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Abstract 
 

Cloud storage provides convenience in managing data 

for users. Data integrity becomes important because data 

owner (DO) loses control of their data once it is uploaded 

to the cloud server (CS). Public auditing is used to check 

data integrity in cloud storage. Traditional public auditing 

schemes introduce a third-party auditor (TPA) to help users 

check their data. However, TPA is assumed to be trusted in 

these schemes, which may not be practical. A dishonest 

TPA may provide a good report to DO without executing 

the auditing task timely. If the data loss could not be 

detected timely, it may cause a great loss to DO. In this 

paper we aim to solve these problems using blockchain 

technique. In our scheme DO, TPA and CS interact with 

blockchain via smart contracts. We utilize a time-locked 

deposit smart contract to incentive TPA and CS for their 

fulfillment in the auditing task honestly. Otherwise, they 

would be amerced. We use storage smart contracts to 

ensure the auditing process transparency, and utilize zero-

knowledge proof to protect DO’s privacy. The scheme is 

extended to support batch auditing to reduce the user’s cost. 

Experimental results show that our scheme is efficient and 

practical. 

 

Keywords: Blockchain, Public auditing, Incentive, 

Procrastinating auditor 

 

1 Introduction 
 

With the rapid development of Internet of Things (IoT) 

and Artificial Intelligence (AI), the digital world is thriving. 

Various data generated in our daily life promote a rapid 

demand of cloud storage. Cloud storage service provides a 

convenient, fast and scalable environment, making storage 

become easier, thus many infrastructures utilize cloud storage. 

There are many cloud storage services providers (CSP), such 

as Amazon AWS Cloudfront, Akamai, Google Drive and etc. 

According to Gartner1, public cloud service market worldwide 

will grow by 17% in 2020, from 227.8 billion dollars in 2019 

to 266.4 billion dollars in 2020. However, cloud storage also 

brings problems [1], such as single point of failure, data breach, 

data privacy, and data loss. Particularly, data loss accidents are 

growing rapidly. According to the research by Gemalto2, there 

 
1 https://www.gartner.com/en/newsroom/press-releases/2019-11-13-gartner-forecasts-

worldwide-public-cloud-revenue-to-grow-17-percent-in-2020 

were about 2.6 billion pieces of data stolen, lost or 

compromised globally in 2017. As valuable resources, data 

loss may be fatal for data owners or companies. Cloud storage 

services would hide data loss accidents for their own interests. 

Therefore, people have tried to seek a way to find out data loss 

timely in recent years. Public data integrity verification 

technique [2-3] emerged to solve it, which provides a way for 

the cloud to prove data possession without transmitting all the 

data. In order to further provide convenience for users, it 

introduces a trusted third-party auditor. The traditional third-

party auditing model includes three entities, as shown in 

Figure 1. First of all, the DO splits its data into blocks, signs 

each one, and outsources the data blocks with the 

corresponding signatures to the cloud. Secondly, the DO 

delegates a TPA to check the data integrity timely. After 

receiving the auditing task, TPA chooses a random subset of 

data blocks as a challenge. The CS then responds with a piece 

of proof information according to the challenge. Finally, the 

TPA verifies the proof and sends the auditing result to the DO. 

 

 

Figure 1. Traditional public auditing 

 

1.1 Problem Statement 
 

Public auditing has been studied for many years, such as 

privacy preservation for data users, dynamic data auditing, 

auditing in group data sharing and etc., e.g. [4-11]. However, 

there are two major problems in these schemes. 

 

1.1.1 On the Vulnerability of Malicious Auditors 

 

In most existing public auditing schemes [4, 5-7, 10-11], 

users usually do not take participate in the auditing process, 

thus the auditor is assumed to be honest and reliable. However, 

if the auditor is dishonest/malicious, it may not conduct the 

2 https://www.globaldots.com/blog/2-6-billion-records-were-stolen-lost-or-exposed-

worldwide-in-2017 
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auditing but always generate a ‘fake’ data integrity report. 

Especially, most cloud service providers and third-party 

auditing services charge for these services. In this case, it is 

unfair for users since they pay for the service and should have 

the right to audit the auditor’s behavior at the end of each 

auditing task instead of only knowing the checking result, e.g., 

𝑡𝑟𝑢𝑒 or 𝑓𝑎𝑙𝑠𝑒. Only a few schemes [12-13] consider the loss 

of users, but these schemes can not resist a procrastinating 

auditor. 

 

1.1.2 On the Vulnerability of Procrastinating Auditors 

 

Existing public auditing schemes require the auditor to 

execute auditing tasks periodically in order to find data 

corruption as soon as possible. Time-sensitive is important in 

many systems. For example, in the cloud-assisted electronic 

health system, the electronic health records (EHRs) is time-

sensitive [14-15] since the information relates to the state of 

an illness for patients. What is more, it relates to a patient’s 

life in case of an emergency. Therefore, it is important to 

check the data’s integrity periodically. However, most 

existing public auditing schemes could not resist a 

procrastinating auditor. Usually, the agreed frequency of data 

integrity check is weekly, monthly, or quarterly [16-17] which 

is not high, due to the cost issue and the burden on the CS side. 

An honest auditor would perform the check as scheduled, 

however, a procrastinating auditor may not conduct the 

auditing task timely until the last second. To avoid such a case, 

there should be some way to check whether the auditor 

honestly finishes its obligation. 

In order to address these problems, many researchers have 

studied public data auditing based on blockchain (and smart 

contracts) technology recently, such as [12-13, 16, 18, 33-34]. 

However, these schemes only utilize blockchain technique to 

check the correctness of the proof information but could not 

resist the procrastinating auditor. And none of these schemes 

take both of these problems into consideration simultaneously. 

 

1.2 Our Contributions 
 

In this paper, we study the construction of a public auditing 

scheme aiming to solve the aforementioned problems. We 

utilize the blockchain technology to protect the interest of DO 

and to resist the procrastinating TPA and CS. The core idea of 

our scheme is to use cryptocurrency and smart contracts in 

blockchain to reward or amerce the TPA and CS automatically 

according to their fulfillment. Overall, our contributions in this 

paper could be summarized as follows. 

 

⚫ We analyze the existing problems in recent public 

auditing schemes and then demonstrate that existing 

schemes rely on a trust TPA. It cannot resist a 

procrastinating auditor who may not perform the auditing 

task but always generate a good report for DO, which 

violates the core idea of public auditing, i.e., finding the 

data corruption as soon as possible. 

⚫ We propose a public auditing scheme (IPAPA) with 

incentives based on blockchain, which can resist a 

malicious auditor and procrastinating ones. We design 

blockchain-based smart contracts to achieve the auditing 

process transparency and authenticity and use a time-

locked deposit smart contract to resist the procrastinating 

auditor. Our scheme does not depend on any centralized 

third party to accomplish the auditing task and can also 

guarantee the user’s privacy by making use of zero-

knowledge proof in the auditing process. 

⚫ We further extend IPAPA to support batch auditing of 

user data, in order to reduce the cost on the data owner 

side. Finally, we implement the proposed scheme based 

on the public test network of Ethereum. Experimental 

results show that our scheme is practical and efficient. 

 

1.3 Paper Organization 

 
The remainder of this paper is organized as follows. We 

introduce related works in Section 2 and preliminaries in 3. In 

Section 4 we show the system model, threat model and design 

goals. The proposed public auditing scheme with incentive is 

described in Section 5. We then present the security analysis 

and efficiency analysis in Sections 6 and 7, respectively. 

Finally, we draw the conclusion in Section 8. 

 

2 Related Works 
 

2.1 Provable Data Procession 
 

2.1.1 Traditional Public Auditing 

 

To check the integrity of cloud storage data, Juels et al. [2] 

proposed a proof-of-retrievability (POR) scheme in 2007, 

which utilizes indistinguishable blocks hidden in file blocks as 

sentinels to detect data corruption. However, their POR 

scheme does not take public auditing into consideration and 

does not support the unbounded number of challenge queries 

either. Later, Ateniese et al. [3] firstly proposed a public 

verification scheme based on proof of data possession (PDP), 

which adopts the challenge and response model and supports 

unbounded number of challenge queries. Nevertheless, their 

scheme cannot protect user’s privacy. Shacham and Waters 

[19] then proposed a public-private key based POR scheme, 

which utilizes homomorphic authenticators to generate 

compact proofs and supports public auditing. 

Following Shacham et al.’s work, many public auditing 

schemes have been proposed in recent years. These schemes 

solved different problems in public auditing, such as privacy 

preservation, data dynamic, data sharing in group and etc. To 

check the integrity of the outsourced data without leaking any 

privacy information of the DO, some schemes utilize specific 

signature technique. For instance, Wang et al. [4] utilized ring 

signature to protect the signer’s privacy, and Li et al. [18] 

utilized online/offline signatures to reduce online computation 

overhead with the offline pre-computed results. While some 

other schemes [5-7] utilized random masking technique or 

zero knowledge proof to hide data information during the 

response phase. To support public auditing and data dynamics, 

existing schemes usually utilized Merkle Hash Tree (MHT) or 

index table to support data blocks addition, insertion, 

modification and deletion, such as [8-11, 31-32]. MHT based 

schemes usually need heavy computation cost and 

communication cost, while index table solves this problem 

commendably. Furthermore, there are many schemes [20-21] 

which focus on checking the integrity of data shared in a group. 

Many of these schemes utilized proxy-resignature to deal with 

user revocation. 
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2.1.2 Blockchain-based Public Auditing 

 

Recently, many researchers have focused on decentralized 

provable data possession. Specifically, the emerging 

blockchain technology provides a good solution to provable 

data possession. In order to resist a malicious TPA, Armknecht 

et al. [22] firstly utilized Bitcoin as the unpredictable 

pseudorandomness provider to generate challenge information. 

