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Abstract 

With the advent of 5G networks, various research on 
Multi-access Edge Computing (MEC) to provide high-
reliability and ultra-low latency services are being actively 
conducted. MEC is an intelligent service distributed cloud 
technology that provides a high level of personal services by 
deploying cloud servers to edge networks physically closed to 
users. However, there is a technical issue to be solved, e.g., the 
service being used by a user does not exist in the new edge 
network, and there may even be situations in which the service 
cannot be provided in the new edge network. To address this, 
the service application must be relocated according to the 
location of the user’s movement. Various research works are 
underway to solve this service relocation issue, e.g., cold/live 
migration studies have been carried in legacy cloud 
environments. In this paper, we propose a container migration 
technique that guarantees a smooth service application 
relocation for mobile users. We design scenarios for adaptive 
handoff and describe the detailed operation process. In 
addition, we present our MEC testbed, which has been used to 
experiment our container migration technique. 

Keywords: Beyond 5G, Multi-access Edge Computing, 
Application Relocation, Service migration 

1  Introduction 

Mobile access technology is undergoing a revolutionary 
change every decade. Additionally, each generation of mobile 
access technology has delivered significant performance gains. 
Data usage has skyrocketed especially over the past decade 
due to the demand for high quality of video content. Users' 
viewing time is also increasing. Demand for content will 
continue to grow at a tremendous rate that surpasses forecasts. 
Since 2015, the 5th generation mobile communication 
standards established by the Radiocommunications Bureau of 
the International Telecommunication Union have been 
announced. Detailed technical discussions for IMT-2020 (5G) 
began in earnest in early 2016 [1]. Various studies are being 
conducted to satisfy 5G performance requirements. Among 
them, MEC considers service application deployments closed 
to the edge to provide ultra-low latency/high-performance 
services for users.  

Application redeployment is being considered as a 
technique to improve users’ quality of service. For instance, 
application redeployment can be integrated with a mobile 
user’s handoff process to allow services to be relocated or 

deployed for a new edge network of the mobile user. Various 
schemes for application redeployment are being studied in 
recent years, e.g., a study to utilize live migration and cold 
migration technologies within virtual machines that exist in 
legacy cloud technologies. Recent research focuses on a 
container environment. If a user equipment (UE), which used 
a service on an edge network, has mobility, the same service 
may not exist or may not be provided on the moved edge 
network. To solve this, it is necessary to be able to redeploy 
the service application according to the location the user has 
moved to. In this paper, we propose a new migration technique 
for application redeployment. The proposed migration 
technique is based on container, which is much lightweight in 
terms of operation cost. We also present our testbed 
environment, wherein Kubernetes is used to effectively 
redeploy applications. As an experimental example, we show 
a stateful video streaming service performed in our testbed. 

The rest of this article follows. Section 2 provides related 
works. Chapter 3 introduces the proposed method: MEC based 
service relocation. Chapter 4 presents the experimental results 
to evaluate the performance of the proposal. Section 5 
concludes this paper. 

2  Related Works 

2.1 Multi-access Edge Computing 

MEC has been proposed for high-reliability, low-latency 
communication in 5G networks and has been announced as a 
core technology to meet 5G KPIs [2]. Since 2014, MEC 
standards have been in progress centered on European 
Telecommunications Standards Institute (ETSI). Technical 
meetings for MEC standards are still active and ETSI Group 
Specification and ETSI Group Report are continuously 
developed [3]. 

MEC has been proposed to further meet 5G conditions by 
expanding research on fog computing among distributed cloud 
technologies. ETSI ISG is also conducting various Proof of 
Concept (PoC) projects. For real interoperability, project 
results follow standard specifications. MEC’s initial name was 
‘mobile edge computing’ for the purpose of supporting LTE. 
The name has been changed to ‘Multi-Access Edge 
Computing’ to support various access networks together. 

In MEC, computing is done at the edge of the network 
rather than in the cloud or core network. The edge network 
exists between the radio access network (RAN) and the core 
network. Users move within the RAN and are served by MEC 
components within the edge network. 



