑆𝑖) ∩

𝑉(𝑆𝑗) ≠ ∅, 1 ≤ 𝑗 ≤ 𝑛 . Pj is a sequential partial query

subgraph, 1≤j≤n is a subgraph of subgraph g, and satisfies the

following conditions:

(1) 𝑉(𝑃𝑗) =∪1≤𝑖≤𝑗 𝑉(𝑆𝑖)

(2) 𝑌(𝑃𝑗) =∪1≤𝑖≤𝑗 𝑉(𝑆𝑖)

Where, V(Pj) represents the node of the local subgraph Pj,

and Y(Pj) represents the edge of the local subgraph Pj.

StarMatching algorithm is mainly based on the idea as

follows:

1) Input the star S and the adjacency list N(v);

2) Query all the node v sets in the data graph that can be

matched with the star-shaped center node 𝑣𝑠;

3) Obtain all the candidate sets A(li) of nodes li that can

match each leaf node 𝑆. 𝐿𝑒𝑎𝑓 of star S in the data graph;

4) Do the Cartesian product operation on the candidate

set A(li) of the star S, we can get the matching result Ωv(S) of

the star S on the node 𝑣. The union of the matching result sets

Ωv(S) of all nodes 𝑣 is also called the matching result Ω(S) of

star S.

Figure 5 shows the main steps of the StarMatching

algorithm:

Figure 5. The main steps of star matching

RNSV-SQ mainly follows the following steps:

1) Input the RDF subgraph d, the star decomposition

queue R, and the adjacency list N(v) of the data graph G;

2) Obtain the star S1 in the star decomposition queues R,

and match the star S1 on the adjacency list N(v), which is the

result Ω(P1) of the local subgraph P1;

3) Continue to acquire new star patterns until all

acquisitions are over to get the result Ω(Pt−1);

4) Obtain the matching result of the star St through the

star matching algorithm;

5) Combine the matching result of the partial subgraph

1618 Journal of Internet Technology Vol. 23 No. 7, December 2022

Pt−1 obtained in the last round and the matching result of the

star-shape St to obtain the result Ω(Pt);

6) Traverse all stars R = {S1, S2, …, Sn} in the queue, the

matching result T in the data graph is the union of Ω(Pt), and

output the result set T.

The time complexity of RNSV-SQ is 𝑂(𝑉𝑠 ∙
𝑚𝑎𝑥𝑁𝑠∙𝑚𝑎𝑥𝑀), where s is the number of stars, V is the number

of nodes in the RDF subgraph d, maxN is the maximum

number of outgoing-degrees owned by nodes in data graph G,

and maxM is the maximum number of outgoing-degrees

owned by nodes in subgraph d. According to the process of the

algorithm, the time complexity of star matching is the total

time consumed by s stars in matching all nodes V of the data

graph, which is ∑ 𝑂𝑠
1 (∑ (𝑁(𝑣) + 𝛺(𝑆𝑡))𝑣∈𝑉) , the time

complexity of the star pattern of the connection matching with

the local query graph is ∑ 𝑂𝑠
1 (∑ (𝛺(𝑃𝑡−1) × 𝛺(𝑆𝑡))𝑣∈𝑉). In

the matching of s star patterns, maxN, the maximum out-

degree owned by the node in the data graph G, and maxM, the

maximum out-degree owned by the node in the subgraph d,

are taken as the maximum time consumption. Although this

algorithm will consume a certain amount of time in the process

of decomposing the query graph and obtaining the matching

sequence of the star pattern. However, according to the

obtained matching order, the generation of intermediate results

can be greatly reduced, and the time consumption in the query

process can be reduced, which still shows better advantages.

4 Experimental Analysis

4.1 Experimental Environment and Dataset

The experimental platform uses Linux Ubuntu operating

system, using Intel(R) Core(TM)i7-9700@3.0GHz eight-core

processor, the memory is 16GB, and the hard disk size is 1T.

The algorithm development environment is Eclipse 2018,

and the development language is Java, JDK1.8.