Following Armknecht et al.’s work, many schemes [16, 23-26] 

utilized random block hash or nonce in block to generate 

challenge blocks. Some schemes utilized blockchain to store 

information. Yu et al. [30] utilized consortium chain to store 

audit information. However, it needs the DO to verify the 

correctness of proof information. Li et al. [18] utilized public 

chain to store file information to remove central third-party 

auditor. However, their scheme needs the data user to generate 

a challenge. Huang et al. [27] utilized three different 

transactions to record data dynamics in blockchain. Some 

schemes utilized smart contracts to realize fair judgement 

recently. For instance, Wang et al. [12] utilized smart contract 

to achieve fairness in judgement in their scheme. Concretely, 

smart contract instead of the TPA checks the correctness of 

proof information. If the check fails, the CS would be amerced 

according to the smart contract; otherwise, the CS would 

receive a reward for its honest service. Yuan et al. [13] utilized 

the same idea to achieve data deduplication and fair arbitration. 

However, these schemes [12-13] cannot resist a 

procrastinating auditor. 

 

3 Preliminaries 
 

3.1 Bilinear Pairings 
 

Let 𝐺1  and 𝐺𝑇  be two multiplicative cyclic groups of 

prime order 𝑝 , respectively, 𝑔  be a generater of 𝐺1 . The 

map 𝑒: 𝐺1 × 𝐺1 → 𝐺𝑇  is a bilinear pairing if it satisfies the 

following properties: (1) Bilinearity: for all 𝑢, 𝑣 ∈ 𝐺1  and 

𝑎, 𝑏 ∈  𝑍𝑝 , 𝑒(𝑢𝑎, 𝑣𝑏) = 𝑒(𝑢, 𝑣)𝑎𝑏 ; (2) Computability: for 

any 𝑢, 𝑣 ∈ 𝐺1, 𝑒(𝑢, 𝑣) could be efficiently computed; and (3) 

Non-degeneracy: 𝑒(𝑔, 𝑔) ≠ 1𝑇, where 1𝑇 is the identity of 

𝐺𝑇. 

 

3.2 Mathematical Assumptions 
 

Let 𝐺  be a cyclic group of prime order 𝑝 , 𝑔  be a 

random generator of 𝐺, and 𝑎, 𝑏 be random elements of 𝑍𝑝. 

 

⚫ Computational Diffie-Hellman (CDH) Assumption 

Given (𝑔, 𝑔𝑎, 𝑔𝑏), it is computationally intractable to 

compute 𝑔𝑎𝑏. That is, for any probabilistic polynomial-

time (PPT) adversary 𝒜, the probability of solving CDH 

problem is negligible, namely, 

𝑃𝑟[𝑎, 𝑏 ← 𝒜𝐶𝐷𝐻(𝑔, 𝑔
𝑎, 𝑔𝑏): 𝑍 = 𝑔𝑎𝑏] ≤ 𝜀, 

where 𝜀 is a negligible function in 𝑛. 

⚫ Discrete Logarithm(DL) Assumption Given h ∈ G, it 

is computationally intractable to compute ℎ = 𝑔𝑎, That 

is, for any PPT adversary 𝒜, the probability of solving 

DL problem is negligible, namely, 

𝑃𝑟[𝑎 ← 𝒜𝐷𝐿(𝑔, ℎ): 𝑎 = 𝑙𝑜𝑔𝑔ℎ] ≤ 𝜀. 

 

 

3.3 Blockchain Structure 
 

The blockchain structure is shown in Figure 2. A block 

usually contains two parts: block header and block body. 

Block header stores the basic information of a block, including 

the previous block hash (𝑃𝑟𝑒𝐵𝑙𝑜𝑐𝑘𝐻𝑎𝑠ℎ), the current block 

hash (𝐵𝑙𝑜𝑐𝑘𝐻𝑎𝑠ℎ), the time when the block was generated 

(𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝), a nonce, the current difficulty to find a solution 

(𝑑𝑖𝑓𝑓𝑖𝑐𝑢𝑙𝑡𝑦) and some other basic information. The block 

body stores the origin data which is packaged as a series of 

transactions and stored as a Merkle tree. A transaction usually 

contains: from (message sender), to (message recipient), value 

(from the sender to the recipient), data (sent to the recipient) 

and gas. 

 

 

Figure 2. Blockchain structure 

 

4.Public Auditing Scheme with Incentive 
 

4.1 System Model Description 
 

There are three entities in decentralized public auditing 

scheme with incentive, i.e. data owner (DO), cloud server (CS) 

and third-party auditor (TPA), as shown in Figure 3. Different 

from traditional public provable data possession schemes, the 

CS and TPA not only interact with each other but also interact 

with the blockchain based on smart contracts. 

 

(1) Public Provable Data Possession Algorithms 

⚫ 𝐒𝐞𝐭𝐮𝐩(𝟏𝛌) → 𝐩𝐩. It is run by the DO. It takes as input a 

security parameter 1λ, and outputs the public parameter 

𝑝𝑝. 

⚫ 𝐊𝐞𝐲𝐆𝐞𝐧(𝐩𝐩) → (𝐩𝐤, 𝐬𝐤). It is run by the DO. It takes 

as input 𝑝𝑝 , and outputs a publicssecret key pair 

(𝑝𝑘, 𝑠𝑘). 
 

 

Figure 3. Decentralized system model 
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⚫ 𝐀𝐮𝐭𝐡𝐆𝐞𝐧(𝐬𝐤, 𝐅) → 𝐚𝐮𝐭𝐡𝐞𝐧𝐭𝐢𝐜𝐚𝐭𝐨𝐫𝐬. It is run by the 

DO. It takes as input 𝑠𝑘  and a file 𝐹 = (𝑚1, 𝑚2,⋅··
, 𝑚𝑛), and outputs a set of authenticators 𝜎𝑓𝑖 and public 

verification parameters for 𝐹.  

⚫ 𝐏𝐫𝐨𝐨𝐟(𝐓𝐏𝐀, 𝐂𝐒) → 𝐓𝐫𝐮𝐞/𝐅𝐚𝐥𝐬𝐞. It is run interactively 

between the TPA and CS. Their common input includes 

𝑝𝑝 and 𝑝𝑘.  

 

(2) Smart Contract Design 

⚫ Delegation Contract (DLC): The contract is executed 

by the DO. It specifies three entities, DO, TPA and CS, 

and contains file information and task description. 

⚫ Time-locked Deposit-Withdraw Contract (TDWC): It 

is executed by the entities DO, TPA and CS, which 

should deposit some coins according to the task 

description based on DLC first.  

⚫ Challenge Information Storage Contract (CISC): It is 

executed by the TPA. It records the challenge 

information during the auditing process. 

⚫ Proof Information Storage Contract (PISC): It is 

executed by the CS. It records the proof information 

during the audit process. 

 

4.2 Formal Security Definition of Data Integrity 
 

Data auditing could be passed only if the CS maintains 

data intactly. Consider the following game played between a 

challenger 𝒞 and a PPT adversary 𝒜. 

(1) Challenger 𝒞  calls KeyGen(pp)  to generate 

(𝑝𝑘, 𝑠𝑘) and gives 𝑝𝑘 to 𝒜. 

(2) 𝒜 interacts with 𝒞 and makes queries adaptively for 

some file blocks of 𝐹 for polynomially many times, 𝒞 runs 

𝐴𝑢𝑡ℎ𝐺𝑒𝑛(𝑠𝑘, 𝐹)  and outputs the corresponding tag 

information of 𝐹. 

(3) Finally, 𝒜 outputs proof information for file 𝐹′, the 

proof information includes at least one file block which does 

not be queried before and can pass verification. 

Define the advantage of 𝒜  is 𝐴𝑑𝑣𝒜 =
Pr [𝑃𝑟𝑜𝑜𝑓(𝑇𝑃𝐴, 𝐶𝑆) = 𝑇𝑟𝑢𝑒]. We say the adversary wins the 

above game, if 𝐴𝑑𝑣𝒜 is non-negligible. 

Definition 1. A public auditing scheme with incentive 

satisfies data integrity if no PPT adversary 𝒜 could win the 

game above with non-negligible probability. 

 

4.3 Other Security Properties 
 

A secure decentralized public auditing scheme with 

incentive should also satisfy the following security properties. 

Data privacy: It requires the auditing process should 

preserve the DO’s data privacy so that no one could acquire 

any information about the data through the whole process. 

Auditing process publicity and non-modifiability: It 

requires the auditing process should be public and tamper-

proof, in order to prohibit the TPA or CS from cheating. 

Timeliness: It requires that the TPA should conduct the 

auditing task and return the auditing result timely, in order to 

resist the procrastinating TPA. 

Incentive: It requires any dishonest party who does not 

finish the auditing task timely should be monetarily penalized 

and honest parties could obtain corresponding rewards fairly. 

Batch auditing: It requires multiple auditing tasks from 

the same DO could be verified simultaneously, in order to 

reduce gas cost for DO. 

 

5 Our Public Auditing Scheme with 

Incentive 
 

5.1 Blockchain-based Incentive Mechanism 
 

We design an incentive mechanism based on blockchain 

and smart contracts. Basically, each entity in the system 

deposits some coins on the blockchain system, and if the TPA 

and CS fulfill their obligation honestly, they would be 

rewarded; otherwise, they would be amerced. Some works 

have been done to achieve time-locked blockchain deposit 

protocols, e.g. [28-29], which enable a party (payer) to 

exchange with other parties (payee) to lock a certain number 

of coins as guarantee deposit on blockchain. To prevent any 

malicious party who redeems the deposit arbitrarily, the party 

cannot redeem the deposit until the deadline even if it owns 

the secret key. 

To make the incentive automatically, smart contract is 

utilized. Concretely, we design four smart contracts, including 

Delegation Contract (DLC), Time-locked Deposit-Withdraw 

Contract (TDWC), Challenge Information Storage Contract 

(CISC) and Proof Information Storage Contract (PISC). Data 

structure and relationship of the contracts are shown in Figure 

4. The left part of Figure 4 shows the data structure of each 

contract, and the right part shows the relationship between the 

entities and the contracts. All the functions of each contract 

are described inside the corresponding box. 