912 Journal of Internet Technology Vol. 23 No. 4, July 2022 

Figure 1. iMEC structure 

Figure 1 above shows an MEC structure for a 4G and 5G 
coexisting environment. The characteristics of MEC are as 
follows: MEC has a distributed structure unlike the existing 
centralized cloud. It deploys an MEC host providing its own 
platform to run containerized applications. MEC also operates 
virtualization based MEC network configuration and 
management such as SDN and NFV. 

Figure 2. MEC framework [4] 

As of August 2021, 48 standards have been published by 
ETSI MEC related groups. Among them, “MEC 002; 
Technical Requirements” and “MEC 003; Framework and 
Reference Architecture” documents are analyzed. It was 
published in 2016 to establish the initial concept of MEC. As 
shown in Figure 2 above, the MEC framework can be grouped 
at host level and MEC network level. MEC host includes MEC 
platform and one infrastructure that provides storage, network 
resources and storage devices for running MEC apps. MEC 
platform supports MEC apps in a specific virtualization 
infrastructure. A collection of essential features required to run 
and provide MEC services MEC apps are instantiated in the 
infrastructure of MEC hosts based on requests or 
environments implemented by MEC Platform Manager MEC 
Platform Manager is configured at MEC system level and 
MEC host level MEC system-level management includes the 
multi-access edge orchestrator as a core component with an 
overview of the entire multi-access edge system MEC host-
level management manages the MEC platform administrator 
and specific mobile edge hosts and upper running application 

functions It consists of a Virtualization Infrastructure Manager 
(VIM). 

Figure 3. MEC RA [5] 

The reference architecture shows the functional elements 
that make up the mobile edge system and the reference point 
between them. Figure 3 shows the mobile edge system 
reference architecture. Three groups of reference points are 
defined between system entities. 

• Mp: Reference Points for Mobile Edge Platform
Capabilities 

• Mm: Management reference point
• Mx: Reference point connected to external entity

2.2 Application Relocation 

As existing networks change to 5G MEC, one of the main 
features added is Application Relocation. With the 5G MEC 
environment, services for individuals (e.g., autonomous 
vehicles, telemedicine, and surgery) will increase. These 
applications need to keep users moving with them. To this end, 
the 5G MEC standard covers what is called Application 
Relocation [6]. Application relocation refers to a function in 
which the ME App must also be moved as the UE using the 
ME service moves. To do this, you must select the MEC server 
to be migrated when moving, and then perform a service 
migration for the application. It can be operated based on the 
service migration technique in the existing cloud environment. 
Service migration is a concept used in traditional cloud 
computing environments, formerly used to simply move to 
another infrastructure due to obsolescence of the infrastructure. 
Now, due to the expansion of cloud technology, service 
migration technology is being used in more diverse 
environments. 

In an LTE network, handover is performed from an 
existing cell to another cell as a user moves. However, in 5G 
MEC, not only handover that a user moves, but also service 
migration according to mobility must be performed 
automatically. At this time, the time it takes from service 
termination to restart is called Service Down Time, and 
various methodologies are being studied to minimize the time. 
Research on this area is essential to satisfy the ultra-low 
latency, a key element of 5G. 

2.3 Docker 

Docker is an open-source container project launched in 
March 2013. The advent of Docker has made container 
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research and implementation possible. Unlike traditional 
virtual machines, containers operate in isolated cgroups 
(control groups) and namespaces assigned by the host 
operating system. A cgroup is a feature of the Linux kernel 
that provides control (e.g., limits, isolation) over Linux system 
resources (e.g., memory, CPU, I/O, network) and allows the 
creation of resource groups for assigning ownership. 
Namespaces are also a feature of the Linux kernel that 
provides isolated spaces for filesystems, processes, networks, 
IPCs, hostnames, and users. In the beginning, Docker applied 
and operated Linux kernel's LXC (LinuX Containers) 
technology as it is, but from Docker 11, it is operated based on 
runC, which is implemented by itself based on OCI (Open 
Container Initiative) [7]. OCI is a project of the Linux 
Foundation to design open standards for operating system 
level virtualization (containers) and Linux containers [8]. 
Figure 4 below shows the difference between virtual machine 
and Docker architectures. 

