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Abstract 
 

Mutation testing has been deemed an effective way to 
ensure Deep Learning (DL) software quality. Due to the 
requirements of generating and executing mass mutants, 
mutation testing suffers low-efficiency problems. In regard to 
traditional software, mutation operators that are hard to cause 
program logic changes can be reduced. Thus, the number of 
the mutants, as well as their executions, can be effectively 
decreased. However, DL software relies on model logic to 
make a decision. Decision boundaries characterize its logic. In 
this paper, we propose a DL software mutation operator 
reduction technique. Specifically, for each group of DL 
operators, we propose and use DocEntropy to measure the 
model’s decision boundary changes among mutants generated 
and the original model. Then, we select the operator group 
with the highest entropy value and use the involved operators 
for further mutation testing. An empirical study on two DL 
models verified that the proposed approach could lead to cost-
effective DL software mutation testing (i.e., 33.61% mutants 
and their executions decreased on average) and archive more 
accuracy mutation scores (i.e., 9.45% accuracy increased on 
average). 
 

Keywords: DL software, Mutation testing, Decision 
boundary, Mutation operator reduction 

 

1  Introduction 
 

Recently, Deep Learning (DL) software has been widely 
used in various safety-critical areas (e.g., face unlocking [1] 
and autonomous driving [2]). The defects in DL software may 
lead to disastrous consequences such as privacy leaks or car 
accidents. Therefore, DL software should be thoroughly tested 
[3]. Mutation testing is a conventional defect introducing 
based test adequacy measurement method [4], and it has been 
deemed an effective means to evaluate the adequacy of DL 
software testing [5]. We obtain a series of mutants by using 
mutation operators, and then we detect the defects in these 
mutants. In regard to DL software, researchers have proposed 
eight source-level mutation operators and eight model-level 
mutation operators [5]. The former works on the training set 
or the program, while the latter works on the trained model. 
Each operator can generate plenty of mutants. For each mutant, 

testers should record its executing results on all test data. 
However, it costs too much time to complete a DL mutation 
testing. Take the hand-written electronic dataset MNSIT [6] as 
an example. It contains 10,000 test data. Assume applying one 
DL mutation operator can generate ten mutants; we’ll get 160 
mutants. To complete the MNSIT mutation testing, we must 
conduct at least 1.6 million tests. These facts show that DL 
mutation testing suffers low-efficiency problems, making it 
difficult to use in practice. 

Generally speaking, the evaluation indicators of mutation 
testing are the cost of test overhead (the number of mutants 
generated and executed) and the mutation score [7]. Mutation 
operator reduction is an effective means to reduce the size of 
mutants and improve the efficiency of mutation testing [8]. In 
regard to traditional software, its executing result is 
determined by program logic [9]. To conduct an adequate test, 
the logic differences among the source and mutated programs 
should be diverse. Then, testers can determine whether the test 
data can detect various defects at different locations. For 
example, by modifying the relational operators in each branch 
statement, testers can fully evaluate the ability of test data to 
detect boundary defects [10]. To speed up the mutation testing 
of traditional software, mutation operators that are difficult to 
cause program logic change can be reduced. Unlike traditional 
software, the trained model determines the executing result of 
DL software [11]. The training program fits the data features 
to obtain the decision boundaries of the model. All decision 
boundaries constitute the logic of the model [12]. Take a two-
classification model as an example. The decision boundary 
divides two data classes into their respective decision spaces, 
which completes the data classification. Therefore, to evaluate 
the defect detection capabilities of DL test data, the difference 
of the decision boundary among the source program and 
mutants should be as diverse as possible. 

In this paper, we propose a DL mutation operator 
reduction method which relies on decision boundary change 
measurement to select efficient mutation operators. In regard 
to DL software, we first quantify the difference of the decision 
boundary between the source program and each of the mutants 
based on Manhattan distance [13]. 

Subsequently, we propose Decision Boundary Change 
Entropy (DocEntropy) and use it to measure the decision 
boundary change diversity of a set of generated mutants. 
Finally, we select the operator group with the highest 
DocEntropy values as the reduced result and use it for further 
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mutation testing. The main contributions of this paper are as 
follows: 
⚫ We propose the first DL software mutation operator 

reduction method. Specifically, we introduce 
decision boundary change and propose DocEntropy 
to measure the diversity of changes to select efficient 
mutation operators. 

⚫ We verify the effectiveness of the proposed method 
through empirical study. The experiment results on 
two DL models show that the technique can reduce 
13 mutation operators to 8, decreasing the average of 
33.61% mutants generated and executed. Moreover, 
it improves nearly 9.45 % mutation score accuracy 
on two models.  

