
Container-based Service Relocation for Beyond 5G Networks 911

*Corresponding Author: Jong-Hyouk Lee; E-mail: jonghyouk@pel.sejong.ac.kr
DOI: 10.53106/160792642022072304026

Container-based Service Relocation for Beyond 5G Networks

Yeonjoo Lim, Jong-Hyouk Lee*

Sejong University, Republic of Korea
{yeonjoo, jonghyouk}@pel.sejong.ac.kr

Abstract

With the advent of 5G networks, various research on
Multi-access Edge Computing (MEC) to provide high-
reliability and ultra-low latency services are being actively
conducted. MEC is an intelligent service distributed cloud
technology that provides a high level of personal services by
deploying cloud servers to edge networks physically closed to
users. However, there is a technical issue to be solved, e.g., the
service being used by a user does not exist in the new edge
network, and there may even be situations in which the service
cannot be provided in the new edge network. To address this,
the service application must be relocated according to the
location of the user’s movement. Various research works are
underway to solve this service relocation issue, e.g., cold/live
migration studies have been carried in legacy cloud
environments. In this paper, we propose a container migration
technique that guarantees a smooth service application
relocation for mobile users. We design scenarios for adaptive
handoff and describe the detailed operation process. In
addition, we present our MEC testbed, which has been used to
experiment our container migration technique.

Keywords: Beyond 5G, Multi-access Edge Computing,
Application Relocation, Service migration

1 Introduction

Mobile access technology is undergoing a revolutionary
change every decade. Additionally, each generation of mobile
access technology has delivered significant performance gains.
Data usage has skyrocketed especially over the past decade
due to the demand for high quality of video content. Users'
viewing time is also increasing. Demand for content will
continue to grow at a tremendous rate that surpasses forecasts.
Since 2015, the 5th generation mobile communication
standards established by the Radiocommunications Bureau of
the International Telecommunication Union have been
announced. Detailed technical discussions for IMT-2020 (5G)
began in earnest in early 2016 [1]. Various studies are being
conducted to satisfy 5G performance requirements. Among
them, MEC considers service application deployments closed
to the edge to provide ultra-low latency/high-performance
services for users.

Application redeployment is being considered as a
technique to improve users’ quality of service. For instance,
application redeployment can be integrated with a mobile
user’s handoff process to allow services to be relocated or

deployed for a new edge network of the mobile user. Various
schemes for application redeployment are being studied in
recent years, e.g., a study to utilize live migration and cold
migration technologies within virtual machines that exist in
legacy cloud technologies. Recent research focuses on a
container environment. If a user equipment (UE), which used
a service on an edge network, has mobility, the same service
may not exist or may not be provided on the moved edge
network. To solve this, it is necessary to be able to redeploy
the service application according to the location the user has
moved to. In this paper, we propose a new migration technique
for application redeployment. The proposed migration
technique is based on container, which is much lightweight in
terms of operation cost. We also present our testbed
environment, wherein Kubernetes is used to effectively
redeploy applications. As an experimental example, we show
a stateful video streaming service performed in our testbed.

The rest of this article follows. Section 2 provides related
works. Chapter 3 introduces the proposed method: MEC based
service relocation. Chapter 4 presents the experimental results
to evaluate the performance of the proposal. Section 5
concludes this paper.

2 Related Works

2.1 Multi-access Edge Computing

MEC has been proposed for high-reliability, low-latency
communication in 5G networks and has been announced as a
core technology to meet 5G KPIs [2]. Since 2014, MEC
standards have been in progress centered on European
Telecommunications Standards Institute (ETSI). Technical
meetings for MEC standards are still active and ETSI Group
Specification and ETSI Group Report are continuously
developed [3].

MEC has been proposed to further meet 5G conditions by
expanding research on fog computing among distributed cloud
technologies. ETSI ISG is also conducting various Proof of
Concept (PoC) projects. For real interoperability, project
results follow standard specifications. MEC’s initial name was
‘mobile edge computing’ for the purpose of supporting LTE.
The name has been changed to ‘Multi-Access Edge
Computing’ to support various access networks together.

In MEC, computing is done at the edge of the network
rather than in the cloud or core network. The edge network
exists between the radio access network (RAN) and the core
network. Users move within the RAN and are served by MEC
components within the edge network.

