
A Memory-Aware Spark Cache Replacement Strategy 1185

*Corresponding Author: Gwang-Jun Kim; E-mail: kgj@chonnam.ac.kr

DOI: 10.53106/160792642022112306002

A Memory-Aware Spark Cache Replacement Strategy

Jingyu Zhang1,2, Ruihan Zhang1, Osama Alfarraj3, Amr Tolba3, Gwang-Jun Kim4*

1 School of Computer & Communication Engineering, Changsha University of Science & Technology, China
2 Science and Technology on Information Systems Engineering Laboratory, School of Systems Engineering,

National University of Defense Technology, China
3 Computer Science Department, Community College, King Saud University, Saudi Arabia

4 Department of Computer Engineering, Chonnam National University, South Korea

zhangzhang@csust.edu.cn, 19108041070@stu.csust.edu.cn, oalfarraj@ksu.edu.sa, atolba@ksu.edu.sa, kgj@chonnam.ac.kr

Abstract

Spark is currently the most widely used distributed

computing framework, and its key data abstraction concept,

Resilient Distributed Dataset (RDD), brings significant

performance improvements in big data computing. In

application scenarios, Spark jobs often need to replace RDDs

due to insufficient memory. Spark uses the Least Recently

Used (LRU) algorithm by default as the cache replacement

strategy. This algorithm only considers the most recent use

time of RDDs as the replacement basis. This characteristic

may cause the RDDs that need to be reused to be evicted when

performing cache replacement, resulting in a decrease in Spark

performance. In response to the above problems, this paper

proposes a memory-aware Spark cache replacement strategy,

which comprehensively considers the cluster memory usage,

RDD size, RDD dependencies, usage times and other

information when performing cache replacement and selects

the RDDs to be evicted. Furthermore, this paper designs

extensive corresponding experiments to test and analyze the

performance of the memory-aware Spark cache replacement

strategy. The experimental data show that the proposed

strategy can improve the performance by up to 13% compared

with the LRU algorithm in different scenarios.

Keywords: Big data, Spark, Cache replacement, Memory

resource utilization

1 Introduction

After the advent of Hadoop [1], distributed systems

gradually replaced single-machine systems as a new

processing platform for large data sets in various fields [2-4].

MapReduce specializes the split-apply-combine strategy [5],

but the drop operation after each computation greatly affects

the performance efficiency [6]. In order to solve the

performance impact of frequent shuffle operations, Spark

distributed computing framework based on Directed Acyclic

Graph (DAG) optimization has gradually become the

mainstream platform for big data processing. However, when

all data can not be cached into storage memory, Spark’s

performance becomes poor. Spark’s basic data structure is

based on a distributed data abstraction called Resilient

Distributed Dataset (RDD) [7]. When the memory storage is

insufficient, if a new RDD needs to be cached, Spark will

replace the RDD cache [8]. Currently, Spark’s default cache

replacement algorithm is the Least Recently Used (LRU)

algorithm. This algorithm maintains a Linked Hash Map to

evict the longest unused data from storage memory when

RDDs need to be evicted. However, the cache replacement

strategy based on LRU is not always effective. When the

memory of the cluster is insufficient, the cache hit rate of the

LRU algorithm will drop rapidly.

In order to improve the performance efficiency, scholars

have conducted related research for Spark. The traditional

cache replacement algorithms include First In First Out [9],

Least Frequently Used [10] and so on [11-13], and they are the

focus for performance improvement. In [14], Cao et al.

proposed a novel LRU-K algorithm, which sets a data cache

threshold K for a performance improvement. Some other

researchers focus on the weight model of data block for

replacement strategies [15-17]. [18] proposed an AWRP

weight replacement algorithm, which obtains the weight of

each data block by calculating the occurrence frequency of

data blocks, the last time of use and the total number of

accesses. Spark cache replacement strategy optimization

based on DAG is another research direction [19-21]. Yu et al.

proposed an LRC cache replacement scheme in [22], which

obtained a DAG graph according to the RDD dependencies,

and then used the number of dependencies of each RDD as the

selection basis for the cache replacement strategy. There are

also some studies that try to improve the performance of big

data clusters from other directions [23-25]. However, most of

the solutions may cause RDDs that are not used for a long time

to consume the system’s storage memory prematurely. And,

most of the proposed algorithms do not analyze the future

usage of RDDs, which may easily lead high-weighted but not

reused RDDs to occupy memory.