 

 

Figure 4. The structure of smart contracts and the call 

relationship 

 

Delegation Contract (DLC). Before an auditing task 

starts, the DO should post the task. The delegation contract 

includes basic file information, e.g. file name, size, hash and 

etc. It publishes the auditing task execution time period, e.g. 

task start time 𝑇𝑠  and task end time 𝑇𝑑 . The contract also 

includes three wallet addresses/public keys, e.g. DO address, 

TPA address, and CS address. Only the one with the secret 

wallet key could transfer and sign the task. 

Time-locked Deposit-Withdraw Contract (TDWC). To 

improve the credibility, each entity in the system is required 

to make a time-locked deposit as a guarantee to regulate its 

behavior and to follow the protocol, which will be assigned to 

designated entities by the predefined smart contracts after the 



IPAPA: Incentive Public Auditing Scheme against Procrastinating Auditor 1509 

 

 

appointed time. The contract can only be executed by the DO, 

CS and TPA, respectively, described as below. 

(Deposit phase). Each auditing task starts from time 𝑇𝑠 
and ends at time 𝑇𝑑 . Before 𝑇𝑠 , the three entities should 

deposit a certain number of coins in the contract. The coins are 

then locked on the contract until 𝑇𝑑, and the deposit could be 

withdrawn later, which is controlled by the contract based on 

if the task is completed successfully. The deposit process of 

TDWC contract is shown in Table 1. 

(Incentive phase). We utilize interactive public provable 

data possession scheme. In order to prevent the TPA or CS 

from being procrastinating, we propose to use the reward-or-

amerce and time locked deposit to improve their positivity. 

The reward-or-amerce depends on different states of the TPA 

and CS. In this paper we define six different states, including 

𝑇𝑠1, 𝑇𝑠2, 𝑇𝑠3 for TPA, and 𝐶𝑠1, 𝐶𝑠2, 𝐶𝑠3 for CS. As shown 

in Table 2 and Figure 5, there are four cases in the auditing 

process.  

The first case is (𝐶𝑠1 , 𝑇𝑠1), meaning the TPA does not 

raise a challenge for auditing as scheduled, and its deposit 

would then be deducted and transferred to the DO. The second 

case includes (𝐶𝑠1 , 𝑇𝑠2) and (𝐶𝑠2 , 𝑇𝑠2), meaning the CS does 

not enter the first proof phase and the second phase timely 

respectively, and its deposit would be deducted and transferred 

to the DO. The third case is (𝐶𝑠3 , 𝑇𝑠2), meaning the TPA does 

not finish the verification timely, and its deposit would be 

deducted and transferred to the DO. The last case is (𝐶𝑠3 , 𝑇𝑠3), 

meaning both the TPA and CS fulfill their obligation in the 

auditing task, and the TPA would get the service fee 𝑓𝑒𝑒𝑇𝑃𝐴. 

Besides, if the auditing result shows that the DO’s data is 

intact, the CS should be rewarded for the data storage service; 

otherwise, 𝑑𝑒𝑝𝑜𝑠𝑖𝑡𝐶𝑆 would be deducted and transferred to 

the DO. 

 

Table 1. The deposit process of TDWC 

DODeposit. Before 𝑇𝑠, the DO sends 

𝐷𝑂𝐷𝑒𝑝𝑜𝑠𝑖𝑡𝑖  ≔  {𝑜𝑤𝑛𝑒𝑟𝑖 , 𝑎𝑑𝑑𝑟𝑒𝑠𝑠, 𝑛𝑜𝑤, 
𝑇𝑠, 𝑇𝑑 , 𝑐𝑜𝑖𝑛𝑠(𝑓𝑒𝑒𝑇𝑃𝐴 + 𝑓𝑒𝑒𝐶𝑆)} to the blockchain, where  

𝑐𝑜𝑖𝑛𝑠(𝑓𝑒𝑒𝑇𝑃𝐴 + 𝑓𝑒𝑒𝐶𝑆) is the deposit that can only be  

unlocked after 𝑇𝑑 and will be transferred into CS  

account and TPA account only if CS and TPA fulfill 

their tasks delegated by the DO honestly. 

CSDeposit. Before 𝑇𝑠, the CS should be authorized and  

receive its storage task (from the DO). The CS sends 

𝐶𝑆𝐷𝑒𝑝𝑜𝑠𝑖𝑡 ≔ {𝐴𝑑𝑑𝑟𝑒𝑠𝑠𝐶𝑆, 𝑛𝑜𝑤, 𝑇𝑠, 𝑇𝑑 , 
𝑐𝑜𝑖𝑛𝑠(𝑑𝑒𝑝𝑜𝑠𝑖𝑡𝐶𝑆)} to the blockchain, where 

𝑐𝑜𝑖𝑛𝑠(𝑑𝑒𝑝𝑜𝑠𝑖𝑡𝐶𝑆) is the deposit that can only be unlocked after 

𝑇𝑑, and is also the fine if the CS does not  

pass the auditing check, i.e. the CS does not store the  

DO’s data intactly. 

TPADeposit. Before 𝑇𝑠, TPA should be authorized and 

receive its auditing task from DO. The TPA sends 

 𝑇𝑃𝐴𝐷𝑒𝑝𝑜𝑠𝑖𝑡 ≔ {𝐴𝑑𝑑𝑟𝑒𝑠𝑠𝑇𝑃𝐴, 𝑛𝑜𝑤, 𝑇𝑠, 𝑇𝑑 ,  
𝑐𝑜𝑖𝑛𝑠(𝑑𝑒𝑝𝑜𝑠𝑖𝑡𝑇𝑃𝐴)}, where 𝑐𝑜𝑖𝑛𝑠(𝑑𝑒𝑝𝑜𝑠𝑖𝑡𝑇𝑃𝐴) is the 

deposit that can only be unlocked after 𝑇𝑑, and is also 

the fine if the TPA does not execute the auditing task  

as scheduled. 

 

 

 

 

Table 2. Incentive based on four different states 

States 𝑇𝑠1  𝑇𝑠2  𝑇𝑠3  

𝐶𝑠1  𝑑𝑒𝑝𝑜𝑠𝑖𝑡𝑇𝑃𝐴 → 𝐷𝑂  𝑑𝑒𝑝𝑜𝑠𝑖𝑡𝑇𝑃𝐴 → 𝑇𝑃𝐴   

 𝑑𝑒𝑝𝑜𝑠𝑖𝑡𝐶𝑆 → 𝐶𝑆  𝑑𝑒𝑝𝑜𝑠𝑖𝑡𝐶𝑆 → 𝐷𝑂  —— 

 𝑓𝑒𝑒𝑇𝑃𝐴 + 𝑓𝑒𝑒𝐶𝑆 → 𝐷𝑂  𝑓𝑒𝑒𝑇𝑃𝐴 + 𝑓𝑒𝑒𝐶𝑆 → 𝐷𝑂   

𝐶𝑠2   𝑑𝑒𝑝𝑜𝑠𝑖𝑡𝐶𝑆 → 𝐷𝑂   

 —— 𝑑𝑒𝑝𝑜𝑠𝑖𝑡𝑇𝑃𝐴 → 𝑇𝑃𝐴  —— 

  𝑓𝑒𝑒𝑇𝑃𝐴 + 𝑓𝑒𝑒𝐶𝑆 → 𝐷𝑂   

𝐶𝑠3    𝑇𝑟𝑢𝑒  

   𝑑𝑒𝑝𝑜𝑠𝑖𝑡𝑇𝑃𝐴 + 𝑓𝑒𝑒𝑇𝑃𝐴 → 𝑇𝑃𝐴  

 —— 𝑑𝑒𝑝𝑜𝑠𝑖𝑡𝑇𝑃𝐴 → 𝐷𝑂  𝑑𝑒𝑝𝑜𝑠𝑖𝑡𝐶𝑆 + 𝑓𝑒𝑒𝐶𝑆 → 𝐶𝑆  

  𝑑𝑒𝑝𝑜𝑠𝑖𝑡𝐶𝑆 → 𝐶𝑆  𝐹𝑎𝑙𝑠𝑒  

  𝑓𝑒𝑒𝑇𝑃𝐴 + 𝑓𝑒𝑒𝐶𝑆 → 𝐷𝑂  𝑑𝑒𝑝𝑜𝑠𝑖𝑡𝑇𝑃𝐴 + 𝑓𝑒𝑒𝑇𝑃𝐴 → 𝑇𝑃𝐴  

   𝑑𝑒𝑝𝑜𝑠𝑖𝑡𝐶𝑆 + 𝑓𝑒𝑒𝐶𝑆 → 𝐷𝑂  

 

 

Storage Contracts. The storage contracts include 

challenge information storage contract (CISC) and proof 

information storage contract (PISC). CISC includes functions 

𝑐ℎ𝑎𝑙𝑙𝑒𝑛𝑔𝑒 and 𝑣𝑒𝑟𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛. It can only be executed by the 

TPA before 𝑇𝑑, and requires that the TPA should have enough 

balance on the smart contract. The 𝑐ℎ𝑎𝑙𝑙𝑒𝑛𝑔𝑒  function 

stores the challenge information generated by the TPA, and 

the 𝑣𝑒𝑟𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛  function stores the verification result. 

PISC includes functions 𝑝𝑟𝑜𝑜𝑓1 and 𝑝𝑟𝑜𝑜𝑓2. It can only be 

executed by the CS before 𝑇𝑑, and requires that the CS should 

have enough balance on the smart contract. Both 𝑝𝑟𝑜𝑜𝑓1 

and 𝑝𝑟𝑜𝑜𝑓2 store the proof information returned by the CS. 

 

5.2 Our Scheme 
 

In this part we introduce our decentralized public auditing 

scheme with incentive. Formally, our scheme works as 

follows. 