912 Journal of Internet Technology Vol. 23 No. 4, July 2022

Figure 1. iMEC structure

Figure 1 above shows an MEC structure for a 4G and 5G
coexisting environment. The characteristics of MEC are as
follows: MEC has a distributed structure unlike the existing
centralized cloud. It deploys an MEC host providing its own
platform to run containerized applications. MEC also operates
virtualization based MEC network configuration and
management such as SDN and NFV.

Figure 2. MEC framework [4]

As of August 2021, 48 standards have been published by
ETSI MEC related groups. Among them, “MEC 002;
Technical Requirements” and “MEC 003; Framework and
Reference Architecture” documents are analyzed. It was
published in 2016 to establish the initial concept of MEC. As
shown in Figure 2 above, the MEC framework can be grouped
at host level and MEC network level. MEC host includes MEC
platform and one infrastructure that provides storage, network
resources and storage devices for running MEC apps. MEC
platform supports MEC apps in a specific virtualization
infrastructure. A collection of essential features required to run
and provide MEC services MEC apps are instantiated in the
infrastructure of MEC hosts based on requests or
environments implemented by MEC Platform Manager MEC
Platform Manager is configured at MEC system level and
MEC host level MEC system-level management includes the
multi-access edge orchestrator as a core component with an
overview of the entire multi-access edge system MEC host-
level management manages the MEC platform administrator
and specific mobile edge hosts and upper running application

functions It consists of a Virtualization Infrastructure Manager
(VIM).

Figure 3. MEC RA [5]

The reference architecture shows the functional elements
that make up the mobile edge system and the reference point
between them. Figure 3 shows the mobile edge system
reference architecture. Three groups of reference points are
defined between system entities.

• Mp: Reference Points for Mobile Edge Platform
Capabilities

• Mm: Management reference point
• Mx: Reference point connected to external entity

2.2 Application Relocation

As existing networks change to 5G MEC, one of the main
features added is Application Relocation. With the 5G MEC
environment, services for individuals (e.g., autonomous
vehicles, telemedicine, and surgery) will increase. These
applications need to keep users moving with them. To this end,
the 5G MEC standard covers what is called Application
Relocation [6]. Application relocation refers to a function in
which the ME App must also be moved as the UE using the
ME service moves. To do this, you must select the MEC server
to be migrated when moving, and then perform a service
migration for the application. It can be operated based on the
service migration technique in the existing cloud environment.
Service migration is a concept used in traditional cloud
computing environments, formerly used to simply move to
another infrastructure due to obsolescence of the infrastructure.
Now, due to the expansion of cloud technology, service
migration technology is being used in more diverse
environments.

In an LTE network, handover is performed from an
existing cell to another cell as a user moves. However, in 5G
MEC, not only handover that a user moves, but also service
migration according to mobility must be performed
automatically. At this time, the time it takes from service
termination to restart is called Service Down Time, and
various methodologies are being studied to minimize the time.
Research on this area is essential to satisfy the ultra-low
latency, a key element of 5G.

2.3 Docker

Docker is an open-source container project launched in
March 2013. The advent of Docker has made container

UE

3rd
party

Mobile edge system level management

Mobile edge host

Mobile edge
host level

managementMobile edge applications

Mobile edge
plaform

Virtualisation infrastructure
(e.g., NFVI)