Figure 4. Virtual machine and docker architecture 

Docker builds containers from images. Typically, images 
are uploaded to a remote repository and shared between users. 
Docker uploads and downloads to the remote repository via 
this name. And the image takes the form of several layers. 
When running containers, these layers are combined to act as 
a unified file system. It is called the union file system. Images 
have a base image layer and a container layer. The base image 
layer is the layer for running containers. Base images have 
read-only permissions, and multiple containers can be created 
with one base image. When the container is created, another 
layer is added to store the values changed by the user. This is 
called the container layer. A container layer is created above 
the base image. The container layer only stores created and 
modified files. When you convert this to an image, it is saved 
as a container layer stacked on top of the main image layer. 
Docker provides the ability to save the containers you've 
worked on as a new image. In other words, I created another 
base image layer by merging the container layer and the base 
image layer. The new image contains the running state of the 
old container. Docker provides various storage drivers and 
Docker Engine 20.10 works with overlay2 by default. 
Overlay2 is the preferred storage driver for all currently 
supported Linux distributions because it requires no additional 
configuration. Each storage driver has a different way of 
storing and mounting images when the container is created. 

2.4 Kubernetes 

Kubernetes is a system that can automate the management 
of containerized applications on multiple hosts and a 
framework that provides rich functionality to easily control the 
lifecycle of applications. In general, it provides a mechanism 
for deploying, maintaining, and scaling applications. This 
allows you to automate application management based on 
user-created policies. It aims to optimize container 
deployment management and works with Docker. 

Kubernetes has clusters, which are collections of nodes for 
running containerized applications. Users can define different 
clusters depending on the service type. A cluster consists of 
one or more master nodes and worker nodes. A worker node 
is the host on which the actual application runs. The master 
node is the node that manages the worker nodes and the cluster. 
The master node handles the control plane, such as detecting 
all events in the cluster and determining actions. The 
following describes the application of the MEC environment. 
ME hosts are worker nodes that provide services to real users. 
And the ME manager where the master node performs 
monitoring and control nodes. 

In Kubernetes, the smallest unit of an application is called 
a Pod. The smallest and simplest unit of a deployed object. 
Pods can be customized and configured by users in many 
different types. For example, you can create a single container 
or a pod that consists of multiple containers. Authorized nodes 
can monitor pod health in real time. Figure 5 shows the 
Kubernetes components [9]. 

Figure 5. Kubernetes components 

3 Proposed Service Relocation 

3.1 Design 

In the MEC architecture, a UE's cell handoff and the ME 
application's handoff occur. Here, we focus on describing our 
design for performing adaptive handoff in the MEC 
architecture. A handoff of the UE means that the UE moves to 
another cell. This occurs within the RAN while handoffs to 
ME applications occur within the edge network. This is called 
application relocation, which refers to moving application 
services between ME servers. When application relocation 
happening, there may be various ways to configure the service, 
but only the container case is considered in this paper. 

There are two use cases where this application relocation 
occurs. The first case is Relocation After Preparation (Pro-
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active Migration): UE moves after synchronization of the base 
image. The second case is Relocation Before Preparation (Re-
active Migration): UE moves without prior preparation. There 
is a difference between them, i.e., being active or being 
reactive for handoffs. In other words, application relocation 
can be classified depending on whether there is a preparatory 
procedure or not. In Pro-active Migration, the copy process is 
divided into two copies. The first copy syncs the base image 
and the second copies the container layer. In this paper, we 
call the base image as the pre-copy 1 and the container layer 
as the pre-copy 2. On the other hand, since there is no separate 
preparation procedure in Re-active Migration, there is only 
one image, and we call this as a post-copy. Note that in Re-
active Migration, the service is resumed through one copy 
process after the terminal moves.  

The concept defined in this paper has been well used in 
cellular network handoff scenarios. When a UE’s handoff is 
detected, required preparations are proactively performed to 
minimize handoff latency. This is called a proactive handoff 
mechanism. Also, when a UE’s handoff is not detected in 
advance, then a reactive handoff mechanism is performed to 
support the UE’s handoff. In this paper, we further extend it to 
support smooth service relocation when the UE’s handoff in 
the MEC architecture.

A diagrammatic representation of the service relocation 
algorithm is shown in Figure 6. As shown, depending on the 
handoff request message type, the service relocation algorithm 
decides Pro-active Migration or Re-active Migration. The 
following Sections 3.1.1 and 3.1.2 describe detailed 
procedures for each case. 