(1) 𝒑𝒑 ← 𝑺𝒆𝒕𝒖𝒑(𝟏𝝀). Taking a security parameter 1𝜆 

as input, the algorithm chooses a large prime 𝑝 , two 

multiplicative cyclic groups 𝐺, 𝐺𝑇 , a generator 𝑔 of 𝐺, a 

bilinear pairing 𝑒: 𝐺 × 𝐺 → 𝐺𝑇, cryptographic hash functions 

𝐻0, 𝐻1: {0,1}
∗ → 𝐺 ,  𝐻2: {0,1}

∗ → 𝑍𝑝
∗ ，  a pseudorandom 

function 𝜋: 𝑍𝑝
∗ × [1, 𝑛] → 𝑍𝑝

∗  and a pseudorandom 

permutation 𝜙：𝑍𝑝
∗ × [1, 𝑛] → [1, 𝑛]. Besides, the algorithm 
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picks at random ℎ, 𝑢1, 𝑢2, . . . , 𝑢𝑠 ∈ 𝐺  and computes 𝜂 =
e(g, h) . It outputs the public parameter 𝑝𝑝 =
(𝑝, 𝐺, 𝐺𝑇 , 𝑔, 𝑒, 𝐻0, 𝐻1, 𝐻2, ℎ, 𝑢1, 𝑢2, . . . , 𝑢𝑠, 𝜂, 𝜋, 𝜙). 

(2) 𝑲𝒆𝒚𝑮𝒆𝒏(𝒑𝒑) . The algorithm takes the public 

parameter 𝑝𝑝  as input, and generates a signing key pair 

(𝑠𝑝𝑘, 𝑠𝑠𝑘)  with 𝑠𝑝𝑘 = 𝑔𝑠𝑠𝑘  and another key pair (𝛼 ∈
𝑍𝑝, v = 𝑔

𝛼) which is used for generating authenticators of 

file blocks. It outputs (𝑝𝑘, 𝑠𝑘) = ((𝑠𝑝𝑘, 𝑣), (𝛼, 𝑠𝑠𝑘)) as the 

public/secret key pair of the DO. Let 𝜂𝑖 denote 𝑒(𝑢𝑖 , 𝑣) for 

𝑖 ∈ [1, 𝑠] , which could be pre-computed by the relevant 

entities given the public key 𝑣 and 𝑝𝑝. 

(3) 𝑨𝒖𝒕𝒉𝑮𝒆𝒏(𝒔𝒌, 𝑭). The algorithm takes a file 𝐹 and 

the DO’s secret key as input. It firstly applies an erasure code 

such as RS code on 𝐹 to obtain an encoded version 𝐹′, and 

splits 𝐹′ into 𝑛 blocks. Let 𝑓 denote the unique identifier of 

file 𝐹 . Each block is further fragmented into 𝑠  sectors 

{{𝑚𝑓𝑖,𝑗}𝑗=1
𝑠 }𝑖=1

𝑛 , which is an element of 𝑍𝑝. The DO selects a 

unique file name 𝐹𝑓𝑛 from a sufficiently large domain. Let 

𝑡𝑓𝑛 = 𝐹𝑓𝑛||𝑛. The DO computes 𝑇𝑓𝑛 = 𝐻0(𝑡𝑓𝑛)
𝑠𝑠𝑘 and sets 

the file tag 𝑓𝑡𝑓𝑛 = 𝑡𝑓𝑛||𝑇𝑓𝑛 . For each 𝑖 ∈ [1, 𝑛] , the DO 

computes an authenticator 𝜎𝑓𝑖  for block 𝑖  as 𝜎𝑓𝑖 =

(𝐻1(𝐹𝑓𝑛||𝑓𝑖) · ∏ 𝑢
𝑗

𝑚𝑓𝑖,𝑗𝑠
𝑗=1 )𝛼. 

The DO then uploads {𝑓𝑡𝑓𝑛 , {{𝑚𝑓𝑖,𝑗}𝑗=1
𝑠 , 𝜎𝑓𝑖}𝑖=1

𝑛 }  to the 

cloud. Finally, it posts an auditing task based on DLC to the 

blockchain, as shown in Table 3. 

 

Table 3. Post delegation task based on delegation contract 

(DLC) 

Input: file name, file size, file hash, file blocks, 

Owner’s signature, TPA address, TPA’s signature, 

CS address, CS’s signature, r, start_time, end_time, 

delegation fee, CS fee, CS deposit, TPA deposit. 

Output: Update contract DLC 

1  require(now<𝑇𝑠); 

2  𝑜𝑤𝑛𝑒𝑟 = 𝑚𝑠𝑔. 𝑠𝑒𝑛𝑑𝑒𝑟; 
3  owner_message=prefixed(keccak256(msg.sender, 

    file name, file size, file hash, file blocks, r)); 

4  CS_message=prefixed(keccak256(𝐴𝑑𝑑𝑟𝑒𝑠𝑠𝐶𝑆, 
    file name, file size, file hash, file blocks, r)); 

5  TPA_message=prefixed(keccak256(𝐴𝑑𝑑𝑟𝑒𝑠𝑠𝑇𝑃𝐴, 

file name, file size, file hash, file blocks, r)); 

6  require(recoversigner(owner_message,𝜎𝑜𝑤𝑛𝑒𝑟) 
==owner); 

7  require(recoversigner(CS_message, 𝜎𝐶𝑆) 
    == 𝐴𝑑𝑑𝑟𝑒𝑠𝑠𝐶𝑆); 
8  require(recoversigner(TPA_message, 𝜎𝑇𝑃𝐴) 

    ==𝐴𝑑𝑑𝑟𝑒𝑠𝑠𝑇𝑃𝐴); 

9  TPA ← 𝐴𝑑𝑑𝑟𝑒𝑠𝑠𝑇𝑃𝐴; csp← 𝐴𝑑𝑑𝑟𝑒𝑠𝑠𝐶𝑆; 
10 start_time ← 𝑇𝑠; end_time ← 𝑇𝑑; 

11 𝑓𝑒𝑒𝑇𝑃𝐴 = _𝑓𝑒𝑒𝑇𝑃𝐴; 𝑓𝑒𝑒𝐶𝑆 = _𝑓𝑒𝑒𝐶𝑆; 
12 𝑑𝑒𝑝𝑜𝑠𝑖𝑡𝐶𝑆 = _𝑑𝑒𝑝𝑜𝑠𝑖𝑡𝐶𝑆;  

13 𝑑𝑒𝑝𝑜𝑠𝑖𝑡𝑇𝑃𝐴 = _𝑑𝑒𝑝𝑜𝑠𝑖𝑡𝑇𝑃𝐴; 

 

(4) 𝑻𝒓𝒖𝒆/𝑭𝒂𝒍𝒔𝒆 ← 𝑷𝒓𝒐𝒐𝒇(𝑷(𝑭, {𝝈𝒊}, 𝒇𝒕), 𝑽(𝒑𝒌)) . 

After the DO launches an auditing task, the DO, TPA and CS 

make their deposit respectively via the deposit process of the 

TDWC contract. Then they run the following interactive proof 

protocol. 

Individual file auditing: The auditing task refers to a 

single file 𝐹𝑓𝑛.  

(a) The TPA chooses at random 𝑘1, 𝑘2, 𝑘, 𝜓 ∈ 𝑍𝑝 and a 

random integer 𝑐 ∈ [1, 𝑛], and computes Ψ = 𝑔𝑘ℎ𝜓. It sends 

the commitment Ψ and challenge 𝑐ℎ𝑎𝑙 = {𝑐, 𝑘1, 𝑘2} to the 

CS, and sends the challenge to the blockchain based on CISC 

as in Table 4. Finally, the TPA sends the blockheight and 

transaction id 𝐶 = {𝐶ℎ𝑡 , 𝐶𝑖𝑥} to the CS. 

 

Table 4. Challenge Information Storage Contract (CISC) 

Output: Update contract CISC 

enum ContractStates{open, midstate, closed} 

enum TPAStates{𝑇𝑠1 , 𝑇𝑠2 , 𝑇𝑠3} 

ContractStates contractstate←ContractStates.open; 

TPAStates tpastate←TPAStates. 𝑇𝑠1; 

function challenge (𝑢𝑖𝑛𝑡[𝑐]_𝑖𝑛𝑑𝑒𝑥, 𝑢𝑖𝑛𝑡[𝑐]_𝑣𝑐 , 
𝑢𝑖𝑛𝑡 _Ψ) 𝑝𝑢𝑏𝑙𝑖𝑐 

1  require(msg.sender==𝐴𝑑𝑑𝑟𝑒𝑠𝑠𝑇𝑃𝐴); 

2  require(now<𝑇𝑑); 

3  require(𝑏𝑎𝑙𝑎𝑛𝑐𝑒𝑂𝑓[𝑚𝑠𝑔. 𝑠𝑒𝑛𝑑𝑒𝑟]> 𝑑𝑒𝑝𝑜𝑠𝑖𝑡𝑇𝑃𝐴); 

4  require(tpastate==𝑇𝑃𝐴𝑆𝑡𝑎𝑡𝑒𝑠. 𝑇𝑠1); 

5  require(contractstate==ContractStates.open); 

6  𝐼𝑛𝑑𝑒𝑥 ← _𝑖𝑛𝑑𝑒𝑥; _𝑉𝑐 = _𝑣𝑥;  Ψ = _Ψ; 
7  tpastate← 𝑇𝑃𝐴𝑆𝑡𝑎𝑡𝑒𝑠. 𝑇𝑠3; 

8  contractstate←ContractStates.midstate; 

function verification ( 𝑢𝑖𝑛𝑡 _𝑘, 𝑢𝑖𝑛𝑡 _𝜓, 
 bool_audit result) 
1  require(msg.sender==𝐴𝑑𝑑𝑟𝑒𝑠𝑠𝑇𝑃𝐴); 

2  require(now<𝑇𝑑); 

3  require(balanceOf[msg.sender]> 𝑑𝑒𝑝𝑜𝑠𝑖𝑡𝑇𝑃𝐴); 

4  require(tpastate== 𝑇𝑃𝐴𝑆𝑡𝑎𝑡𝑒𝑠. 𝑇𝑠2); 
5  require(contractstate==ContractStates.midstate); 

6  𝑘 ← _𝑘;  𝜓 ← _𝜓; 

7  audit result← audit result; 

8  tpastate← 𝑇𝑃𝐴𝑆𝑡𝑎𝑡𝑒𝑠. 𝑇𝑠3; 

9  contractstate←ContractStates.closed; 

 