In order to further optimize the memory management and

performance for data analysis and processing, this paper

conducts research on the RDD cache replacement algorithm in

Spark systems, and proposes a novel memory-aware cache

replacement method. The main contributions of this paper are

mainly as follows:

1. This paper proposes a memory-aware Spark cache

replacement strategy for performance improvement. We build

the new RDD weight models for the proposed method, and

analyze the key parameters.

1186 Journal of Internet Technology Vol. 23 No. 6, November 2022

2. We design the extensive experiments for the proposed

method. The experimental results show the better performance

of our method compared with traditional algorithm.

The rest of this paper is organized as follows: Section 2

details the memory-aware Spark cache replacement strategy;

Section 3 verifies the performance of the new cache

replacement strategy through experiments; Section 4

concludes this work.

2 Model Design and Implementation

2.1 Cache Replacement Scheme Design

We present a new architecture for Spark cache

replacement as shown in Figure 1. In this architecture, we

design the Memory-Aware Cache Manager (MACM)

component to communicate with other components in the

cluster and guide the cache replacement process.

Memory-Aware

Cache Manager

DAGScheduler Dependency information

RDD

informationDriver Cluster

BlockManager

RDD

Size

Dep

...

DAG

MemoryStore

Memory

state

Cluster

Figure 1. The architecture of the memory-aware Spark cache

replacement strategy

When a job is submitted, MACM will extract the DAG

information of the job from DAG Scheduler, and analyze it to

obtain the number of dependencies and dependencies of each

RDD. For the job, Whenever an RDD is cached, MACM will

obtain the RDD size to be cached from the Block Manager.

When a new RDD needs to be cached, MACM will judge the

current system storage memory usage, and adaptively select

the memory-aware Spark cache replacement algorithm or

LRU.

2.2 Analysis of Weight Model

In order to optimize the existing cache replacement

algorithm, it is necessary to analyze the weighting factors that

may affect Spark cache performance. The notation table of all

symbols used in this section is shown in Table 1.

1) RDD size. Spark’s RDD computation is performed on a

basic partition. Tasks are divided into Executors on each

machine in the cluster for execution. The RDD size weight is

the RDD partition size obtained from the acquireMemory()

function. We can get the following.

i iR RS M= (1)

Among them,
iRS represents the size factor of RDD,

iRM represents the RDD size obtained by the

acquireMemory() function.

Table 1. Notations

Symbol Description

iR The i-th RDD

ifR Parent RDD of the i-th RDD

iRM RDD partition size obtained by the

acquireMemory function

WD Wide dependency Function

ND Narrow dependency function

iRpN The number of partitions of the i-th RDD

iRD Recomputation cost function for the i-th

RDD

iROD Out-degree of the i-th RDD

iRN The number of times function of the i-th

RDD

iRW Weight function for the i-th RDD

i Weight function parameters

Er Spark’s efficiency drop rate

ST Execution time with sufficient memory

inST Execution time with insufficent memory

2) RDD recomputation cost. RDDs with different

dependencies have different costs to recompute after been

evicted. Recomputing RDDs incurs varying amounts of

communication overhead according to the dependencies.

When there is a narrow dependency between the current RDD

and its parent RDD, each Executor only needs to communicate

with one corresponding Executor to complete the computation,

and it is allowed to be performed in the form of a pipeline.

When the current RDD and its parent RDD have a wide

dependency, each Executor in the cluster needs communicate

with all other Executors, resulting in huge network overhead

within the cluster.