This experiment uses two standard RDF datasets,

DBpedia2015A 1 dataset and WatDiv 2 dataset. The

DBpedia2015A dataset collects data related to sports content,

while WatDiv is a dataset used to describe e-commerce, it

contains information about some products sold and retailers,

as well as information about users who purchase goods.

Both of these datasets allow users to generate datasets of

appropriate scale according to the required dataset size by

using the method described in [21]. We generated a

DBpedia2015A-1M dataset, which contains 90512 nodes and

270745 edges. For WatDiv dataset, we generated 1M, 10M,

and 100M, of which 1M contains 132478 nodes and 384015

edges, 10M contains 1102045 nodes and 2097786 edges, and

100M contains 9145251 nodes and 24774138 edges.

4.2 Comparison of Query Efficiency

RNSV-SQ is compared with the graph matching

algorithms GADDI [5], SPath [6], and VF3 [7] proposed in

recent years. Compare and analyze the performance of these

four algorithms in terms of database pre-creation time, data

storage memory size, and query time.

The basic test provided by the WatDiv dataset contains

four query template categories, namely linear query, star query,

1 DBpedia2015A [DB]: http://downloads.dbpedia.org/2015-04/

snowflake query, and complex query. These query templates

are generated by representing the data as a model of basic

graphics and performing a random traversal of the data in the

query pool. There are some given basic query templates on the

WatDiv dataset. 12 basic query templates were selected from

the following four categories: linear (L), star (S), snowflake

(F), and complex (C). These query templates were L1, L2, L3,

S1, S2, S3, F1, F2, F3, C1, C2, and C3. Due to the lack of a

given query template on the DBpedia2015A dataset, query

graph templates containing the above four query types were

imitated and designed on the DBpedia2015A dataset, denoted

as L11, S11, F11, and C11.

As shown in Figure 6, we can easily see the experimental

comparison results on two datasets, VF3 and RNSV-SQ are

better than GADDI and SPath in the time of database pre-

creation. During the database creation process, the database

creation time gap between VF3 and RNSV-SQ on these

datasets is very small, and the time required is relatively short

compared with the other two algorithms, this is because VF3

does not need to extract auxiliary structures for the data graph,

and the preprocessing requires a short time. RNSV-SQ takes

some time to save node adjacency structure information. SPath

needs to calculate and save the k-order neighbor structure,

which takes a long time. GADDI needs to calculate the NDS

distance between nodes in the data preprocessing stage, so

compared with several other algorithms, GADDI database

creation takes the longest time.

Figure 6. Database pre-creation time

Figure 7. Data storage size

Figure 7 shows the comparison of storage space size. It can

be seen that SPath has the largest storage space. Because SPath

is aimed at the more complex adjacency structure of the graph.

It proposes the width-first traversal centered on nodes, and the

adjacencies information about nodes is represented by triples.

Therefore, in addition to the data graph nodes, the k-order

2 WatDiv [DB]: http://dsg.uwaterloo.ca/watdiv/

0

10

20

30

40

50

60

GADDI SPath VF3 RNSV-SQ

Q
u

er
y
 t

im
e

(1
se

c)

Algorithm name

DBpedia2015A WatDiv

0

5

10

15

20

25

30

GADDI SPath VF3 RNSV-SQ

S
to

ra
g

e
si

ze
 (

1
M

B
)

Algorithm name

DBpedia2015A WatDiv

http://downloads.dbpedia.org/2015-04/
file:///C:/Users/17540/Desktop/%20http:/dsg.uwaterloo.ca/watdiv/

RDF Subgraph Matching by Means of Star Decomposition 1619

adjacency information of the nodes needs to be stored.

Additionally, the storage space required by SPath is about 1.6-

4.1 times that of RNSV-SQ, while GADDI needs to store the

NDS distance between two nodes and adjacent nodes, and the

storage space is 1.2-1.6 times that of RNSV-SQ. RNSV-SQ

performs slightly better than VF3 in terms of storage space,

because RNSV-SQ makes better use of the structural

information on adjacent nodes to reduce storage space.