ME app ME app

ME app ME app

3GPP
network

Local
network

External
network

M
ob

ile
 e

dg
e

sy
ste

m

le
ve

l
M

ob
ile

 e
dg

e
ho

st
le

ve
l

N
et

w
or

ks

CFS
portal

UE
app

Operations Support System

Mobile edge platform manager

M
ob

ile
 e

dg
e

sy
ste

m
 le

ve
l

M
ob

ile
 e

dg
e

ho
st

le
ve

l

Mobile edge host

Mobile edge plaform

Virtualisation infrastructure

ME
app

Mobile edge
orchestrator

Virtualisation infrastructure
managerOther

mobile
edge host

Other
Mobile
edge

plaform

User
app

LCM
proxy

Date plane

ME
app

ME
app

ME
platform
element
mgmt

ME app
rules &

reqts
mgmt

ME
app

lifecycle
mgmt

ME
service

Service registry

Traffic
rules

control

DNS
handling

Service

Mm9

Mm8

Mp3
Mm5

Mp2

Mm7

Mm2 Mm3

Mm6

Mm4

Mm1
Mx2

Mx1

Mp1
Mp1

Container-based Service Relocation for Beyond 5G Networks 913

research and implementation possible. Unlike traditional
virtual machines, containers operate in isolated cgroups
(control groups) and namespaces assigned by the host
operating system. A cgroup is a feature of the Linux kernel
that provides control (e.g., limits, isolation) over Linux system
resources (e.g., memory, CPU, I/O, network) and allows the
creation of resource groups for assigning ownership.
Namespaces are also a feature of the Linux kernel that
provides isolated spaces for filesystems, processes, networks,
IPCs, hostnames, and users. In the beginning, Docker applied
and operated Linux kernel's LXC (LinuX Containers)
technology as it is, but from Docker 11, it is operated based on
runC, which is implemented by itself based on OCI (Open
Container Initiative) [7]. OCI is a project of the Linux
Foundation to design open standards for operating system
level virtualization (containers) and Linux containers [8].
Figure 4 below shows the difference between virtual machine
and Docker architectures.

Figure 4. Virtual machine and docker architecture

Docker builds containers from images. Typically, images
are uploaded to a remote repository and shared between users.
Docker uploads and downloads to the remote repository via
this name. And the image takes the form of several layers.
When running containers, these layers are combined to act as
a unified file system. It is called the union file system. Images
have a base image layer and a container layer. The base image
layer is the layer for running containers. Base images have
read-only permissions, and multiple containers can be created
with one base image. When the container is created, another
layer is added to store the values changed by the user. This is
called the container layer. A container layer is created above
the base image. The container layer only stores created and
modified files. When you convert this to an image, it is saved
as a container layer stacked on top of the main image layer.
Docker provides the ability to save the containers you've
worked on as a new image. In other words, I created another
base image layer by merging the container layer and the base
image layer. The new image contains the running state of the
old container. Docker provides various storage drivers and
Docker Engine 20.10 works with overlay2 by default.
Overlay2 is the preferred storage driver for all currently
supported Linux distributions because it requires no additional
configuration. Each storage driver has a different way of
storing and mounting images when the container is created.

2.4 Kubernetes

Kubernetes is a system that can automate the management
of containerized applications on multiple hosts and a
framework that provides rich functionality to easily control the
lifecycle of applications. In general, it provides a mechanism
for deploying, maintaining, and scaling applications. This
allows you to automate application management based on
user-created policies. It aims to optimize container
deployment management and works with Docker.

Kubernetes has clusters, which are collections of nodes for
running containerized applications. Users can define different
clusters depending on the service type. A cluster consists of
one or more master nodes and worker nodes. A worker node
is the host on which the actual application runs. The master
node is the node that manages the worker nodes and the cluster.
The master node handles the control plane, such as detecting
all events in the cluster and determining actions. The
following describes the application of the MEC environment.
ME hosts are worker nodes that provide services to real users.
And the ME manager where the master node performs
monitoring and control nodes.

In Kubernetes, the smallest unit of an application is called
a Pod. The smallest and simplest unit of a deployed object.
Pods can be customized and configured by users in many
different types. For example, you can create a single container
or a pod that consists of multiple containers. Authorized nodes
can monitor pod health in real time. Figure 5 shows the
Kubernetes components [9].

Figure 5. Kubernetes components

3 Proposed Service Relocation

3.1 Design

In the MEC architecture, a UE's cell handoff and the ME
application's handoff occur. Here, we focus on describing our
design for performing adaptive handoff in the MEC
architecture. A handoff of the UE means that the UE moves to
another cell. This occurs within the RAN while handoffs to
ME applications occur within the edge network. This is called
application relocation, which refers to moving application
services between ME servers. When application relocation
happening, there may be various ways to configure the service,
but only the container case is considered in this paper.