Therefore, this paper defines the RDD recomputation cost

as the number of communications between Executors. Under

wide dependencies, each partition in the parent RDD is used

by multiple partitions of the child RDDs. Therefore, the

recomputation cost of wide dependency is defined as the

multiplication of the number of iRDD partitions and the

number of parent RDD partitions. The recomputation cost of

wide dependencies is calculated as shown in Equation 2,

where WD represents the recomputation cost of wide

dependencies,
ifRpN represents the number of partitions for

the parent RDD of the iRDD , and
iRpN represents the

number of partitions of the current RDD.

0

()
i i

n

W fR R

i

D pN pN
=

= (2)

When the dependency is narrow, the Executor

corresponding to each parent RDD partition only needs to

communicate with the Executor corresponding to the partition

of one child RDD, and the recomputation cost is defined as the

number of parent RDD partitions of the iRDD . The

recomputation cost of narrow dependencies is shown in

Equation 3, where ND represents the computational cost of

A Memory-Aware Spark Cache Replacement Strategy 1187

narrow dependencies, and
ifRpN represents the number of

partitions for the parent RDD of the iRDD .

0
i

n

N fR

i

D pN
=

= (3)

The total dependency weight can be defined as the sum of

the recomputation cost of wide dependencies and the

recomputation cost of narrow dependencies on the iRDD

dependency chain. The recomputation cost is denoted as

shown in Equation 4. Among them,
iRD represents the

recomputation cost weight factor of RDD.

iR W ND D D= + (4)

3) The RDD usage times. Before the job submitted by the

Spark driver is called by the Spark Context, the processing of

the specific data set will be put on hold, and the DAG

Scheduler will first build it into a DAG according to the

dependencies passed by the RDD. Therefore, the weight factor

of the RDD usage times can be directly defined as the out-

degree of iRDD in the DAG.

i iR RN OD= (5)

Among them,
iRN represents the number of times the

iRDD

is used, and
iROD represents the out-degree of the

iRDD obtained from the DAG Scheduler.

2.3 Algorithm Design

When the Spark memory is insufficient, the cache

replacement method will be called more frequently, and hit

rate will become lower than when the memory is sufficient.

Under this situation, if the algorithm (e.g., LRU) predicts the

possibility of future reuse based on historical conditions, it is

easy to cause data blocks that need to be reused to be evicted

and lead to a drop in cache hit rate and efficiency. When the

Spark job has sufficient memory, the memory can

accommodate the RDDs in more iterations. In this case, the

accuracy of the LRU algorithm based on historical conditions

will be greatly improved. LRU has the advantages of low time

complexity and short algorithm execution time.

This paper designs a memory-aware cache replacement

strategy. This strategy will collect the DAG information of the

job from the DAG Scheduler when the Spark job starts. It also

records the number of times that the RDD is been referenced.

The algorithm divides the RDD into two queues. One queue

called RCs_1 is for the RDD that needs to be reused, and

another called RCs_0 is for the RDD that will not be used

again according to the number of times the RDD is been

referenced. For RDDs that will be reused, evicting them from

the cache will inevitably result in overhead of retransmission

or recomputation; for RDDs that will not be reused, they

should be preferentially evicted from storage memory for

better performance.

Algorithm 1. Memory-aware cache replacement

algorithm

Input： Initiate RDD_new, Memory size S, RDD

weight set w, RCs_0, RCs_1

Output：

1. Begin

2. if(RCs_0 + RCs_1 >= 10) then

3. Use LRU algorithm for cache

replacement

4. else

5. var evictedRDDsize = 0

6. Calculate RDD weight

7. while(S+evictedRDDsize<RDD_new)

do

8. if (!isEmpty(RCs_0)) then

9. EvictRDDs in RCs_0 by weight

10. else

11. EvictRDDs in RCs_1 by weight

12. endif

13.

evictedRDDsize+=evictedRDD.size()

14. endif

15. end

The pseudo-code of the memory-aware Spark cache

replacement strategy is shown as Algorithm 1. In the strategy,

when a new RDD needs to be cached, the algorithm traverses

the maintained RDD queues and calculates the average RDD

size. When the average size of RDD is less than the threshold

K of the available memory space, it means that the cache is

relatively sufficient. In this case, the memory contains RDDs

used for iterations, and LRU has good performance. When the

average RDD size is greater than the threshold K, it means that

the cache hit rate of the LRU algorithm may decrease rapidly

with the increase of RDD, and the memory-aware (MA) RDD

cache replacement model will be used. In this study, the value

of K defaults to 10%.