(a) Query time of different templates on WatDiv-10M

(b) Query time of different templates on DBpedia2015A-1M

Figure 8. Query time of different query templates

In the WatDiv-10M dataset, as shown in Figure 8(a),

RNSV-SQ has a relatively good performance in the compared

query template, and the required query time is lower. The

queries efficiency of VF3 and RNSV-SQ is not much different.

Among the query templates for L1, C1, and C2, VF3 has the

fastest matching speed, while SPath and GADDI perform

poorly. SPath has the longest query time for the four types of

query templates, mainly due to the need to match nodes in the

triplet when filtering candidate nodes, and the number of

nodes is too large, which leads to a long time. Moreover,

GADDI has to calculate the adjacency distance between any

two nodes in the query graph during execution, which leads to

excessive time consumption.

On the DBpedia2015A-1M dataset, the change from linear

to complex can be obtained from Figure 8(b). As the

complexity of the query graph structure increases, the rising

trend of query time for VF3 and RNSV-SQ is much smaller

than that of GADDI and SPath. The main reason is that SPath

needs to calculate and merge label paths around nodes,

resulting in high query response time for complex structure

graphs, while GADDI lacks an effective node merging

sequence.

We also tested the effect of dataset size on the performance

of the algorithms. Through experiments on 1M, 10M, and

100M of WatDiv dataset, 12 query templates of the above four

types are queried respectively, and the average query time of

RNSV-SQ, GADDI, SPath, and VF3 on the four types is

calculated.

(a) Query time of type L on 1M, 10M, and 100M of WatDiv

dataset

(b) Query time of type S on 1M, 10M, and 100M of WatDiv

dataset

(c) Query time of type F on 1M, 10M, and 100M of WatDiv

dataset

(d) Query time of type C on 1M, 10M, and 100M of WatDiv

dataset

Figure 9. Query time of different dataset sizes and query types

0

1

2

3

4

5

6

7

8

L1 L2 L3 S1 S2 S3 F1 F2 F3 C1 C2 C3

Q
u

er
y
 t

im
e

(1
0

0
se

c)

Query template

RNSV-SQ VF3 SPath GADDI

0

1

2

3

4

5

6

L11 S11 F11 C11Q
u

er
y
 t

im
e

(1
0

0
se

c)

Query template

RNSV-SQ VF3 SPath GADDI

0

10

20

30

40

50

1M 10M 100M

Q
u

er
y
 t

im
e（

1
0

0
m

s）

Data set size

RNSV-SQ VF3 SPath GADDI

0

10

20

30

40

50

60

1M 10M 100MQ
u

er
y
 t

im
e（

1
0

0
m

s）

Data set size

RNSV-SQ VF3 SPath GADDI

0

10

20

30

40

50

60

1M 10M 100M

Q
u

er
y
 t

im
e（

1
0

0
m

s）

Data set size

RNSV-SQ VF3 SPath GADDI

0

10

20

30

40

50

60

70

1M 10M 100M

Q
u

er
y
 t

im
e（

1
0

0
m

s）

Data set size

RNSV-SQ VF3 SPath GADDI

1620 Journal of Internet Technology Vol. 23 No. 7, December 2022

From the experimental results in Figure 9, it can be

observed that when the dataset size increases from 1M to

100M, the query time of the four algorithms increases, and the

query time of SPath and GADDI increases greatly, especially

when the dataset increases from 10M to 100M. The query

time of SPath and GADDI is more obvious than that of VF3

and RNSV-SQ, while the query time of RNSV-SQ and VF3

increases less, they are more stable in different query types. It

can be seen from the query templates S and F that RNSV-SQ

has less query time than VF3, so RNSV-SQ has high query

efficiency in some cases. Therefore, as the size of the dataset

increases, RNSV-SQ is still effective and feasible.

