
A Memory-Aware Spark Cache Replacement Strategy 1185 

 

 
*Corresponding Author: Gwang-Jun Kim; E-mail: kgj@chonnam.ac.kr 

DOI: 10.53106/160792642022112306002 

A Memory-Aware Spark Cache Replacement Strategy 
 

 

Jingyu Zhang1,2, Ruihan Zhang1, Osama Alfarraj3, Amr Tolba3, Gwang-Jun Kim4* 

 
1 School of Computer & Communication Engineering, Changsha University of Science & Technology, China 
2 Science and Technology on Information Systems Engineering Laboratory, School of Systems Engineering,  

National University of Defense Technology, China 
3 Computer Science Department, Community College, King Saud University, Saudi Arabia 

4 Department of Computer Engineering, Chonnam National University, South Korea 

zhangzhang@csust.edu.cn, 19108041070@stu.csust.edu.cn, oalfarraj@ksu.edu.sa, atolba@ksu.edu.sa, kgj@chonnam.ac.kr 

 

 

 

Abstract 
 

Spark is currently the most widely used distributed 

computing framework, and its key data abstraction concept, 

Resilient Distributed Dataset (RDD), brings significant 

performance improvements in big data computing. In 

application scenarios, Spark jobs often need to replace RDDs 

due to insufficient memory. Spark uses the Least Recently 

Used (LRU) algorithm by default as the cache replacement 

strategy. This algorithm only considers the most recent use 

time of RDDs as the replacement basis. This characteristic 

may cause the RDDs that need to be reused to be evicted when 

performing cache replacement, resulting in a decrease in Spark 

performance. In response to the above problems, this paper 

proposes a memory-aware Spark cache replacement strategy, 

which comprehensively considers the cluster memory usage, 

RDD size, RDD dependencies, usage times and other 

information when performing cache replacement and selects 

the RDDs to be evicted. Furthermore, this paper designs 

extensive corresponding experiments to test and analyze the 

performance of the memory-aware Spark cache replacement 

strategy. The experimental data show that the proposed 

strategy can improve the performance by up to 13% compared 

with the LRU algorithm in different scenarios. 

 

Keywords: Big data, Spark, Cache replacement, Memory 

resource utilization 

 

1 Introduction 
 

After the advent of Hadoop [1], distributed systems 

gradually replaced single-machine systems as a new 

processing platform for large data sets in various fields [2-4]. 

MapReduce specializes the split-apply-combine strategy [5], 

but the drop operation after each computation greatly affects 

the performance efficiency [6]. In order to solve the 

performance impact of frequent shuffle operations, Spark 

distributed computing framework based on Directed Acyclic 

Graph (DAG) optimization has gradually become the 

mainstream platform for big data processing. However, when 

all data can not be cached into storage memory, Spark’s 

performance becomes poor. Spark’s basic data structure is 

based on a distributed data abstraction called Resilient 

Distributed Dataset (RDD) [7]. When the memory storage is 

insufficient, if a new RDD needs to be cached, Spark will 

replace the RDD cache [8]. Currently, Spark’s default cache 

replacement algorithm is the Least Recently Used (LRU) 

algorithm. This algorithm maintains a Linked Hash Map to 

evict the longest unused data from storage memory when 

RDDs need to be evicted. However, the cache replacement 

strategy based on LRU is not always effective. When the 

memory of the cluster is insufficient, the cache hit rate of the 

LRU algorithm will drop rapidly. 

In order to improve the performance efficiency, scholars 

have conducted related research for Spark. The traditional 

cache replacement algorithms include First In First Out [9], 

Least Frequently Used [10] and so on [11-13], and they are the 

focus for performance improvement. In [14], Cao et al. 

proposed a novel LRU-K algorithm, which sets a data cache 

threshold K for a performance improvement. Some other 

researchers focus on the weight model of data block for 

replacement strategies [15-17]. [18] proposed an AWRP 

weight replacement algorithm, which obtains the weight of 

each data block by calculating the occurrence frequency of 

data blocks, the last time of use and the total number of 

accesses. Spark cache replacement strategy optimization 

based on DAG is another research direction [19-21]. Yu et al. 

proposed an LRC cache replacement scheme in [22], which 

obtained a DAG graph according to the RDD dependencies, 

and then used the number of dependencies of each RDD as the 

selection basis for the cache replacement strategy. There are 

also some studies that try to improve the performance of big 

data clusters from other directions [23-25]. However, most of 

the solutions may cause RDDs that are not used for a long time 

to consume the system’s storage memory prematurely. And, 

most of the proposed algorithms do not analyze the future 

usage of RDDs, which may easily lead high-weighted but not 

reused RDDs to occupy memory. 