The remaining structure of this paper is organized as 
follows. Chapter 2 introduces the background of the DL model 
and its decision boundary, as well as DL mutation. Chapter 3 
details the proposed reduction method. In Chapter 4, an 
empirical study is carried out. Chapter 5 introduces related 
work. Finally, the last Chapter summarizes our work. 

  
2  Background 

 
2.1 DL Model and Its Decision Boundary 
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Figure 1. General structure of DL model 

 
As mentioned earlier, DL software relies on a trained 

model to make decisions. A DL model is a three-level Neuron-
Layer-Model structure [14]. As shown in Figure 1, it contains 
one input layer, one output layer, and several hidden layers. 
Each layer has a series of neurons. The neurons in the adjacent 
layers are connected. 

 

𝑦 = 𝑓(∑ 𝑤𝑖𝑥𝑖
𝑛
𝑖=1 + 𝑏)                           (1) 

 
Neurons are the primary computing units of the DL model, 

each of which includes one linear transformation and one 
activation function. Its output, y, is a continuous variable. 
Formula (1) describes the structure of a neuron. 𝑤𝑖  and 𝑏 
are the weights between neurons, which are the trainable 
parameters in the model. Their values are obtained from the 
training process. The activation function, 𝑓(), is the key to 
realize feature extraction because it can capture the nonlinear 
changes in the model. 

To get a trained model, we first need to collect a training 
data set and write a training program. The former provides the 
learned characteristic, while the latter contains the structure of 
the model and artificially defined hyper-parameters. Then, we 
input the data set into the program, which fits the data 
parameters, and finally get the trained model. 

The decision boundaries constitute the internal logic of the 
machine learning model. Regarding the DL model, the output 
layer describes its decision boundaries. Assume the outputs of 
all neurons in the output layer are 𝑦 = {𝑦1, 𝑦2, … , 𝑦𝑘} , 𝑦𝑖 
denotes the probability of classifying the data into class i [15]. 
It satisfies ∑ 𝑦𝑖 = 1𝑘

𝑖=1 . If 𝑦𝑖 archives the highest value, the 
data would be classified into class i by the decision boundaries. 
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Figure 2. An example of decision boundaries in the DL 
model 

 
For example, regarding the two-classification problem, 

data distributing in the decision space is divided into two 
classes by the DL decision boundary. Figure 2 illustrates two 
DL decision boundaries, DB1 and DB2. Each of them divides 
the data into two classes (i.e., C1

A and C1
B, C2

A and C2
B). One 

data in C1
A and one in C1

B are misclassified by DB1, while 
two in C2

A  and one in C2
B  are misclassified by DB2 . It 

indicates that the decision boundary directly influences the 
classified results, and data close to the decision boundary are 
intuitively easier to misclassify. 

 
2.2 DL Mutation Testing 

 
Mutation testing was firstly proposed to assess the quality 

of the DL test set in 2018 [5]. It generates a large number of 
mutants through mutation operators. If the test data can kill 
more mutants, the dataset’s quality is higher. The workflow of 
DL mutation testing is shown in Figure 3. It includes mutating, 
training, and testing. The former chooses operators and 
generates mutated models (i.e., mutants). The latter calculates 
the mutation scores by original model and mutants. 
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Figure 3. Workflow of DL mutation testing 
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Table 1. DL mutation operators 

Mutation Stage Mutation Object Mutation Operator Mutation Operator Description 

Source-level 
( Before training ) 

Data-level 
(𝑀𝑂𝑑) 

Data Repetition (DR) Duplicate training data 
Label Error (LE) Falsify results (e.g., labels) of data 
Data Missing (DM) Remove selected data 
Data Shuffle (DF) Shuffle selected training data 
Noise Perturb. (NP) Add noise to training data 

Program-level 
(𝑀𝑂𝑝) 

Layer Removal (LR) Remove a layer before training 
Layer Addition (LAs) Add a layer before training 
Activation Function Removal (AFRs) Remove activation functions before training 

Model-level 
(After training ) 

Neuron-level 
(𝑀𝑂𝑛) 

Gaussian Fuzzing (GF) Fuzz weight by Gaussian Distribution 
Weight Shuffling (WS) Shuffle selected weights 
Neuron Switch (NS) Switch two neurons of the same layer 
Neuron Effect Block (NEB) Block a neuron effect on following layers 
Neuron Activation Inverse (NAI) Invert the activation status of a neuron 

Layer-level 
(𝑀𝑂𝑙) 

Layer Deactivation (LD) Deactivate the effects of a layer 
Layer Addition (LAm) Add a layer in the neuron network after training 
Activation Function Removal (AFRm) Remove activation functions after training 

 
 

Steps (1), (2), and (3) in Figure 3 are the process of mutating 
and training. Testers apply data-level mutation operators to the 
training set ts, generating the mutated training set mts. Testers 
apply program-level mutation operators to the source program 
tp, generating the mutated training set mtp. Then, the mutated 
model is trained by mts and tp, or ts and mtp. Besides, testers 
also can apply model-level mutation operators to the origin 
model, trained by ts and tp in advance. After generating the 
mutant set, the data is input into original and mutation models 
to obtain corresponding results by steps (d) and (e). Finally, 
testers calculate the mutation score, which reflects the quality 
of test data. 