In sum, experiments prove that RNSV-SQ proposed in this

paper has better advantages in database pre-creation, storage

memory size, and execution efficiency compared with

GADDI, SPath, and VF3.

5 Conclusions

This paper proposes RNSV-SQ to decompose the RDF

graph into a star-shape, and calculates the query sequence of

generating these star-shaped subgraphs by using a custom

node cost model. Based on the generated sequential query, the

generation of intermediate result sets can be effectively

reduced, and query performance can be improved.

Experiments have shown that compared with other algorithms,

the algorithm proposed in this paper has better advantages in

execution efficiency and other aspects.

The algorithm proposed in this paper has a good

performance in querying RDF subgraphs, but it also has its

shortcomings. There may be many directions for improvement

in future related research. The current optimal query order can

be obtained through the custom node cost model, and in the

future, we can try to obtain a better query order to reduce the

intermediate result set. In terms of datasets, we can also add

further experiments on actual large real datasets or further

query and research on datasets with fixed frequency change

and update. In addition to star decomposition, other improved

graph structures decomposition methods can be introduced to

the intermediate result processing method, such as linear type,

snowflake type, etc.

Acknowledgements

This research was supported by the National Natural

Science Foundation of China under Grant No. 61862010;

“BAGUI Scholar” Program of Guangxi Zhuang Autonomous

Region of China; Guangxi Collaborative Innovation Center of

Multi-source Information Integration and Intelligent

Processing; Guangxi Natural Science Foundation under Grant

No. 2018GXNSFBA281086; Innovation Project of Guangxi

Graduate Education No. YCSW2021283.

References

[1] K. Lee, H. Jung, J. S. Hong, W. Kim, Learning

Knowledge Using Frequent Subgraph Mining from

Ontology Graph Data, Applied Sciences, Vol. 11, No. 3,

Article No. 932, February, 2021.

[2] S. U. Rehman, S. Asghar, A-RAFF: A Ranked Frequent

Pattern-growth Subgraph Pattern Discovery Approach,

Journal of Internet Technology, Vol. 20, No. 1, pp. 257-

267, January, 2019.

[3] W. Zhang, W. K. Chan, Subgraph Isomorphism Building

on A Hierarchical Query Graph, 5th International

Conference on Compute and Data Analysis (ICCDA),

Sanya, China, 2021, pp. 107-111.

[4] L. P. Cordella, P. Foggia, C. Sansone, M. Vento, A

(Sub)graph Isomorphism Algorithm for Matching Large

Graphs, IEEE Transactions on Pattern Analysis and

Machine Intelligence, Vol. 26, No. 10, pp. 1367-1372,

October, 2004.

[5] S. Zhang, S. Li, J. Yang, GADDI: Distance Index Based

Subgraph Matching in Biological Networks, 12th

International Conference on Extending Database

Technology (EDBT), Saint Petersburg, Russia, 2009, pp.

192-203.

[6] P. Zhao, J. Han, On Graph Query Optimization in Large

Networks, Proceedings of the VLDB Endowment, Vol. 3,

No. 1-2, pp. 340-351, September, 2010.

[7] V. Carletti, P. Foggia, A. Saggese, M. Vento,

Challenging the Time Complexity of Exact Subgraph

Isomorphism for Huge and Dense Graphs with VF3,

IEEE transactions on pattern analysis and machine

intelligence, Vol. 40, No. 4, pp. 804-818, April, 2018.

[8] X. Ren, J. Wang, Exploiting Vertex Relationships in

Speeding up Subgraph Isomorphism over Large Graphs,

Proceedings of the VLDB Endowment, Vol. 8, No. 5, pp.

617-628, January, 2015.

[9] J. Wang, X. Ren, S. Anirban, X.-W. Wu, Correct

Filtering for Subgraph Isomorphism Search in

Compressed Vertex-Labeled Graphs, Information

Sciences, Vol. 482, pp. 363-373, May, 2019.