In order to further optimize the memory management and 

performance for data analysis and processing, this paper 

conducts research on the RDD cache replacement algorithm in 

Spark systems, and proposes a novel memory-aware cache 

replacement method. The main contributions of this paper are 

mainly as follows: 

1. This paper proposes a memory-aware Spark cache 

replacement strategy for performance improvement. We build 

the new RDD weight models for the proposed method, and 

analyze the key parameters. 
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2. We design the extensive experiments for the proposed 

method. The experimental results show the better performance 

of our method compared with traditional algorithm. 

The rest of this paper is organized as follows: Section 2 

details the memory-aware Spark cache replacement strategy; 

Section 3 verifies the performance of the new cache 

replacement strategy through experiments; Section 4 

concludes this work. 

 

2 Model Design and Implementation 
 

2.1 Cache Replacement Scheme Design 
 

We present a new architecture for Spark cache 

replacement as shown in Figure 1. In this architecture, we 

design the Memory-Aware Cache Manager (MACM) 

component to communicate with other components in the 

cluster and guide the cache replacement process. 
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Figure 1. The architecture of the memory-aware Spark cache 

replacement strategy 

 

When a job is submitted, MACM will extract the DAG 

information of the job from DAG Scheduler, and analyze it to 

obtain the number of dependencies and dependencies of each 

RDD. For the job, Whenever an RDD is cached, MACM will 

obtain the RDD size to be cached from the Block Manager. 

When a new RDD needs to be cached, MACM will judge the 

current system storage memory usage, and adaptively select 

the memory-aware Spark cache replacement algorithm or 

LRU. 

 

2.2 Analysis of Weight Model 
 

In order to optimize the existing cache replacement 

algorithm, it is necessary to analyze the weighting factors that 

may affect Spark cache performance. The notation table of all 

symbols used in this section is shown in Table 1. 

1) RDD size. Spark’s RDD computation is performed on a 

basic partition. Tasks are divided into Executors on each 

machine in the cluster for execution. The RDD size weight is 

the RDD partition size obtained from the acquireMemory() 

function. We can get the following. 

 

i iR RS M=                      (1) 

 

Among them, 
iRS  represents the size factor of RDD, 

iRM  represents the RDD size obtained by the 

acquireMemory() function. 

Table 1. Notations 

Symbol Description 

iR  The i-th RDD 

ifR  Parent RDD of the i-th RDD 

iRM  RDD partition size obtained by the 

acquireMemory function 

WD  Wide dependency Function 

ND  Narrow dependency function 

iRpN  The number of partitions of the i-th RDD 

iRD  Recomputation cost function for the i-th 

RDD 

iROD  Out-degree of the i-th RDD 

iRN  The number of times function of the i-th 

RDD 

iRW  Weight function for the i-th RDD 

i  Weight function parameters 

Er  Spark’s efficiency drop rate 

ST  Execution time with sufficient memory 

inST  Execution time with insufficent memory 

 

2) RDD recomputation cost. RDDs with different 

dependencies have different costs to recompute after been 

evicted. Recomputing RDDs incurs varying amounts of 

communication overhead according to the dependencies. 

When there is a narrow dependency between the current RDD 

and its parent RDD, each Executor only needs to communicate 

with one corresponding Executor to complete the computation, 

and it is allowed to be performed in the form of a pipeline. 

When the current RDD and its parent RDD have a wide 

dependency, each Executor in the cluster needs communicate 

with all other Executors, resulting in huge network overhead 

within the cluster. 

Therefore, this paper defines the RDD recomputation cost 

as the number of communications between Executors. Under 

wide dependencies, each partition in the parent RDD is used 

by multiple partitions of the child RDDs. Therefore, the 

recomputation cost of wide dependency is defined as the 

multiplication of the number of iRDD  partitions and the 

number of parent RDD partitions. The recomputation cost of 

wide dependencies is calculated as shown in Equation 2, 

where WD  represents the recomputation cost of wide 

dependencies, 
ifRpN  represents the number of partitions for 

the parent RDD of the iRDD , and 
iRpN  represents the 

number of partitions of the current RDD. 
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When the dependency is narrow, the Executor 

corresponding to each parent RDD partition only needs to 

communicate with the Executor corresponding to the partition 

of one child RDD, and the recomputation cost is defined as the 

number of parent RDD partitions of the iRDD . The 

recomputation cost of narrow dependencies is shown in 

Equation 3, where ND  represents the computational cost of 
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narrow dependencies, and 
ifRpN  represents the number of 

partitions for the parent RDD of the iRDD . 
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The total dependency weight can be defined as the sum of 

the recomputation cost of wide dependencies and the 

recomputation cost of narrow dependencies on the iRDD  

dependency chain. The recomputation cost is denoted as 

shown in Equation 4. Among them, 
iRD  represents the 

recomputation cost weight factor of RDD. 