3 Experimental Results and Analysis

In order to verify the effect of the memory-aware Spark

cache replacement algorithm, we conduct the extensive

experiments on PageRank jobs on the Spark platform. As a

comparison, we chose Spark’s default cache replacement

algorithm, LRU, to compare with our method. Fours typical

PageRank datasets are Amazon0601, web-Google, web-

Google, and com-DBLP for evaluation.

The experiments are based on Spark 2.1.0. Utilizing the

memory-aware RDD weight model, the data in the storage

memory will is replaced based on the RDD weight value. This

section aims to compare and evaluate the memory-aware

Spark cache replacement strategy and the existing LRU

through comparative experiments.

The experimental platform configures Intel@ core i5-

10400f 2.9GHz, and the RAM is 32GB. The operating system

used by the cluster is Ubuntu 16.04, the Java development kit

version is 1.8, the Scala version is 2.11.9, the Hadoop version

is 2.7.1, and the Spark version is 2.1.0. In the experiments, the

job execution time is obtained through the Spark console, and

it is recorded by averaging the results of three runs.

1188 Journal of Internet Technology Vol. 23 No. 6, November 2022

3.1 Single-Job Evaluation

For each test, we use single-job workload for performance

evaluation. We conduct two test groups with the same data set.

We prepared four data sets: Amazon0601, com-dblp.all.cmty,

facebook-combined, and web-Google. In order to better

observe how the effect of the replacement strategy varies with

the cached RDDs, the number of iterations is set to 2, 4, 6, 8,

and 10.

Figure 2 shows the experimental results when the Spark

memory size is 1G. Under the same Executor memory, the

MA strategy has obvious performance optimization compared

with the LRU. As the number of iterations increases, the Spark

execution time using different cache replacement strategies

increases, but the MA strategy has a relatively significant

reduction in execution time compared with LRU. The MA

strategy performs better in the Amazon0601 dataset and the

web-Google dataset, but the performance difference of com-

dblp.all.cmty dataset and facebook-combined dataset is not

significant. The reason is that the size of dblp dataset or

facebook dataset is small, and the memory is sufficient during

the entire Spark job process. When memory replacement is

rarely triggered, there is almost no performance difference

between the two replacement strategies.

Figure 2. Execution time under different datasets

Also, this paper verifies the performance comparison with

different Executor memory under the web-Google dataset.

The experimental results shown in Figure 3 indicate that under

the same data set, both 2GB Executor memory and 1GB

Executor memory have an optimization effect of 5%-13%

relative to the LRU. Because the LRU algorithm only

considers the time when the data block cached in memory was

last accessed, it starts to evict the data block that has not been

used for the longest time. It ignores the cost caused by repeated

reads and writes of data blocks in memory and the future use

of data blocks. Conversely, the MA cache replacement

algorithm comprehensively considers the future use of data

blocks, the data block size, dependencies and times of use, to

get a more accurate assessment of the data block. It is possible

to ensure that data blocks that are more valuable for

application execution remain in storage memory.

Figure 3. Execution time under different Executor memory

The PageRank experiments on the web-Google dataset

performed are somewhat optimized at 512MB and 4GB.

According to the analysis of the job logs, in the experimental

environment of 512MB, the PageRank algorithm using the

Google dataset experienced too frequent cache replacement,

and the storage memory can only accommodate 1-2 data

blocks. When there is a large data block for cache operation,

the more important RDD block will be evicted from memory,

resulting in frequent read and write operations. It is difficult to

achieve accurate selection of high-value RDD, and the

optimization space is small. In the 4GB experimental

environment, the memory is sufficient, and there are few cache

replacement operations. In this case, different replacement

strategies have little impact on the execution time.