There are two use cases where this application relocation
occurs. The first case is Relocation After Preparation (Pro-

914 Journal of Internet Technology Vol. 23 No. 4, July 2022

active Migration): UE moves after synchronization of the base
image. The second case is Relocation Before Preparation (Re-
active Migration): UE moves without prior preparation. There
is a difference between them, i.e., being active or being
reactive for handoffs. In other words, application relocation
can be classified depending on whether there is a preparatory
procedure or not. In Pro-active Migration, the copy process is
divided into two copies. The first copy syncs the base image
and the second copies the container layer. In this paper, we
call the base image as the pre-copy 1 and the container layer
as the pre-copy 2. On the other hand, since there is no separate
preparation procedure in Re-active Migration, there is only
one image, and we call this as a post-copy. Note that in Re-
active Migration, the service is resumed through one copy
process after the terminal moves.

The concept defined in this paper has been well used in
cellular network handoff scenarios. When a UE’s handoff is
detected, required preparations are proactively performed to
minimize handoff latency. This is called a proactive handoff
mechanism. Also, when a UE’s handoff is not detected in
advance, then a reactive handoff mechanism is performed to
support the UE’s handoff. In this paper, we further extend it to
support smooth service relocation when the UE’s handoff in
the MEC architecture.

A diagrammatic representation of the service relocation
algorithm is shown in Figure 6. As shown, depending on the
handoff request message type, the service relocation algorithm
decides Pro-active Migration or Re-active Migration. The
following Sections 3.1.1 and 3.1.2 describe detailed
procedures for each case.

Figure 6. Application relocation algorithm

Container-based Service Relocation for Beyond 5G Networks 915

Figure 7. Pro-Active procedure

Figure 8. Re-Active procedure

916 Journal of Internet Technology Vol. 23 No. 4, July 2022

3.1.1 Pro-Active Migration

This course starts with a pre-scenario once you decide
whether you are ready or not. Therefore, the source host asks
the target host for basic image synchronization procedures.
This is called Pre-copy 1. The source application then stores
the context data in a persistent volume (PV) until a handoff
occurs at the UE. When this process is completed, the actual
UE requests a connection to another cell and the ME host
(target host). At this time, the service of the actual application
is terminated, and service downtime begins. The target
application runs a container based on the synchronized base
image and synchronizes the data accumulated in the PV to the
target storage. After completion of recovery, the target
application notifies the end of Pre-copy 2 and restarts the
service. The restart time is the endpoint of the last downtime
measurement. Then, the UE receives the service from the
moved host. Figure 7 above shows the detailed operation
procedure.

3.1.2 Re-Active Migration

Reactive Process, on the other hand, has no preparation
time. This scenario occurs in a situation after the actual UE
moves to another cell. Similarly, the UE makes a connection
request to the ME host (target host). At this point, the real
application's service is shut down and service downtime
begins. Commits the state of the source application just before
shutdown and uploads it to the remote repository. And the
target application downloads the uploaded application image.
Start the service by running it as a container. The restart time
is from when the source application is shut down to when the
target service is restarted. Therefore, the post-scenario has
more downtime than the pre-scenario. Figure 8 above shows
the detailed operation procedure.

3.2 Implementation

We here describe the development of a service migration
module that performs application relocation by merging the
existing handover function and service migration function.
That is, this paper proposes an adaptive service migration
method according to the UE handover situation. The test bed
was configured using Kubernetes. It is a form of deploying an
ME app as a pod in Kubernetes, a container, and providing
application services to the UE. The target service was selected
as a video streaming service. Signing in initially allows users
to watch videos and seamlessly use the same services as before,
with the session they first logged in to, even after the user
moves. The development was implemented only for the Pro-
Active scenario. The notations and definitions of the
components used are summarized in Table 1 below.

Table 1. Notation

Notations
Semantics
in
Kubernetes

Semantics
in MEC Definitions Entity in

Procedure

MEC-M Master
Node ME host Relocation

Application RLapp

ME Host
1

Worker
Node ME host Server 1 Source

Notations
Semantics
in
Kubernetes

Semantics
in MEC Definitions Entity in

Procedure

ME Host
2

Worker
Node ME host Server 2 Target

MEApp Pod ME
App

User
Service MEapp

RLapp Pod ME
Application

Relocation
Service RLapp

The testbed consists of 3 ME hosts and 2 wireless RAN
networks. Kubernetes builds 1 master node and 2 worker
nodes that act as ME hosts. The band of the wireless RAN
network was specified as 192.168.0.x for Cell 1 and
192.168.100.x for Cell 2. ME Hosts 1 and Cell 2 are in Cell 1
and Cell 2 respectively and are the closest servers. Each cell
provides various ME App services to the UE. Figure 9 shows
the schematic of the test bed. This is the case of service
migration from ME App 2 on ME Host 1 to ME App 3 on ME
Host 2. As the UE moves from Cell 1 to Cell 2, services are
also migrated. A zone is the same concept as a cell. In
Kubernetes terminology, being in a different zone means
being in a different cluster. As previously designed in Section
3.1, development proceeded with both Pro-Active and Re-
Active scenarios.