Mutation operator plays the role of generating kinds of 
mutants. Table 1 summarizes the characteristics of DL 
mutation operators [5]. For each operator, its mutation stage 
(column 1), mutation object (column 2), name (column 3), and 
a brief description (column 4) are described. According to the 
scopes, including the stage and object, mutation operators can 
be divided into data-level, program-level, neuron-level, and 
layer-level ones. The specific classification information is as 
follows: 
(1) Mutation operators at data-level (𝑀𝑂𝑑). They act on 

the data of the training set, including five types: Data 
Repetition (DR), Label Error (LE), Data Missing 
(DM), Data Shuffle (DF), and Noise Perturb (NP). 
They change the characteristics of single or multiple 
data of the set, the distribution of the data set. 

(2) Mutation operators at program-level (𝑀𝑂𝑝 ). They 
act on the training program, including three types: 
Layer Removal (LR), Layer Addition (LAs), and 
Activation Function Removal (AFRs). They change 
the structure settings of the model in the training 
program. 

(3) Mutation operators at neuron-level (𝑀𝑂𝑛). They act 
on the neurons in the trained model, including five 
types: Gaussian Fuzzing (GF), Weight Shuffling 
(WS), Neuron Switch (NS), Neuron Effect Block 
(NEB), and Neuron Activation Inverse (NAI). They 
change the corresponding parameters of neurons. 

(4) Mutation operators at layer-level (𝑀𝑂𝑙). They act on 
the layers in the trained model, including three types: 
Layer Deactivation (LD), Layer Addition (LAm), 
and Activation Function Removal (AFRm). They 
change the relevant information of the middle layer 
of the model.  

 

3  Reduction Method 
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Figure 4. Framework of the proposed DL mutation operation 
reduction method 

 
Figure 4 presents the framework of the proposed DL 

mutation operator reduction method. As previously mentioned, 
its basis corresponds to maximizing the diversity among the 
decision boundary changes of the original DL model and its 
mutated ones. Thus, it requires a strategy of operator 
combination to generate a series of candidate operator groups 
and a measurement of change diversity for sets of DL models. 
Therefore, our method works with the following two main 
phases: (a) Operator combination. We ignore one level DL 
mutation operator each time, and we get four operator groups. 
(b) Decision Boundary Change Measurement. We propose 
DocEntropy (i.e., Decision Boundary Change Entropy) to 
measure the diversity of boundary changes w.r.t. an operator 
group. Finally, we compare the DocEntropy values among all 
operator groups and select the operators included in the group 
that achieves the highest DocEntropy value on average as the 
DL mutation operator reduced result. 
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3.1 Operator Combination 
 
Step F(a) in Figure 4 shows the specific operator subsets 

generation method. We ignore one level of mutation operators 
each time and combine the remaining levels of operators to 
generate the operator groups, i.e., the group without data-level 
operators ( 𝑀𝑂𝐺𝑝,𝑛,𝑙 ), the group without program-level 
operators ( 𝑀𝑂𝐺𝑑,𝑛,𝑙 ), the group without neuron-level 
operators ( 𝑀𝑂𝐺𝑑,𝑝,𝑙 ), and the group without layer-level 
operators (𝑀𝑂𝐺𝑑,𝑝,𝑛). 

There are two factors that explain this operation. First, 
there is a specific contingency in single-type mutation 
operators, creating the low indicator stability. For example, 
there may be one good and one bad result of two mutants 
generated by one operator. Keeping as many levels of 
mutation operators as possible can make the quality of mutants 
more stable. Second, although only one mutation operator is 
used in one mutant, there is some potential relevance between 
the scopes of the mutation operators. For example, the scopes 
of 𝑀𝑂𝑑 and 𝑀𝑂𝑝 are the two interdependent objects of the 
training process. The mutation scores calculated by different 
levels of mutant combination are more meaningful. 

In this paper, we refer to the reduction strategy for 
traditional mutation operators [16]. We generate operator 
groups by ignoring one of four levels operators 𝑀𝑂𝑑, 𝑀𝑂𝑝, 
𝑀𝑂𝑛 , and 𝑀𝑂𝑙 . Compared with the single-level mutation 
operator group, the mutation operator group formed by the 
three levels has a larger cardinality. It can effectively alleviate 
the contingency caused by the number of mutation operators, 
making the result of the operator group more stable. Second, 
the remaining three levels of mutation operators can maintain 
the potential connection, making the method more 
comprehensive in the consideration of the nature of mutation 
operators. 