3.2 Multi-Job Evaluation

Previous experiments have compared the LRU with the

memory-aware Spark cache replacement algorithm on a

single-job workload. Here, we conduct experiments on the

optimization of the Spark running performance using different

multi-job data collections. Each data collection contains more

than one single-job data sets (including Amazon0601, etc.).

According to the results shown in Figure 4 and Figure 5,

we can find that in multi-job environment, the memory-aware

Spark cache replacement strategy has different degrees of

optimization effects compared with LRU. With the increase of

iterations, MA always outperforms LRU in terms of execution

time under different memory size settings. This shows that the

MA strategy has more accurate data block replacement rules

when the cache competition happens. Our strategy can make

more full use of Spark’s memory resources and maximize the

performance of Spark’s distributed computing.

Figure 4. Execution time under different collections

A Memory-Aware Spark Cache Replacement Strategy 1189

Figure 5. Execution time comparison of Collection1

4 Conclusion

With the development of Spark systems in different

application scenarios, the traditional LRU cache replacement

algorithm can not always achieve high performance under

different environments. Especially, when the cache capacity is

insufficient, LRU does not deal with the cache replacement

operations wisely and efficiently. To solve the performance

issues for Spark, in this paper we design a novel memory-

aware cache replacement mechanism. The detailed working

framework of our proposed method is introduced, and each

component is designed with specific functions. We further

present the memory-aware cache replacement algorithm,

including the RDD weight models and symbol definitions.

Finally, we conduct designed extensive experiments to verify

the performance for our proposed method under different

settings. Evaluation shows the MA strategy outperforms LRU

in terms of Spark execution time. In the future, we plan to

integrate our approach with other systems [26-28] to provide

the efficiency and security for data storage and processing.

Acknowledgments

This work is supported by the National Natural Science

Foundation of China (No. 62172058, 61802031), the Natural

Science Foundation of Hunan Province, China (No.

2020JJ5605, 2020JJ2029, 2022SK2107, 2022GK2019,

2021JJ30735), and the Foundation of State Key Laboratory of

Public Big Data (No. PBD2021-15), Guizhou University. This

work is also funded by the Researchers Supporting Project No.

(RSP-2021/102) King Saud University, Riyadh, Saudi Arabia.

References

[1] J. Wang, Y. Yang, T. Wang, R. S. Sherratt, J. Zhang, Big

Data Service Architecture: A Survey, Journal of Internet

Technology, Vol. 21, No. 2, pp. 393-405, March, 2020.

[2] Y. Chen, Y. Lin, Z. Zheng, P. Yu, J. Shen, M. Guo,

Preference-aware edge server placement in the internet

of things, IEEE Internet of Things Journal, Vol. 9, No.

2, pp. 1289-1299, January, 2022.

[3] J. Wang, W. Wu, Z. Liao, Y. Jung, J. Kim, An enhanced

PROMOT algorithm with D2D and robust for mobile

edge computing, Journal of Internet Technology, Vol. 21,

No. 5, pp. 1437-1445, September, 2020.

[4] Y. Chen, P. Yu, W. Chen, Z. Zheng, M. Guo, Embedding-

based Similarity Computation for Massive Vehicle

Trajectory Data, IEEE Internet of Things Journal, Vol.

9, No. 6, pp. 4650-4660, March, 2022.

[5] H. Wickham, The Split-Apply-Combine Strategy for

Data Analysis, Journal of Statistical Software, Vol. 40,

No. 1, pp. 1-29, April, 2011.

[6] H. Ke, P. Li, S. Guo, M. Guo, On Traffic-Aware Partition

and Aggregation in MapReduce for Big Data

Applications, IEEE Transactions on Parallel and

Distributed Systems, Vol. 27, No. 3, pp. 818-828, March,

2016.

[7] M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma, M.