 

iR W ND D D= +                    (4) 

 

3) The RDD usage times. Before the job submitted by the 

Spark driver is called by the Spark Context, the processing of 

the specific data set will be put on hold, and the DAG 

Scheduler will first build it into a DAG according to the 

dependencies passed by the RDD. Therefore, the weight factor 

of the RDD usage times can be directly defined as the out-

degree of iRDD  in the DAG. 

 

i iR RN OD=                       (5) 

 

Among them, 
iRN  represents the number of times the 

iRDD
 

is used, and 
iROD  represents the out-degree of the 

iRDD  obtained from the DAG Scheduler. 

 

2.3 Algorithm Design 
 

When the Spark memory is insufficient, the cache 

replacement method will be called more frequently, and hit 

rate will become lower than when the memory is sufficient. 

Under this situation, if the algorithm (e.g., LRU) predicts the 

possibility of future reuse based on historical conditions, it is 

easy to cause data blocks that need to be reused to be evicted 

and lead to a drop in cache hit rate and efficiency. When the 

Spark job has sufficient memory, the memory can 

accommodate the RDDs in more iterations. In this case, the 

accuracy of the LRU algorithm based on historical conditions 

will be greatly improved. LRU has the advantages of low time 

complexity and short algorithm execution time. 

This paper designs a memory-aware cache replacement 

strategy. This strategy will collect the DAG information of the 

job from the DAG Scheduler when the Spark job starts. It also 

records the number of times that the RDD is been referenced. 

The algorithm divides the RDD into two queues. One queue 

called RCs_1 is for the RDD that needs to be reused, and 

another called RCs_0 is for the RDD that will not be used 

again according to the number of times the RDD is been 

referenced. For RDDs that will be reused, evicting them from 

the cache will inevitably result in overhead of retransmission 

or recomputation; for RDDs that will not be reused, they 

should be preferentially evicted from storage memory for 

better performance. 

 

 

Algorithm 1. Memory-aware cache replacement 

algorithm 

Input： Initiate RDD_new, Memory size S, RDD 

weight set w, RCs_0, RCs_1 

Output： 

1. Begin 

2.   if(RCs_0 + RCs_1 >= 10) then 

3.     Use LRU algorithm for cache 

replacement 

4.     else 

5.     var evictedRDDsize = 0 

6.     Calculate RDD weight 

7.     while(S+evictedRDDsize<RDD_new) 

do 

8.       if (!isEmpty(RCs_0)) then 

9.         EvictRDDs in RCs_0 by weight 

10.         else 

11.         EvictRDDs in RCs_1 by weight 

12.       endif 

13.       

evictedRDDsize+=evictedRDD.size() 

14.   endif 

15. end 

 

The pseudo-code of the memory-aware Spark cache 

replacement strategy is shown as Algorithm 1. In the strategy, 

when a new RDD needs to be cached, the algorithm traverses 

the maintained RDD queues and calculates the average RDD 

size. When the average size of RDD is less than the threshold 

K of the available memory space, it means that the cache is 

relatively sufficient. In this case, the memory contains RDDs 

used for iterations, and LRU has good performance. When the 

average RDD size is greater than the threshold K, it means that 

the cache hit rate of the LRU algorithm may decrease rapidly 

with the increase of RDD, and the memory-aware (MA) RDD 

cache replacement model will be used. In this study, the value 

of K defaults to 10%. 

 

3 Experimental Results and Analysis 
 

In order to verify the effect of the memory-aware Spark 

cache replacement algorithm, we conduct the extensive 

experiments on PageRank jobs on the Spark platform. As a 

comparison, we chose Spark’s default cache replacement 

algorithm, LRU, to compare with our method. Fours typical 

PageRank datasets are Amazon0601, web-Google, web-

Google, and com-DBLP for evaluation. 

The experiments are based on Spark 2.1.0. Utilizing the 

memory-aware RDD weight model, the data in the storage 

memory will is replaced based on the RDD weight value. This 

section aims to compare and evaluate the memory-aware 

Spark cache replacement strategy and the existing LRU 

through comparative experiments. 

The experimental platform configures Intel@ core i5-

10400f 2.9GHz, and the RAM is 32GB. The operating system 

used by the cluster is Ubuntu 16.04, the Java development kit 

version is 1.8, the Scala version is 2.11.9, the Hadoop version 

is 2.7.1, and the Spark version is 2.1.0. In the experiments, the 

job execution time is obtained through the Spark console, and 

it is recorded by averaging the results of three runs. 
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3.1 Single-Job Evaluation 
 

For each test, we use single-job workload for performance 

evaluation. We conduct two test groups with the same data set. 