[10] K. M. Kyu, K. T. Yar, A. N. Oo, A Proposal of CS-index

Approach for SPARQL Queries Considering Chain and

Star Shaped Subgraphs, Proceedings of the 10th

International Conference on Advances in Information

Technology (IAIT), Bangkok, Thailand, 2018, pp. 1-7.

[11] K. M. Kyu, A. N. Oo, Graph-based Indexing Method for

Searching in RDF Data, 2019 International Conference

on Advanced Information Technologies (ICAIT),

Yangon, Myanmar, 2019, pp. 96-101.

[12] Y. Park, S. Ko, S. S. Bhowmick, K. Kim, K. Hong, W.-

S. Han, G-CARE: A Framework for Performance

Benchmarking of Cardinality Estimation Techniques for

Subgraph Matching, International Conference on

Management of Data (SIGMOD/PODS’20), Portland

OR, USA, 2020, pp. 1099-1114.

[13] F. Bi, L. Chang, X. Lin, L. Qin, W. Zhang, Efficient

Subgraph Matching by Postponing Cartesian Products,

International Conference on Management of Data

(SIGMOD/PODS'16), San Francisco, California, USA,

2016, pp. 1199-1214.

[14] S. U. Rehman, S. Asghar, S. J. Fong, Optimized and

Frequent Subgraphs: How Are They Related?, IEEE

Access, Vol. 6, pp. 37237-37249, June, 2018.

[15] S. U. Rehman, S. Asghar, S. Fong, An Efficient Ranking

Scheme for Frequent Subgraph Patterns, Proceedings of

the 10th international conference on machine learning

and computing (ICMLC), Macau, China, 2018, pp. 257-

262.

[16] S. U. Rehman, K. Liu, T. Ali, A. Nawaz, S. J. Fong, A

Graph Mining Approach for Ranking and Discovering

the Interesting Frequent Subgraph Patterns,

RDF Subgraph Matching by Means of Star Decomposition 1621

International Journal of Computational Intelligence

Systems, Vol. 14, No. 1, pp. 1-17, August, 2021.

[17] H. Guan, B. Zhu, G. Y. Li, L. Zhao, Efficient Subgraph

Matching Method based on Structure Segmentation of

RDF graph, Journal of Computer Applications, Vol. 38,

No. 7, pp. 1898-1904+1909, July, 2018.

[18] B. Ning, Y. Sun, D. Zhao, W. Xing, G. Li, Dominance-

Partitioned Subgraph Matching on Large RDF Graph,

Complexity, Vol. 2020, pp. 1-18, December, 2020.

[19] G. Li, L. Yan, Z. Ma, An Approach for Approximate

Subgraph Matching in Fuzzy RDF Graph, Fuzzy Sets

and Systems, Vol. 376, pp. 106-126, December, 2019.

[20] S. Sakr, M. Wylot, R. Mutharaju, D. L. Phuoc, I.

Fundulaki, Centralized RDF Query Processing, in:

Linked Data, Springer, Cham, 2018, pp. 33-49.

[21] M. Spasić, M. Jovanovik, A. Prat-Pérez, An RDF

Dataset Generator for the Social Network Benchmark

with Real-World Coherence, 2016 Workshop on

Benchmarking Linked Data, Kobe, Japan, 2016, pp. 1-8.

Biographies

Mingyan Wang is currently a graduate

student at the School of Physics and

Electronics, Nanning Normal University,

Nanning, China. His research interests

include graph data management and graph

mining.

Qingrong Huang is currently a graduate

student at the School of Computer &

Information Engineering, Nanning Normal

University, Nanning, China. Her research

interests include graph data management

and graph mining.

Nan Wu is currently a graduate student at

the School of Computer & Information

Engineering, Nanning Normal University,

Nanning, China. Her research interests

include data mining and graph mining.

Ying Pan received her Ph.D. degree from

Sun Yat-sen University in 2011. Currently,

she is a professor at the School of Computer

& Information Engineering, Nanning

Normal University, China. Her research

interests include graph databases, big data,

and intelligent computing.