Figure 9. Network configure diagram

As shown in Figure 10, what the user is receiving is the
web page of the video streaming server. The following
describes the web screens on each side. On the left is the login
interface. Initially, users log in to use the service. When the
login is completed, the video is played from the beginning as
shown on the right because this is the first login. Even if the
service is restarted after the user moves, the logged-in session
is maintained and the viewing time before the end of the
service is saved. Seamlessly use the same services as before,
after Application Relocation.

Figure 10. ME app (videoapp)

Container-based Service Relocation for Beyond 5G Networks 917

The following is web of RLapp. As shown in the Figure
11, Google Map API-based user movement path (latitude,
longitude, node information) is displayed. Outputs RLapp
(Relocation Application) server log, service downtime and
service status/process. In the log, it displays the timestamp and
the cell and zone to which the UE belongs and includes the
actual GPS latitude and longitude.

Figure 11. RLapp web page

4 Experimental Evaluation

This section describes the contents of the experiment to
evaluate the performance of the implemented system.
Assuming that the UE handed off the existing service before
performing the handoff, the average time required to restart
the service was checked by connecting the same service from
the other host Worker node 2. Table 2 showing the hardware
specifications used in the experiment is as follows.

Table 2. Experiment environment
No Role OS CPU Memory
1 Server

(Master)
CentOS
Linux
release
7.7.1908
(64bit)

Intel®
Xeon®
Gold 6140
CPU
@ 2.30GHz

232GB

2 Server
(Repository)

CentOS
Linux
release
7.7.1908
(64bit)

Intel®
Xeon®
CPU E5-
2630 v4
@ 2.20GHz

16GB

3 Server
(Worker)

CentOS
Linux
release
7.7.1908
(64bit)

Intel(R)
Xeon®
Silver 4110
CPU
@ 2.10GHz

32GB

4 Server
(Worker)

CentOS
Linux
release
7.8.2003
(64bit)

Intel(R)
Xeon®
I5-4690
CPU
@ 3.50GHz

16GB

5 Client
(UE)

Microsoft
Window10
Home
(64bit)

Intel(R)
Xeon®
i7-8550U
CPU
@ 1.80GHz

16GB

The types and information of the software used in the
experiment are shown in Table 3 below.

Table 3. Software information
No Software name Version Related work
1 helm 3.1.2 Infrastructure
2 Kubernetes 1.19.3 Infrastructure
3 Docker Engine 19.03.8 Infrastructure
4 Nginx 1.16.1 videoapp, RLapp
5 Gitlab 11.9.6 Image Repository

The experiment was conducted a total of 5 times. The
downtime calculation formula and repeated experimental
process are as follows.

- Calculation formula: Downtime (s) = B – A
- A: Service 1 end time
- B: Service 2 restart time after completion of

handoff

- Repeated experimental process
1. Deploying all services: running videoapp and RLapp
2. Watch video from videoapp
3. Start the migration
4. Check Downtime
5. Check to maintain the watch time of the login

session video
6. Terminating all services: shutdown videoapp, RLapp

The results of the 5-repetition test are shown in Table 4
below. There is information and downtime of the services
operated at the time of each experiment. The average
downtime in this experiment was 0.514 seconds.