We prepared four data sets: Amazon0601, com-dblp.all.cmty, 

facebook-combined, and web-Google. In order to better 

observe how the effect of the replacement strategy varies with 

the cached RDDs, the number of iterations is set to 2, 4, 6, 8, 

and 10. 

Figure 2 shows the experimental results when the Spark 

memory size is 1G. Under the same Executor memory, the 

MA strategy has obvious performance optimization compared 

with the LRU. As the number of iterations increases, the Spark 

execution time using different cache replacement strategies 

increases, but the MA strategy has a relatively significant 

reduction in execution time compared with LRU. The MA 

strategy performs better in the Amazon0601 dataset and the 

web-Google dataset, but the performance difference of com-

dblp.all.cmty dataset and facebook-combined dataset is not 

significant. The reason is that the size of dblp dataset or 

facebook dataset is small, and the memory is sufficient during 

the entire Spark job process. When memory replacement is 

rarely triggered, there is almost no performance difference 

between the two replacement strategies. 

 

 
Figure 2. Execution time under different datasets 

 

Also, this paper verifies the performance comparison with 

different Executor memory under the web-Google dataset. 

The experimental results shown in Figure 3 indicate that under 

the same data set, both 2GB Executor memory and 1GB 

Executor memory have an optimization effect of 5%-13% 

relative to the LRU. Because the LRU algorithm only 

considers the time when the data block cached in memory was 

last accessed, it starts to evict the data block that has not been 

used for the longest time. It ignores the cost caused by repeated 

reads and writes of data blocks in memory and the future use 

of data blocks. Conversely, the MA cache replacement 

algorithm comprehensively considers the future use of data 

blocks, the data block size, dependencies and times of use, to 

get a more accurate assessment of the data block. It is possible 

to ensure that data blocks that are more valuable for 

application execution remain in storage memory. 

 

 
Figure 3. Execution time under different Executor memory 

 

The PageRank experiments on the web-Google dataset 

performed are somewhat optimized at 512MB and 4GB. 

According to the analysis of the job logs, in the experimental 

environment of 512MB, the PageRank algorithm using the 

Google dataset experienced too frequent cache replacement, 

and the storage memory can only accommodate 1-2 data 

blocks. When there is a large data block for cache operation, 

the more important RDD block will be evicted from memory, 

resulting in frequent read and write operations. It is difficult to 

achieve accurate selection of high-value RDD, and the 

optimization space is small. In the 4GB experimental 

environment, the memory is sufficient, and there are few cache 

replacement operations. In this case, different replacement 

strategies have little impact on the execution time. 

 

3.2 Multi-Job Evaluation 
 

Previous experiments have compared the LRU with the 

memory-aware Spark cache replacement algorithm on a 

single-job workload. Here, we conduct experiments on the 

optimization of the Spark running performance using different 

multi-job data collections. Each data collection contains more 

than one single-job data sets (including Amazon0601, etc.). 

According to the results shown in Figure 4 and Figure 5, 

we can find that in multi-job environment, the memory-aware 

Spark cache replacement strategy has different degrees of 

optimization effects compared with LRU. With the increase of 

iterations, MA always outperforms LRU in terms of execution 

time under different memory size settings. This shows that the 

MA strategy has more accurate data block replacement rules 

when the cache competition happens. Our strategy can make 

more full use of Spark’s memory resources and maximize the 

performance of Spark’s distributed computing. 

 

 
Figure 4. Execution time under different collections 
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Figure 5. Execution time comparison of Collection1 

 

4 Conclusion 
 

With the development of Spark systems in different 

application scenarios, the traditional LRU cache replacement 

algorithm can not always achieve high performance under 

different environments. Especially, when the cache capacity is 

insufficient, LRU does not deal with the cache replacement 

operations wisely and efficiently. To solve the performance 

issues for Spark, in this paper we design a novel memory-

aware cache replacement mechanism. The detailed working 

framework of our proposed method is introduced, and each 

component is designed with specific functions. We further 

present the memory-aware cache replacement algorithm, 

including the RDD weight models and symbol definitions. 

Finally, we conduct designed extensive experiments to verify 

the performance for our proposed method under different 

settings. Evaluation shows the MA strategy outperforms LRU 

in terms of Spark execution time. In the future, we plan to 

integrate our approach with other systems [26-28] to provide 

the efficiency and security for data storage and processing. 
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