(b) Upon receiving 𝑐ℎ𝑎𝑙, the CS computes 

𝐾1 = 𝐻2(𝐹𝑓𝑛||𝑘1||𝑛𝑜𝑛𝑐𝑒1||𝑛𝑜𝑛𝑐𝑒2|| ··· ||𝑛𝑜𝑛𝑐𝑒𝜑),  

𝐾2 = 𝐻2(𝐹𝑓𝑛||𝑘2||𝑛𝑜𝑛𝑐𝑒1||𝑛𝑜𝑛𝑐𝑒2|| ··· ||𝑛𝑜𝑛𝑐𝑒𝜑),  

where 𝑛𝑜𝑛𝑐𝑒1，𝑛𝑜𝑛𝑐𝑒2，… ，𝑛𝑜𝑛𝑐𝑒𝜑  are 𝜑 successive 

random numbers in blocks from height 𝐶ℎ𝑡 − 𝜑 + 1 to 𝐶ℎ𝑡. 
Then it sets the challenge set as 𝐶𝑓 = {(𝑖𝑓, 𝑣𝑖𝑓)}𝑖∈[1,𝑐], where 

𝑖𝑓 = 𝜙(𝐾1, 𝑖) , 𝑣𝑖𝑓 = 𝜋(𝐾2, 𝑖) , chooses at random 

𝑟, 𝜌𝑟 , 𝜌1, . . . , 𝜌𝑠 ∈ 𝑍𝑝
∗, computes 𝜎 = h𝑟∏ 𝜎

𝑓𝑖𝑓

𝑣𝑖𝑓
(𝑖𝑓,𝑣𝑖𝑓

)∈𝐶𝑓
, 𝑇 =

𝜂𝜌𝑟∏ 𝜂
𝑗

𝜌𝑗𝑠
𝑗=1 , and executes the 𝑝𝑟𝑜𝑜𝑓1 function of contract 

PISC (see Table 5). The CS uploads 𝜎  and 𝑇  to the 

blockchain, and sends the blockheight and transaction id 𝑃1 =
{𝑃1ℎ𝑡, 𝑃1𝑖𝑥} to the TPA. 

(c) After receiving 𝑃1, the TPA sends (𝑘, 𝜓) to the CS. 

(d) The CS checks if Ψ = 𝑔𝑘ℎψ, and aborts if it does not 

hold. It then computes 𝑧𝑟 = 𝜌𝑟 − 𝑘𝑟, and 

∀𝑗 ∈ [1, 𝑠], 𝜇𝑗 = ∑ 𝑣𝑖𝑓𝑚𝑓𝑖𝑓,𝑗(𝑖𝑓,𝑣𝑖𝑓
∈𝐶𝑓)

, 𝑧𝑗 = 𝜌𝑗 − 𝑘𝜇𝑗. 

It executes the 𝑝𝑟𝑜𝑜𝑓2  function of PISC, uploads 

𝑧𝑟 , 𝑧1,⋅⋅⋅, 𝑧𝑠 to the blockchain, and sends the blockheight and 

transaction id 𝑃2 = {𝑃2ℎ𝑡 , 𝑃2𝑖𝑥} to the TPA. 

(e) After receiving 𝑃2, the TPA verifies the file tag 𝑓𝑡𝑓𝑛  

by checking if 𝑒(𝑔, 𝑇𝑓𝑛) = 𝑒(𝑠𝑝𝑘, 𝐻0(𝑡𝑓𝑛)) and 

(
𝑒(𝜎,𝑔)

𝑒(∏ 𝐻1(𝐹𝑓𝑛||𝑓𝑖𝑓)
𝑣𝑖𝑓

(𝑖𝑓,𝑣𝑖𝑓
)∈𝑐ℎ𝑎𝑙 ,𝑣)

) 𝑘 =
𝑇

𝜂𝑧𝑟𝜂1
𝑧1𝜂2

𝑧2 ...𝜂𝑠
𝑧𝑠,  
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and aborts if either equation fails to hold. It then uploads the 

auditing result to the blockchain via 𝑣𝑒𝑟𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛 function 

of CISC and sends the blockheight and transaction id 𝑉 =
{𝑉ℎ𝑡, 𝑉𝑖𝑥} to the CS. 

 

Table 5. Proof Information Storage Contract (PISC) 

Output: Update contract PISC 

enum ContractStates{open,midstate,closed} 

enum CSStates{𝐶𝑠1,𝐶𝑠2,𝐶𝑠3} 

ContractStates contractstate←ContractStates.open; 

CSStates csstate←CSStates. 𝐶𝑠1; 

function 𝑝𝑟𝑜𝑜𝑓1(𝑢𝑖𝑛𝑡 _𝜎, 𝑢𝑖𝑛𝑡 _𝑇) public 

1  require(msg.sender==𝐴𝑑𝑑𝑟𝑒𝑠𝑠𝐶𝑆); 
2  require(now<𝑇𝑑); 

3  require(balanceOf[msg.sender]> 𝑑𝑒𝑝𝑜𝑠𝑖𝑡𝐶𝑆); 
4  require(csstate==𝐶𝑆𝑆𝑡𝑎𝑡𝑒𝑠. 𝐶𝑠1); 
5  require(contractstate==ContractStates.open); 

6  𝜎 ← _𝜎;  𝑇 = _𝑇; 
7  csstate← 𝐶𝑆𝑆𝑡𝑎𝑡𝑒𝑠. 𝐶𝑠2; 

8  contractstate ← ContractStates.midstate; 

function 𝑝𝑟𝑜𝑜𝑓2(𝑢𝑖𝑛𝑡[𝑠 + 1] _𝑍) public 

1  require(msg.sender==𝐴𝑑𝑑𝑟𝑒𝑠𝑠𝐶𝑆); 
2   require(now<𝑇𝑑); 

3  require(contractstate==ContractStates.midstate); 

4  require(csstate==𝐶𝑆𝑆𝑡𝑎𝑡𝑒𝑠. 𝐶𝑠2); 

5  require(balanceOf[msg.sender]> 𝑑𝑒𝑝𝑜𝑠𝑖𝑡𝐶𝑆); 
6  𝑍 ← _𝑍; 

7  csstate← 𝐶𝑆𝑆𝑡𝑎𝑡𝑒𝑠. 𝐶𝑠3; 

8  contractstate← ContractStates.closed; 

 

Batch files auditing: Suppose the auditing task refers to 

multiple files. Let 𝐴𝐹 be the set of files to be audited. 

(a) This step is the same as individual file auditing (a). 

(b) Upon receiving 𝑐ℎ𝑎𝑙 from the TPA, for each file 𝑓 ∈
𝐴𝐹, the CS computes  

𝐾1 = 𝐻2(𝐹𝑓𝑛||𝑘1||𝑛𝑜𝑛𝑐𝑒1||𝑛𝑜𝑛𝑐𝑒2|| ··· ||𝑛𝑜𝑛𝑐𝑒𝜑), 

𝐾2 = 𝐻2(𝐹𝑓𝑛||𝑘2||𝑛𝑜𝑛𝑐𝑒1||𝑛𝑜𝑛𝑐𝑒2|| ··· ||𝑛𝑜𝑛𝑐𝑒𝜑), 

where 𝑛𝑜𝑛𝑐𝑒1，𝑛𝑜𝑛𝑐𝑒2，…，𝑛𝑜𝑛𝑐𝑒𝜑  are 𝜑  successive 

random numbers in blocks from height 𝐶ℎ𝑡 − 𝜑 + 1 to 𝐶ℎ𝑡. 
Then it sets the challenge set 𝐶 = {𝐶𝑓}𝑓∈𝐴𝐹 , where 𝐶𝑓 =

{(𝑖𝑓, 𝑣𝑖𝑓)}𝑖∈[1,𝑐]  and 𝑖𝑓 = 𝜙(𝐾𝑓1, 𝑖), 𝑣𝑖𝑓 = 𝜋(𝐾𝑓2, 𝑖) . It also 

chooses at random 𝑟, 𝜌𝑟 , 𝜌1, . . . , 𝜌𝑠 ∈ 𝑍𝑝
∗  and computes 

𝜎 = h𝑟∏ (∏ 𝜎
𝑓𝑖𝑓

𝑣𝑖𝑓)(𝑖𝑓,𝑣𝑖𝑓
)∈𝐶𝑓𝑓∈𝐴𝐹 , 𝑇 = 𝜂𝜌𝑟∏ 𝜂

𝑗

𝜌𝑗𝑠
𝑗=1 . 

It executes the 𝑝𝑟𝑜𝑜𝑓1 function of PISC, uploads 𝜎 and 

𝑇  to the blockchain, and sends the blockheight and 

transaction id 𝑃1 = {𝑃1ℎ𝑡, 𝑃1𝑖𝑥} to the TPA. 

(c) After receiving 𝑃1, the TPA sends (𝑘, 𝜑) to the CS. 

(d) The CS checks if Ψ = 𝑔𝑘ℎψ, and abort if it does not 

hold. It computes 𝑧𝑟 = 𝜌𝑟 − 𝑘𝑟 and for each 𝑗 ∈ [1, 𝑠],  

𝜇𝑗 = ∑ (∑ 𝑣𝑖𝑓𝑚𝑓𝑖𝑓,𝑗)(𝑖𝑓,𝑣𝑖𝑓
∈𝐶𝑓)𝑓∈𝐴𝐹 , 𝑧𝑗 = 𝜌𝑗 − 𝑘𝜇𝑗. 

It executes the 𝑝𝑟𝑜𝑜𝑓2  function of PISC, uploads 

𝑧𝑟 , 𝑧1,⋅⋅⋅, 𝑧𝑠 to the blockchain, and sends the blockheight and 

transaction id 𝑃2 = {𝑃2ℎ𝑡, 𝑃2𝑖𝑥} to the TPA. 