Figure 6. Application relocation algorithm 
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Figure 7. Pro-Active procedure 

Figure 8. Re-Active procedure 
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3.1.1 Pro-Active Migration 

This course starts with a pre-scenario once you decide 
whether you are ready or not. Therefore, the source host asks 
the target host for basic image synchronization procedures. 
This is called Pre-copy 1. The source application then stores 
the context data in a persistent volume (PV) until a handoff 
occurs at the UE. When this process is completed, the actual 
UE requests a connection to another cell and the ME host 
(target host). At this time, the service of the actual application 
is terminated, and service downtime begins. The target 
application runs a container based on the synchronized base 
image and synchronizes the data accumulated in the PV to the 
target storage. After completion of recovery, the target 
application notifies the end of Pre-copy 2 and restarts the 
service. The restart time is the endpoint of the last downtime 
measurement. Then, the UE receives the service from the 
moved host. Figure 7 above shows the detailed operation 
procedure. 

3.1.2 Re-Active Migration

Reactive Process, on the other hand, has no preparation 
time. This scenario occurs in a situation after the actual UE 
moves to another cell. Similarly, the UE makes a connection 
request to the ME host (target host). At this point, the real 
application's service is shut down and service downtime 
begins. Commits the state of the source application just before 
shutdown and uploads it to the remote repository. And the 
target application downloads the uploaded application image. 
Start the service by running it as a container. The restart time 
is from when the source application is shut down to when the 
target service is restarted. Therefore, the post-scenario has 
more downtime than the pre-scenario. Figure 8 above shows 
the detailed operation procedure. 

3.2 Implementation 

We here describe the development of a service migration 
module that performs application relocation by merging the 
existing handover function and service migration function. 
That is, this paper proposes an adaptive service migration 
method according to the UE handover situation. The test bed 
was configured using Kubernetes. It is a form of deploying an 
ME app as a pod in Kubernetes, a container, and providing 
application services to the UE. The target service was selected 
as a video streaming service. Signing in initially allows users 
to watch videos and seamlessly use the same services as before, 
with the session they first logged in to, even after the user 
moves. The development was implemented only for the Pro-
Active scenario. The notations and definitions of the 
components used are summarized in Table 1 below. 

Table 1. Notation 

Notations 
Semantics 
in 
Kubernetes 

Semantics 
in MEC Definitions Entity in

Procedure 

MEC-M Master 
Node ME host Relocation

Application RLapp

ME Host 
1 

Worker 
Node ME host Server 1 Source 

Notations 
Semantics 
in 
Kubernetes 

Semantics 
in MEC Definitions Entity in 

Procedure 

ME Host 
2 

Worker 
Node ME host Server 2 Target 

MEApp Pod ME 
App 

User 
Service MEapp 

RLapp Pod ME 
Application 

Relocation 
Service RLapp 

The testbed consists of 3 ME hosts and 2 wireless RAN 
networks. Kubernetes builds 1 master node and 2 worker 
nodes that act as ME hosts. The band of the wireless RAN 
network was specified as 192.168.0.x for Cell 1 and 
192.168.100.x for Cell 2. ME Hosts 1 and Cell 2 are in Cell 1 
and Cell 2 respectively and are the closest servers. Each cell 
provides various ME App services to the UE. Figure 9 shows 
the schematic of the test bed. This is the case of service 
migration from ME App 2 on ME Host 1 to ME App 3 on ME 
Host 2. As the UE moves from Cell 1 to Cell 2, services are 
also migrated. A zone is the same concept as a cell. In 
Kubernetes terminology, being in a different zone means 
being in a different cluster. As previously designed in Section 
3.1, development proceeded with both Pro-Active and Re-
Active scenarios. 

Figure 9. Network configure diagram 

As shown in Figure 10, what the user is receiving is the 
web page of the video streaming server. The following 
describes the web screens on each side. On the left is the login 
interface. Initially, users log in to use the service. When the 
login is completed, the video is played from the beginning as 
shown on the right because this is the first login. Even if the 
service is restarted after the user moves, the logged-in session 
is maintained and the viewing time before the end of the 
service is saved. Seamlessly use the same services as before, 
after Application Relocation. 