McCauley, M. J. Franklin, S. Shenker, I. Stoica,

Resilient Distributed Datasets: A Fault-Tolerant

Abstraction for In-Memory Cluster Computing, 9th

USENIX Symposium on Networked Systems Design and

Implementation (NSDI 12), San Jose, CA, America,

2012, pp. 15-28.

[8] J. Zhang, C. Wu, D. Yang, Y. Chen, X. Meng, L. Xu, M.

Guo, HSCS: a hybrid shared cache scheduling scheme

for multiprogrammed workloads, Frontiers of Computer

Science, Vol. 12, No. 6, pp. 1090-1104, December, 2018.

[9] O. Eytan, D. Harnik, E. Ofer, R. Friedman, It’s Time to

Revisit LRU vs. FIFO, 12th USENIX Workshop on Hot

Topics in Storage and File Systems (HotStorage 20),

Virtual Event, USA, 2020, pp. 1-7.

[10] G. Hasslinger, J. Heikkinen, K. Ntougias, F. Hasslinger,

O. Hohlfeld, Optimum caching versus LRU and LFU:

Comparison and combined limited look-ahead strategies,

2018 16th International Symposium on Modeling and

Optimization in Mobile, Ad Hoc, and Wireless Networks

(WiOpt), Shanghai, China, 2018, pp. 1-6.

[11] D. Lee, J. Choi, J. H. Kim, S. H. Noh, S. L. Min, Y. Cho,

C. S. Kim, LRFU: a spectrum of policies that subsumes

the least recently used and least frequently used policies,

IEEE Transactions on Computers, Vol. 50, No. 12, pp.

1352-1361, December, 2001.

[12] G. Quan, J. Tan, A. Eryilmaz, N. B. Shroff, A New

Flexible Multi-flow LRU Cache Management Paradigm

for Minimizing Misses, Proceedings of the ACM on

Measurement and Analysis of Computing Systems, Vol.

3, No. 2, pp. 1-30, June, 2019.

[13] J. Zhang, S. Zhong, J. Wang, X. Yu, O. Alfarraj, A

Storage Optimization Scheme for Blockchain

Transaction Databases, Computer Systems Science and

Engineering, Vol. 36, No. 3, pp. 521-535, January, 2021.

[14] P. Cao, E. Felten, A. R. Karlin, K. Li, Implementation

and performance of integrated application-controlled

file caching, prefetching, and disk scheduling, ACM

Transactions on Computer Systems (TOCS), Vol. 14, No.

4, pp. 311-343, November, 1996.

[15] C. Bian, J. Yu, C. Ying, W. Xiu, Self-Adaptive Strategy

for Cache Management in Spark, Acta Electronica

Sinica, Vol. 45, No. 2, pp. 278-284, February, 2017.

[16] T. Chen, L. Zhang, K. Li, L. Zhou, Optimization of RDD

Cache Replacement Strategy Optimization in Spark

Framework, Journal of Chinese Computer Systems, Vol.

40, No. 6, pp. 1248-1253, June, 2019.

[17] W. Huang, L. Meng, D. Zhang, W. Zhang, In-memory

parallel processing of massive remotely sensed data

using an apache spark on hadoop yarn model, IEEE

Journal of Selected Topics in Applied Earth

Observations and Remote Sensing, Vol. 10, No. 1, pp. 3-

1190 Journal of Internet Technology Vol. 23 No. 6, November 2022

19, January, 2017.

[18] D. Swain, B. Paikaray, D. Swain, AWRP: Adaptive

weight ranking policy for improving cache performance,

Journal of Computing, Vol. 3, No. 2, pp. 209-214,

February, 2011.

[19] Y. Zhao, J. Dong, H. Liu, J. Wu, Y. Liu, Improving Cache

Management with Redundant RDDs Eviction in Spark,

Computers, Materials & Continua, Vol. 68, No. 1, pp.

727-741, March, 2021.