(e) After obtaining the proof from the blockchain, the TPA 

verifies the file tag 𝑓𝑡𝑓𝑛  by checking if 

𝑒(𝑔,∏ 𝑇𝑓𝑛𝑓∈𝐴𝐹 ) = 𝑒(𝑠𝑝𝑘,∏ 𝐻0(𝑡𝑓𝑛)𝑓∈𝐴𝐹 ), and 

 

(

 
 𝑒(𝜎,𝑔)

𝑒(∏ (∏ 𝐻1(𝐹𝑓𝑛||𝑓𝑖𝑓)
𝑣𝑖𝑓)

(𝑖𝑓,𝑣𝑖𝑓
)∈𝑐ℎ𝑎𝑙

𝑓∈𝐴𝐹 ,𝑣)

)

 
 

𝑘

=                           

𝑇

𝜂𝑧𝑟𝜂1
𝑧1𝜂2

𝑧2…𝜂𝑠
𝑧𝑠  .                                                                                (1)

  

and abort if either equation fails to hold. The TPA sends the 

auditing result to the blockchain via the 𝑣𝑒𝑟𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛 

function of CISC and sends the blockheight and transaction id 

𝑉 = {𝑉ℎ𝑡 , 𝑉𝑖𝑥} to the CS. 

(5) 𝑰𝒏𝒄𝒆𝒏𝒕𝒊𝒗𝒆 . This phase includes 𝑝𝑎𝑦𝐶𝑆  part and 

𝑝𝑎𝑦𝑇𝑃𝐴 part, which are shown in Table 6. After the task 

deadline 𝑇𝑑 , the TPA and CS would be rewarded or amerced 

by the smart contract according to the task state. Since the 

transcript of an auditing process as well as the TPA’s auditing 

result would be uploaded onto the blockchain, if the TPA 

reports a fake auditing result, although it may get the auditing 

fee, the information on the chain could serve as the evidence 

of the TPA’s misbehavior, and the DO could resort to the court 

for juridical help. 

 

Table 6. Time-locked Deposit-Withdraw Contract (TDWC) 

Output: Update contract TDWC 

enum ContractStates{open,midstate,closed} 

ContractStates contractstate←ContractStates.open; 

function payCS() public payable 

1  require(balanceOf[CS]>= 𝑑𝑒𝑝𝑜𝑠𝑖𝑡𝐶𝑆); 
2  require(balanceOf[owner]> 𝑓𝑒𝑒𝑇𝑃𝐴+𝑓𝑒𝑒𝑇𝑃𝐴); 

3  require(balanceOf[TPA]>= 𝑑𝑒𝑝𝑜𝑠𝑖𝑡𝑇𝑃𝐴); 

4  require(msg.sender==𝐴𝑑𝑑𝑟𝑒𝑠𝑠𝐶𝑆); 
5  require(now>𝑇𝑑); 

6  require(contractstate==ContractStates.open); 

7  if((tpastate==𝑇𝑠2) && (csstate==𝐶𝑠3)) 

8  balanceCS← balanceOf[CS]; 

9  balanceOf[CS]→0;  

10  msg.owner.transfer(balanceCS); 

11  contractstate←ContractStates.midstate; 

12  selfdestruct(𝐴𝑑𝑑𝑟𝑒𝑠𝑠𝐶𝑆); 
13  end 

14  if((tpastate==𝑇𝑠3) && (csstate==𝐶𝑠3)) && 

(audit_result==true) 

15  balanceOf[owner]← balanceOf[owner]- 𝑓𝑒𝑒𝐶𝑆; 
16  balanceCS←balanceOf[CS]; balanceOf[CS]→0; 

17  msg.owner.transfer(𝑓𝑒𝑒𝐶𝑆+balanceCS); 

18  contractstate←ContractStates.midstate; 

19  selfdestruct(𝐴𝑑𝑑𝑟𝑒𝑠𝑠𝐶𝑆); 
20  end 

21  if(tpastate==𝑇𝑃𝐴𝑆𝑡𝑎𝑡𝑒𝑠. 𝑇𝑠1) 

22  balanceCS← balanceOf[CS]; balanceOf[CS]→0; 

23  msg.owner.transfer(balanceCS); 

24  contractstate←ContractStates.midstate; 

25  selfdestruct(𝐴𝑑𝑑𝑟𝑒𝑠𝑠𝐶𝑆); 
26  end 

function withdraw_owner() public payable 

1  require(msg.sender==owner); 

2  require(now>𝑇𝑑); 

3  require(contractstate==ContractStates.closed); 

4  balanceowner=balanceOf[owner]; 

5  balanceCS=balanceOf[CS]; 

6  balanceTPA=balanceOf[TPA]; 
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7  balanceOf[owner]→0; balanceOf[CS]→0; 

balanceOf[TPA]→0; 

8  msg.sender.transfer(balanceowner+balanceTPA 

+balanceCS); 

9  selfdestruct(𝐴𝑑𝑑𝑟𝑒𝑠𝑠𝑜𝑤𝑛𝑒𝑟); 
function payTPA() public payable 

1  require(balanceOf[owner]> 𝑓𝑒𝑒𝑇𝑃𝐴); 

2  require(now>𝑇𝑑); 

3  require(msg.sender==𝐴𝑑𝑑𝑟𝑒𝑠𝑠𝑇𝑃𝐴); 

4  require(contractstate==ContractStates.midstate); 

5  if((csstate==𝐶𝑠1) && (tpatate==𝑇𝑠2)) 

6  balanceTPA←balanceOf[TPA]; 

7  balanceOf[TPA]→ 0;  

8  msg.sender.transfer(balanceTPA); 

9 contractstate←ContractStates.closed; 

10 selfdestruct(𝐴𝑑𝑑𝑟𝑒𝑠𝑠𝑇𝑃𝐴); 

11 end 

12  if((csstate==𝐶𝑠2) && (tpatate==𝑇𝑠2)) 

13  balanceTPA←balanceOf[TPA]; 

14  balanceOf[TPA]→ 0; 

15  msg.sender.transfer(balanceTPA); 

16 contractstate←ContractStates.closed; 

17 selfdestruct(𝐴𝑑𝑑𝑟𝑒𝑠𝑠𝑇𝑃𝐴); 

18 end 

19 if((csstate== CSStates.ℎ𝑜𝑛𝑒𝑠𝑡𝐶𝑆) && 

(tpastate==TPAStates.𝑇𝑆1)&& (audit_ result==true)) 

20  balanceOf[CS]← balanceOf[CS]- 𝑓𝑒𝑒𝑇𝑃𝐴; 

21  balanceTPA← balanceOf[TPA]; balanceTPA→ 0; 

22  msg.sender.transfer(𝑓𝑒𝑒𝑇𝑃𝐴+balanceTPA); 

23  contractstate←ContractStates.closed; 

24  selfdestruct(𝐴𝑑𝑑𝑟𝑒𝑠𝑠𝑇𝑃𝐴); 

25  end 

 

Figure 5 shows the entire interaction process among the 

DO, TPA, CS and the blockchain. 

 

 

Figure 5. Interaction with the blockchain 

 

 

 

 

6 Security Analysis 
 

6.1 Security Proof of Data Integrity 
 

The correctness of our scheme could be verified in a 

straightforward way, so we omit it here. Below we show our 

scheme satisfies data integrity defined in Sect. 4.2. 

The theorem below shows that our scheme could protect 

users’ data from being modified without authentication. 

Theorem 1: The CS could pass the auditing by the TPA 

only if it possesses the DO’s data intactly. 

Proof. The proof is based on Theorem 4.2 of [19]. A 

challenger 𝒞  controls the random oracles 𝐻0(·)，𝐻1(·)  

and 𝐻2(·) and provides valid responses. The CS is treated as 

an adversary 𝒜 against data integrity. If 𝒜 wins with non-

negligible probability, we construct a simulator 𝒮 playing the 

role of 𝒞, to solve the CDH and DL problems.  

 

Game 0. This game is simply the challenge game defined 

in Sect. 4,2. 𝒮 generates the public parameters, sets 𝑣 = 𝑔𝛼 

and 𝑢𝑗 = 𝑔
𝑎𝑗𝑔𝑏𝑏𝑗 where 𝑗 ∈ [1, 𝑠], 𝑎𝑗 , 𝑏𝑗 ∈ 𝑍𝑝, and sends all 

the public parameters to 𝒜. For each challenge block 𝑖, 𝒮 

chooses 𝑟𝑖 ∈ 𝑍𝑝 , sets 𝐻1(𝐹𝑓𝑛||𝑓𝑖) = 𝑔
𝑟𝑖/∏ (𝑔𝑎𝑗𝑚𝑓𝑖,𝑗 ·𝑠

𝑗=1

𝑔𝑏𝑏𝑖𝑚𝑓𝑖,𝑗) , and computes 𝜎𝑓𝑖 = (𝐻1(𝐹𝑓𝑛||𝑓𝑖) ·

∏ 𝑢
𝑗

𝑚𝑓𝑖,𝑗𝑠
𝑗=1 )𝛼 = 𝑔𝛼𝑟𝑖. For a challenge from the TPA, suppose 

that the CS outputs 𝑝𝑟𝑜𝑜𝑓 = {𝑇, 𝜎, 𝑧𝑟 , 𝑧1,···, 𝑧𝑠} that would 

be obtained from an honest prover and could pass the 

verification. 

 

Game 1. It is the same as Game 0, with the exception that 

the adversary is able to forge part of the proof information. 𝒞 

records each response generated by 𝒜 . Let 𝑝𝑟𝑜𝑜𝑓 =
{𝑇, 𝜎, 𝑧𝑟 , 𝑧1,···, 𝑧𝑠} be the expected proof from the CS for a 

given challenge. 𝒞 declares failure and aborts if 

(1) the response 𝑝𝑟𝑜𝑜𝑓′ = {𝑇, 𝜎, 𝑧𝑟, 𝑧1,···, 𝑧𝜉
′ ,···, 𝑧𝑠}   is 

valid, and 

(2) the response 𝑝𝑟𝑜𝑜𝑓′ is different from the expected 

𝑝𝑟𝑜𝑜𝑓. 