Table 4. Experiment result
No Downtime

(sec)
videoapp-1
Information
(Pod, NAME, IP)

videoapp-2
Information
(Pod, NAME,IP)

1 0.503 videoapp-1-
c44cb848b-q4mf6
172.18.233.255

videoapp-2-
7476c95669-62lgb
172.18.182.75

2 0.530 videoapp-1-
c44cb848b-7gxq2
172.18.233.4

videoapp-2-
7476c95669-z2tm4
172.18.182.76

3 0.490 videoapp-1-
c44cb848b-
g2pmh
172.18.233.5

videoapp-2-
7476c95669-z7s6f
172.18.182.77

4 0.514 videoapp-1-
c44cb848b-b4vv7
172.18.233.152

videoapp-2-
7476c95669-995xt
172.18.182.78

5 0.533 videoapp-1-
c44cb848b-rf4z5
172.18.233.154

videoapp-2-
7476c95669-ng7qz
172.18.182.79

5 Conclusion

In this paper, we have presented an application relocation
technique based on MEC. The proposal relocates the
personalized service to a user according to the user's location.
The proposed application relocation technique performs
adaptively according to different scenarios and provides

918 Journal of Internet Technology Vol. 23 No. 4, July 2022

shorter latency through the process suitable for a selected
scenario.

Acknowledgment

Jong-Hyouk Lee is a corresponding author. This work was
supported by Institute of Information & communications
Technology Planning & Evaluation (IITP) grant funded by the
Korea government (MSIT) (No. 2022-0-00796, Research on
Foundational Technologies for 6G Autonomous Security-by-
Design to Guarantee Constant Quality of Security).

References

[1] ITU, M.2083-0: IMT Vision – Framework and overall
objectives of the future development of IMT for 2020
and beyond, September, 2015

[2] ETSI White Paper, MEC in 5G networks, No. 28, June
2018.

[3] ETSI Deliverables,
https://portal.etsi.org/Resources/Standards-Making-
Process/ETSI-Deliverables, Accessed on July 2021.

[4] MEC, GS MEC 003 - V1.1.1 - Mobile Edge Computing
(MEC); Framework and Reference Architecture, pp. 1-
18, March, 2016.

[5] MEC, GS MEC 003 - V2.1.1 - Mobile Edge Computing
(MEC); Framework and Reference Architecture, pp. 1-
21, January, 2019.

[6] ETSI GS MEC 021 V2.1.1, Multi-access Edge
Computing (MEC); Application Mobility Service API,
January, 2020.

[7] Docker runC, https://blog.Docker.com/2015/06/runc/,
Accessed on July 2021.

[8] OCI, https://opencontainers.org/, Accessed on July
2021.

[9] Kubernetes Components,
https://kubernetes.io/docs/concepts/overview/compone
nts/, Accessed on July 2021.

Biographies

Yeonjoo Lim received a B.S. (Computer
Engineering) degree from Sangmyung
University, Cheonan, South Korea, a M.S.
(Information Security) degree from Sejong
University, Seoul, South Korea. She is
currently a KT corporation researcher.

Jong-Hyouk Lee received the Ph.D. degree
in computer engineering from
Sungkyunkwan University, Suwon, South
Korea. He was with INRIA, France, for
IPV6 vehicular communication and security
research. He was an Assistant Professor
with TELECOM Bretagne, France. He was

an Associate Professor with Sangmyung University, Cheonan,
South Korea. In 2020, he moved to Sejong University, Seoul,
South Korea. He is currently an Author of the Internet
Standards: IETF RFC 8127, IETF RFC 8191, and IETF RFC

8691. His research interests include protocol engineering and
performance analysis. He was a recipient of the Best Paper
Award from the IEEE WiMob 2012, the 2015 Best Land
Transportation Paper Award from the IEEE Vehicular
Technology Society, the Haedong Young Scholar Award, in
2017, and the IEEE Systems Journal Best Paper Award from
the IEEE Systems Council, in 2018. He was a Tutorial Speaker
at the IEEE WCNC 2013, the IEEE VTC 2014 Spring, and the
IEEE ICC 2016. He was introduced as the Young Researcher
of the month by the National Research Foundation of Korea
Webzine, in 2014.

	組合 01-05
	01
	02
	03
	04
	05
	空白頁面
	空白頁面

	組合 06-10
	06
	07
	08
	09
	10
	空白頁面
	空白頁面
	空白頁面
	空白頁面

	組合 11-15
	11
	12
	13
	14
	15
	空白頁面
	空白頁面
	空白頁面
	空白頁面

	組合 16-21
	16
	17
	18.0 Guest Ediorial
	18.1
	19
	20
	21
	空白頁面
	空白頁面
	空白頁面

	組合 22-26
	22.0 Guest Ediorial
	22.1
	23
	24
	25
	26
	空白頁面