[20] H. Inagaki, R. Kawashima, H. Matsuo, Improving

Apache Spark's Cache Mechanism with LRC-Based

Method Using Bloom Filter, 2018 Sixth International

Symposium on Computing and Networking Workshops

(CANDARW), Takayama, Japan, 2018, pp. 496-500.

[21] J. Chen , K. Li, Z. Tang, K. Bilal, S. Yu, C. Weng, K. Li,

A Parallel Random Forest Algorithm for Big Data in a

Spark Cloud Computing Environment, IEEE

Transactions on Parallel and Distributed Systems, Vol.

28, No. 4, pp. 919-933, April, 2017.

[22] Y. Yu, W. Wang, J. Zhang, K. B. Letaief, LRC:

Dependency-aware cache management for data

analytics clusters, IEEE INFOCOM 2017-IEEE

Conference on Computer Communications, Atlanta,

USA, 2017, pp. 1-9.

[23] H. Li, M. Dong, K. Ota, M. Guo, Pricing and

Repurchasing for Big Data Processing in Multi-Clouds,

IEEE Transactions on Emerging Topics in Computing,

Vol. 4, No. 2, pp. 266-277, April-June, 2016.

[24] J. Wang, Y. Yang, J. Zhang, X. Yu, O. Alfarraj, A. Tolba,

A Data-Aware Remote Procedure Call Method for Big

Data Systems, Computer Systems Science and

Engineering, Vol. 35, No. 6, pp. 523-532, November,

2020.

[25] M. Duan, K. Li, X. Liao, K. Li, A Parallel

Multiclassification Algorithm for Big Data Using an

Extreme Learning Machine, IEEE Transactions on

Neural Networks and Learning Systems, Vol. 29, No. 6,

pp. 2337-2351, June, 2018.

[26] J. Zhang, S. Zhong, T. Wang, H. Chao, J. Wang,

Blockchain-based Systems and Applications: A Survey,

Journal of Internet Technology, Vol. 21, No. 1, pp. 1-14,

January, 2020.

[27] Z. Xu, W. Liang, K. C. Li, J. Xu, H. Jin, A blockchain-

based Roadside Unit-assisted authentication and key

agreement protocol for Internet of Vehicles. Journal of

Parallel and Distributed Computing, Vol. 149, pp. 29-

39, March, 2021.

[28] Y. Luo, K. Yang, Q. Tang, J. Zhang, P. Li, S. Qiu, An

optimal data service providing framework in cloud radio

access network, EURASIP Journal on Wireless

Communications and Networking, Vol. 2016, p 23,

January, 2016.

Biographies

Jingyu Zhang received the Ph.D. degree in

Computer Science and Technology from

Shanghai Jiao Tong University in 2017. He

is currently a Distinguish Associate

Professor at the School of Computer &

Communication Engineering, Changsha

University of Science and Technology,

China. His research interests include computer architecture,

mobile computing and blockchain.

Ruihan Zhang received the B.E. degree in

Electronic Science and Engineering from

Xiamen University in 2018. He is currently

a graduate student at the School of

Computer & Communication Engineering,

Changsha University of Science &

Technology, China. His research interests

include big data and storage systems.

Osama Alfarraj received the master’s and

Ph.D. degrees in information and

communication technology from Griffith

University, in 2008 and 2013, respectively.

He is currently an Associate Professor of

computer sciences with King Saud

University. His current research interests

include eSystems, cloud computing, and big data.

Amr Tolba received the M.Sc. and Ph.D.

degrees from Mathematics and Computer

Science Department, Menoufia University,

Egypt, in 2002 and 2006, respectively. He

is currently on leave from Menoufia

University to the Computer Science

Department, Community College, King

Saud University. His current research interests include AI, IoT,

and data science.

Gwang-Jun Kim received the B.E., M.E.,

and Ph.D. degrees in computer engineering

from Chosun University, in 1993, 1995, and

2000, respectively. He is currently a

Professor in computer engineering at

Chonnam National University, South Korea.

His research interests include the area

sensor networks, the IoT and real-time

communication.

https://ieeexplore.ieee.org/author/37088232257