Analysis. By the correctness, the expected proof would 

make the following equation hold: 

 

(

 
 
 
 
 

𝑒(𝜎,𝑔)

𝑒

(

  
 
∏ 𝐻1
(𝑖
𝑓′

,𝑣𝑖
𝑓′

)∈𝑐ℎ𝑎𝑙

(𝐹
𝑓′𝑛

||𝑓′𝑖
𝑓′
)

𝑣𝑖
𝑓′ ,𝑣

)

  
 

)

 
 
 
 
 

𝑘

=

𝑇

𝜂𝑧𝑟𝜂1
𝑧1𝜂2

𝑧2···𝜂𝑠
𝑧𝑠 .                                   (2) 

 

Assume that the adversary’s output is valid as well and is 

different from the expected one at position 𝜉. Then we have 
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(

  
 𝑒(𝜎,𝑔)

𝑒(∏ 𝐻1
(𝑖
𝑓′
,𝑣𝑖
𝑓′
)∈𝑐ℎ𝑎𝑙

(𝐹𝑓′𝑛||𝑓′𝑖𝑓′)
𝑣𝑖
𝑓′ ,𝑣)

)

  
 

𝑘

=

       
𝑇

𝜂𝑧𝑟𝜂1
𝑧1𝜂2

𝑧2···𝜂
𝜉

𝑧𝜉
′

···𝜂𝑠
𝑧𝑠

 .                            (3) 

 

Dividing Eq. (3) by Eq. (2), we obtain 

𝑒(𝑢𝜉 , 𝑣)
𝑧𝜉 = 𝑒(𝑢𝜉 , 𝑣)

𝑧𝜉
′

, 

and then 𝑢
𝜉

Δ𝑧𝜉 = (𝑔𝑎𝜉𝑔𝑏𝑏𝜉)Δ𝑧𝜉 = 1 , (e.g. Δ𝑧𝜉 = 𝑧𝜉
′ − 𝑧𝜉 ≠

0) , which gives a solution to the DL problem, i.e. 𝑔𝑏 =

𝑔−𝑎𝜉/𝑏𝜉 , that is, 𝑏 = −𝑎𝜉/𝑏𝜉(𝑚𝑜𝑑 𝑝) . Notice that the 

probability of game failure is the same as that of 𝑏𝜉 =

0(𝑚𝑜𝑑 𝑝) , which is 1/𝑝 . Therefore, the probability of 

solving DL problem is 𝜖𝐷𝐿 = (1 − 1/𝑝)𝜖1, where 𝜖1 is the 

probability of 𝒜  winning in Game 1.  If 𝜖1  is non-

negligible, so is 𝜖𝐷𝐿. 
 

Game 2. It is the same as Game 1, except that 𝒜 is able 

to forge some more part of the proof information. Namely, 𝒞 

records each response generated by 𝒜, declares failure and 

aborts if 

(1) the response 𝑝𝑟𝑜𝑜𝑓′′ = {𝑇, 𝜎′, 𝑧𝑟 , 𝑧1,···, 𝑧𝜉
′ ,···, 𝑧𝑠}  is 

valid, and 

(2) the response 𝑝𝑟𝑜𝑜𝑓′′ is different from the expected 

𝑝𝑟𝑜𝑜𝑓. 

Analysis. For the adversary’s output, we have 

 

(
𝑒(𝜎′,𝑔)

𝑒(∏ 𝐻1(𝐹𝑓′𝑛||𝑓
′𝑖𝑓′)

𝑣𝑖
𝑓′ ,𝑣(𝑖

𝑓′
,𝑣
𝑖𝑓′

)∈𝑐ℎ𝑎𝑙) )

)

𝑘

=                                

𝑇

𝜂𝑧𝑟𝜂1
𝑧1𝜂2

𝑧2···𝜂
𝜉

𝑧𝜉
′

···𝜂𝑠
𝑧𝑠

 .                                                                   (4)

  

 

Dividing Eq. (4) by Eq. (2), we obtain 𝑒(𝜎/𝜎′, 𝑔)𝑘 =

𝜂
𝜉

−(𝑧𝜉−𝑧𝜉
′)

, that is, 

𝑒 ((
𝜎

𝜎′
)
𝑘

, 𝑔) = 𝑒(𝑢𝜉 , 𝑣)
−(𝑧𝜉−𝑧𝜉

′)
=  

𝑒(𝑔−𝑎𝜉Δ𝑧𝜉𝑎𝑔−𝑏𝑏𝜉Δ𝑧𝜉𝑎, 𝑔), 

Hence, we have 𝑔𝑎𝑏 = (
𝜎′𝑘

𝜎𝑘𝑣
𝑎𝜉Δ𝑧𝜉

)
1

𝑏𝜉Δ𝑧𝜉. 

Notice that the probability of game failure is the same as 

that of 𝑏𝜉Δ𝑧𝜉 = 0(𝑚𝑜𝑑 𝑝). Because 𝑏𝜉 is chosen randomly 

by 𝒞 , the probability that 𝑏𝜉Δ𝑧𝜉 = 0(𝑚𝑜𝑑 𝑝)  is 1/𝑝 . 

Therefore, the probability of solving CDH problem is 𝜖𝐶𝐷𝐻 =
(1 − 1/𝑝)𝜖2, where 𝜖2 is the probability of 𝒜 winning in 

Game 2. If 𝜖2 is non-negligible, so is 𝜖𝐶𝐷𝐻. 

 

Game 3. It is the same as Game 2, except that 𝒜 is able 

to forge any part of the proof information. Namely, 𝒞 records 

each response generated by 𝒜, declares failure and aborts if 

(1) the response 𝑝𝑟𝑜𝑜𝑓′′′ = {𝑇, 𝜎′, 𝑧𝑟 , 𝑧1
′ ,···, 𝑧𝜉

′ ,···, 𝑧𝑠
′} is 

valid, and 

(2) the response 𝑝𝑟𝑜𝑜𝑓′′′ is different from the expected 

𝑝𝑟𝑜𝑜𝑓. 

Analysis. For the adversary’s output, we have 

(
𝑒(𝜎′,𝑔)

𝑒(∏ 𝐻1(𝐹𝑓′𝑛||𝑓
′𝑖𝑓′)

𝑣𝑖𝑓′ ,𝑣(𝑖𝑓′,𝑣𝑖𝑓′)∈𝑐ℎ𝑎𝑙)
)
)𝑘 =

        
𝑇

𝜂𝑧𝑟𝜂1
𝑧1𝜂2

𝑧2
′
···𝜂

𝜉

𝑧𝜉
′

···𝜂𝑠
𝑧𝑠
′
 .                           (5) 

 

Dividing Eq. (5) by Eq. (2), we obtain  

 

𝑒 ((
𝜎

𝜎′
)
𝑘

, 𝑔) = 𝑒(𝑢1, 𝑣)
−(𝑧1−𝑧1

′) ··· 𝑒(𝑢𝑠, 𝑣)
−(𝑧𝑠−𝑧𝑠

′) =

       ∏ 𝑒(𝑢𝑗 , 𝑣)
−(𝑧𝑗−𝑧𝑗

′)𝑠
𝑗=1 .                          (6)  

 

For each 𝑗 ∈ [1, 𝑠], denote by Δ𝑧𝑗 = 𝑧𝑗 − 𝑧𝑗
′. Since 𝑧𝑗 ≠

𝑧𝑗
′, it holds that Δ𝑧𝑗 ≠ 0. From Eq. (6), we know that 

(σ/𝜎′)𝑘 = 𝑔−𝑎∑ 𝑎𝑗
𝑠
𝑗=1 Δ𝑧𝑗𝑔−𝑎𝑏∑ 𝑏𝑗Δ𝑧𝑗

𝑠
𝑗=1 , 

which gives a solution to the CDH problem, e.g. 

𝑔𝑎𝑏 = (
𝜎′𝑘

𝜎𝑘𝑔
𝑎∑ 𝑎𝑗Δ𝑧𝑗

𝑠
𝑗=1

)

1

∑ 𝑏𝑗Δ𝑧𝑗
𝑠
𝑗=1 . 

Notice that the probability of game failure is the same as 

that of ∑ 𝑏𝑗Δ𝑧𝑗 = 0
𝑠
𝑗=1 (𝑚𝑜𝑑 𝑝) , which is 1/𝑝 . Therefore, 

the probability that solving CDH problem is (1 − 1/p)𝜖3 , 

where 𝜖3 is the probability of 𝒜 winning in Game 3. If 𝜖3 

is non-negligible, so is 𝜖𝐶𝐷𝐻. 

Combining the results above, we have that the CS could 

only pass the auditing with a negligible probability if the data 

stored on it is not intact.  

This completes the proof of the theorem. 

 

6.2 Analysis of Other Security Properties 
 

Data Privacy: In our scheme, the TPA and CS 

interactively perform the auditing process by zero-knowledge 

proof. So there is not any data leakage within the process and 

TPA could not acquire any information about the DO’s data. 

Therefore, data privacy is achieved in our scheme. 

Auditing process publicity and non-modifiability: In 

our scheme, the auditing process is public and tamper-proof 

since the whole process is executed and recorded via smart 

contract in blockchain. Therefore, the scheme is successful to 

prohibit the TPA or CS from cheating. 

Timeliness: Each auditing task starts from time 𝑇𝑠 and 

ends at time 𝑇𝑑  in our scheme. TPA conducts the auditing 

task and returns the auditing result before 𝑇𝑑 , otherwise, it 

will be punished. Therefore, the timeliness of the scheme is 

achieved. 

Incentive: In our scheme, Once the DO launches an 

auditing task, TPA and CS make their deposit respectively via 

the deposit phase in the TDWC contract. Each entity would be 

rewarded if it finishes the auditing task timely, so incentive is 

realized in our scheme. 

Batch Auditing: In our scheme, multiple auditing tasks 

from the same DO can be verified simultaneously, thus the 

cost of DO is reduced. Therefore, batch auditing is realized in 

our scheme. 

 

7 Comparison and Efficiency 
 

7.1 Property Comparison 
 

We compare our scheme with some related auditing 

schemes, e.g. [5, 12-13] in Table 7, in terms of the properties 
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of privacy preservation, auditing process publicity and non-

modifiability, batch auditing, timeliness and incentive. It can 

be seen that all the schemes support privacy preservation, and 

all achieve the auditing process publicity and non-

modifiability except [5]. Both our scheme and [13] support 

batch auditing. Only our scheme achieves timeliness and 

incentive. From the comparison, we know that our scheme has 

the advantage in resisting the procrastinating TPA and in the 

auditing process transparency. 