Figure 10. ME app (videoapp) 
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The following is web of RLapp. As shown in the Figure 
11, Google Map API-based user movement path (latitude, 
longitude, node information) is displayed. Outputs RLapp 
(Relocation Application) server log, service downtime and 
service status/process. In the log, it displays the timestamp and 
the cell and zone to which the UE belongs and includes the 
actual GPS latitude and longitude. 

Figure 11. RLapp web page 

4 Experimental Evaluation 

This section describes the contents of the experiment to 
evaluate the performance of the implemented system. 
Assuming that the UE handed off the existing service before 
performing the handoff, the average time required to restart 
the service was checked by connecting the same service from 
the other host Worker node 2. Table 2 showing the hardware 
specifications used in the experiment is as follows. 

Table 2. Experiment environment 
No Role OS CPU Memory 
1 Server 

(Master) 
CentOS 
Linux 
release 
7.7.1908 
(64bit) 

Intel® 
Xeon® 
Gold 6140 
CPU 
@ 2.30GHz 

232GB 

2 Server 
(Repository) 

CentOS 
Linux 
release 
7.7.1908 
(64bit) 

Intel® 
Xeon® 
CPU E5-
2630 v4 
@ 2.20GHz 

16GB 

3 Server 
(Worker) 

CentOS 
Linux 
release 
7.7.1908 
(64bit) 

Intel(R) 
Xeon® 
Silver 4110 
CPU 
@ 2.10GHz 

32GB 

4 Server 
(Worker) 

CentOS 
Linux 
release 
7.8.2003 
(64bit) 

Intel(R) 
Xeon® 
I5-4690 
CPU 
@ 3.50GHz 

16GB 

5 Client 
(UE) 

Microsoft 
Window10 
Home 
(64bit) 

Intel(R) 
Xeon® 
i7-8550U 
CPU 
@ 1.80GHz 

16GB 

The types and information of the software used in the 
experiment are shown in Table 3 below. 

Table 3. Software information 
No Software name Version Related work 
1 helm 3.1.2 Infrastructure 
2 Kubernetes 1.19.3 Infrastructure 
3 Docker Engine 19.03.8 Infrastructure 
4 Nginx 1.16.1 videoapp, RLapp 
5 Gitlab 11.9.6 Image Repository 

The experiment was conducted a total of 5 times. The 
downtime calculation formula and repeated experimental 
process are as follows. 

- Calculation formula: Downtime (s) = B – A
- A: Service 1 end time
- B: Service 2 restart time after completion of

handoff

- Repeated experimental process
1. Deploying all services: running videoapp and RLapp
2. Watch video from videoapp
3. Start the migration
4. Check Downtime
5. Check to maintain the watch time of the login

session video
6. Terminating all services: shutdown videoapp, RLapp

The results of the 5-repetition test are shown in Table 4 
below. There is information and downtime of the services 
operated at the time of each experiment. The average 
downtime in this experiment was 0.514 seconds. 

Table 4. Experiment result 
No Downtime 

(sec) 
videoapp-1 
Information  
(Pod, NAME, IP) 

videoapp-2 
Information 
(Pod, NAME,IP) 

1 0.503 videoapp-1-
c44cb848b-q4mf6 
172.18.233.255 

videoapp-2-
7476c95669-62lgb 
172.18.182.75 

2 0.530 videoapp-1-
c44cb848b-7gxq2 
172.18.233.4 

videoapp-2-
7476c95669-z2tm4 
172.18.182.76 

3 0.490 videoapp-1-
c44cb848b-
g2pmh 
172.18.233.5 

videoapp-2-
7476c95669-z7s6f 
172.18.182.77 

4 0.514 videoapp-1-
c44cb848b-b4vv7 
172.18.233.152 

videoapp-2-
7476c95669-995xt 
172.18.182.78 

5 0.533 videoapp-1-
c44cb848b-rf4z5 
172.18.233.154 

videoapp-2-
7476c95669-ng7qz 
172.18.182.79 

5 Conclusion 

In this paper, we have presented an application relocation 
technique based on MEC. The proposal relocates the 
personalized service to a user according to the user's location. 
The proposed application relocation technique performs 
adaptively according to different scenarios and provides 
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shorter latency through the process suitable for a selected 
scenario. 
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