 

Table 7. Property comparison 

Property [5] [12] [13] IPAPA 

Privacy preservation √  √  √  √  

Auditing* ×  √  √  √  

Batch auditing ×  ×  √  √  

Timeliness ×  ×  ×  √  

Incentive ×  ×  ×  √  

Auditing*: Auditing process publicity and non-modifiability 

 

7.2 Efficiency Comparison 
 

We analyze the overheads of blockchain, and computation 

overheads of our scheme and [5, 12-13]. We set the security 

parameter 𝜆 to be of 80 bits, and 𝑝 to be of 2𝜆 = 160 bits. 

 

Table 8. Storage overhead of blockchain 

 Blockchain 

[12] 𝑙𝑜𝑔𝑐 + (2𝑐 + 4)𝑙𝑜𝑔𝑝 + (𝑐 + 2)160  

[13] 𝑙𝑜𝑔𝑐 + (2𝑐 + 1)𝑙𝑜𝑔𝑝 + (𝑐 + 4)320  

IPAPA 𝑙𝑜𝑔𝑐 + (2𝑐 + 𝑠 + 4)𝑙𝑜𝑔𝑝 + 320  

IPAPA w/batch 

auditing 
𝑙𝑜𝑔𝑐 + (2𝑐𝑓0 + 𝑠 + 4)𝑙𝑜𝑔𝑝 + 320  

 

Storage overhead on blockchain. We show a comparison 

of storage overhead on the blockchain including challenge and 

proof phase in Table 8, where 𝑙𝑜𝑔 𝑝 is the length of 𝑝, 𝑙𝑜𝑔 𝑐 

is the length of 𝑐. In [5], both the TPA and DO need store the 

challenge information locally. While in other schemes, e.g. 

[12-13] and IPAPA, it is stored on the blockchain, and the 

storage overheads are of little difference.  

Moreover, the storage overhead in the batch auditing in 

IPAPA does not increase when compared with the individual 

file auditing case, because we utilize the aggregation 

technique. While that of [13] grow linearly with the number 

of files to be audited. Notice that batch auditing is not 

supported in [5]. 

Computation overhead. We show a comparison of 

computation overhead of the DO and TPA in Table 9, where 

𝐻𝑝  denotes a hash mapping to 𝑍𝑝 , 𝐸  denotes an 

exponentiation in 𝐺 , 𝐸𝑇  denotes an exponentiation in 𝐺𝑇 , 

𝑀𝑃  denotes a multiplication in 𝑍𝑝 , 𝑀𝐺  denotes a 

multiplication in 𝐺, 𝑀𝑇 denotes a multiplication in 𝐺𝑇, and 

𝑃  denotes a bilinear pairing. Compared with [5], the 

computation overhead is the same on the TPA side. But it is a 

little bigger on the CS side. That is because the challenge 

information set is chosen by TPA itself instead of algorithm in 

[5], which cannot guarantee the randomness, we provide a 

random seed for challenge information generation algorithm. 

While in the batch auditing, the computation overhead grows 

linearly with the number of auditing files. 

 

7.3 Experimental Evaluation 
 

We used public test blockchain Kovan and Ropsten in 

Ethereum to demonstrate the efficiency of our scheme. 

Consensus mechanism of Ropsten and Kovan are PoW and 

PoA respectively. The smart contract language is Solidity. The 

transaction fee is estimated as  

𝑇𝑜𝑡𝑎𝑙 𝑐𝑜𝑠𝑡 =  𝑎𝑐𝑡𝑢𝑎𝑙 𝑔𝑎𝑠 𝑢𝑠𝑒𝑑 ×  𝑔𝑎𝑠 𝑝𝑟𝑖𝑐𝑒.  

1 𝐸𝑇𝐻 = 1018𝑤𝑒𝑖 = 1019𝐺𝑤𝑒𝑖.  

We published all smart contracts (DLC, CISC, PISC, 

TDWC) into Kovan and Ropsten on June 7, 2021. 

 

 

Table 9. Computation overhead 

 TPA CS 

[5] 4𝑃 + (2𝑐 + 5)𝐸 + (2𝑠 + 3)𝐸𝑇 + (𝑐 + 1)𝑀𝐺 + 𝑠𝑀𝑇  (𝑐 + 1)𝐸 + 𝑐𝐸𝐺 + (𝑠 + 1)𝐸𝑇 + 𝑠𝑀𝑇 + (𝑐 + 𝑠 + 1)𝑀𝑝  

IPAPA 4𝑃 + (2𝑐 + 5)𝐸 + (2𝑠 + 3)𝐸𝑇 + (𝑐 + 1)𝑀𝐺 + 𝑠𝑀𝑇  2𝐻𝑝 + 2𝑐𝑀𝑝 + (𝑐 + 1)𝐸 + 𝑐𝑀𝐺 + (𝑠 + 1)𝐸𝑇 + 𝑠𝑀𝑇  

  (𝑐 + 𝑠 + 1)𝑀𝑝  

IPAPA 4𝑃 + (2𝑓0𝑐 + 5)𝐸 + (2𝑠 + 3)𝐸𝑇 + 𝑓0(𝑐 + 1)𝑀𝐺 +  2𝐻𝑝 + 2𝑐𝑓0𝑀𝑝 + (2𝑐𝑓0 + 1)𝐸 + 𝑐𝑓0𝑀𝐺 + (𝑠𝑓0 +  

/batch* (𝑠 + 1)𝑀𝑝 + 𝑠𝑀𝑇  1)𝐸𝑇 + 𝑠𝑀𝑇 + (𝑐𝑓0 + 𝑠 + 1)𝑀𝑝  

batch*: batch auditing 

 

Table 10. Gas consumption estimation of smart contracts 

Contract DLC CISC PISC TDWC 

PoW (June 7, 2021)     gas price=1 Gwei 

A* 10389493 10389507 10389513 10389523 

B* 13 33 13 52 

C* 431870 291068 313559 1195525 

D* 0.000432 0.000291 0.000314 0.001196 

PoA (June 7, 2021)      gas price=5 Gwei 

A* 25321889 25321939 25322000 25322032 

B* 2 0 1 2 

C* 431870 291068 313559 1195525 

D* 0.002159 0.001455 0.001568 0.005978 

A*: Blockcheight  B*: TxIndex  C*: Actual gas used (wei)   

D*: Total cost (ETH) 

Currently, the price configuration in Ropsten is 

𝑔𝑎𝑠 𝑝𝑟𝑖𝑐𝑒 = 1𝐺𝑤𝑒𝑖  and 𝑔𝑎𝑠 𝑝𝑟𝑖𝑐𝑒 = 5𝐺𝑤𝑒𝑖  in Kovan. 

The costs include two parts: issuing smart contracts and 

calling functions in each smart contract. The blockheight, 

transaction id, actual gas used and total cost are showed in 

Table 10.  

In addition, we tested each function transaction fees. 

Figure 6 shows the gas cost estimation of each smart contract 

and all the functions. Figure 6(a) is gas consumption of each 

function into PoW and PoA respectively, there is little 

difference of the cost under PoW and PoA. Figure 6(b) shows 

the gas consumption, gas cost does not grow with the increase 

challenge block numbers, because IPAPA only stores 

challenge information. While it grows linearly with the 

increase of segment numbers. Figure 6(c) shows the gas cost 
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of individual file auditing and batch files auditing. The 

challenge function cost does not grow with file numbers no 

matter in individual file auditing or batch files auditing. While 

the 𝑝𝑟𝑜𝑜𝑓2 function cost grows linearly in individual file 

auditing. In Figure 6(d), the gas cost has similar trend.  

Furthermore, we implemented our scheme and did the test 

on a host machine with Windows 10, Intel i7 2.5GHz CPU and 

8GB memory. Figure 7 shows the computational efficiency of 

our scheme. The time complexity of each function is shown in 

Figure 7(a), which depends on the time needed for the next 

new block generation and the confirmation numbers by other 

nodes. In our experiment, we counted the confirmation time 

after a transaction being confirmed by 500 nodes. From Figure 

7(a) we know that the confirmation of each function needs 

about 5 to 30 seconds. The computation time of executing an 

auditing task on the TPA side and CS side are shown in Figure 

7(b). The computation time grows linearly with the number of 

challenge blocks. The computation time of batch auditing is 

shown in Figure 7(c). The time complexity grows linearly with 

the number of files to be audited.  

 

 

 
(a) Gas consumption of each function  (b) Gas consumption with different challenge block numbers and segment numbers 

based on PoW and PoA  (c) Gas consumption with batch auditing and individual auditing based on PoW and PoA when 

s=300 (d) Gas consumption with batch auditing and individual auditing based on PoW and PoA when s=460 

Figure 6. Gas cost estimation 

 

 
(a) The time complexity of each function in smart contract posting into Kovan  (b) The operation time with the change of 

different challenge block numbers  (c) The operation time of batch auditing when c=300 and c=460 respectively 

Figure 7. Time complexity 

 

 

8 Conclusion 
 

Aiming to improve the auditing process transparency and 

resisting the procrastinating TPA and CS, we proposed a 

public auditing scheme with incentive based on blockchain 

and smart contracts. Specifically, our scheme utilizes smart 

contracts to implement a time-locked incentive mechanism to 

reward or amerce the entities according to the status of an 

auditing task after the deadline. The TPA would be rewarded 

if it finishes the auditing task timely and the CS would be 

rewarded if it maintains the DO’s data intactly; otherwise, they 

would be amerced. Moreover, the auditing transcript and 

result are uploaded to the blockchain to achieve the auditing 

process transparency. If there is a dispute, the information 

stored on the blockchain could serve as a witness. Our scheme 

achieves privacy preservation property so that an auditing task 

would not leak information about the DO’s data. Our scheme 

achieves timely auditing and resists the procrastinating TPA 

and CS, and supports batch auditing so that multiple files 

could be audited simultaneously without increasing the 

transaction fees. Experimental results show that our scheme is 

efficient. 
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