 
3.2 Decision Boundary Change Measurement 

 
As shown in Figure 4 (b), the corresponding changes in the 

decision boundary needs to be measured. Figure 5 illustrates 
the framework of decision boundary change measurement. It 
includes mutant generation, sample selection, and DocEntropy 
calculation. 
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Figure 5. Framework of decision boundary change measurement 

 
 

Algorithm 1 outlines the details of three steps. For a task 
of k classification, it treats the number of classes k, a training 
set TR, the training program TP, the original model m, a testing 
set TE, and a mutation operator group MOG as inputs. It 
finally outputs a list of DocEntropy values DVS, where 𝐷𝑉𝑆𝑖 
denotes the diversity of decision boundary changes w.r.t. the 
𝑖𝑡ℎ class. 

Step 1, mutant generation (lines 1-12). Each operator in 
MOG generates the corresponding mutants, which are added 
to the mutant set MUT. In this process, objects that correspond 
to the operators in MOG are selected for mutating (lines 3-11).  

Step 2, sample selection (lines 13-20). For the k 
classification task, test data t in class 𝑖 (1 ≤ 𝑖 ≤ 𝑘)  is 
iteratively selected for classification (line 16). If t is correctly 
classified by m but not correctly classified by 𝑚′, the decision 
boundary of class i on 𝑚′ changes (lines 17-18). Then, using 
formula (4), we calculate the boundary distance between m 
and 𝑚′  (line 19) and 𝑑𝑖𝑠(𝑡, 𝑖, 𝑚, 𝑚′)  is added to the 
distance set of the 𝑖𝑡ℎ class 𝐷𝑆𝑖 (line 20). After the distance 

calculations of all classes, 𝐷𝑆 represents the distances of all 
classes’ decision boundaries on mutant set MUT. 𝐷𝑆𝑖 
contains the distance of the decision boundary changes of class 
i.  

The output of t at the 𝑖𝑡ℎ neuron on the output layer of m 
is 𝑦𝑖 . For a k-classification problem, we assume the 
probability of classifying a data to each class is 1 𝑘⁄  . As 
shown in formulas (2) and (3), we use the Manhattan distance 
[13] to quantify the distance (i.e., 𝑑1) between the decision 
boundary of m and data t on class i, as well as the distance (i.e., 
𝑑2) between the decision boundary of 𝑚′ and data t on class 
i. The decision boundary distance of class i between m and 
𝑚′on t is defined as formula (4). 

Step 3, DocEntropy calculation (lines 21-24). For the 
distance set 𝐷𝑆𝑖 (1 ≤ 𝑖 ≤ 𝑘), we use DocEntropy to measure 
the degree of change of the decision boundary. 
𝐷𝑜𝑐𝐸𝑛𝑡𝑟𝑜𝑝𝑦(𝐷𝑆𝑖 , 𝑀𝑈𝑇)is added to DVS (line 24). 
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Algorithm 1. Decision boundary change measurement 
Input: k, 𝑇𝑅, TP, m, 𝑇𝐸, MOG 
Output: DVS 
1:  // Step 1: mutant generation 
2:  initialize the mutant set MUT = {}; 
3:  foreach operator op in MOG: 
4:       if 𝑜𝑝 ∈ 𝑀𝑂𝑑:   // data-level 
5:            Mutate TR to generate mutants 𝑀𝑈𝑇1; 
6:       else if 𝑜𝑝 ∈ 𝑀𝑂𝑝:   // program-level 
7:            Mutate TP to generate mutants 𝑀𝑈𝑇2; 
8:       else if 𝑜𝑝 ∈ 𝑀𝑂𝑛:   // neuron-level 
9:            Mutate m to generate mutants 𝑀𝑈𝑇3; 
10:     else:   // layer-level 
11:          Mutate m to generate mutants 𝑀𝑈𝑇4; 
12:     MUT =  𝑀𝑈𝑇 ∪ 𝑀𝑈𝑇1 ∪ 𝑀𝑈𝑇2 ∪ 𝑀𝑈𝑇3 ∪ 𝑀𝑈𝑇4; 
13: // Step 2: sample selection 
14: for i in all classes (1, k): 
15:      initialize the distance set of the 𝑖𝑡ℎ class 𝐷𝑆𝑖={}; 
16:      foreach test data t in 𝑇𝐸: 
17:           foreach mutant 𝑚′ in MUT: 
18:                if 𝑚(𝑡)=i and 𝑚′(𝑡)!=i: 
19:                      calculate  𝑑𝑖𝑠(𝑡, 𝑖, 𝑚, 𝑚′); 
20:                      add 𝑑𝑖𝑠(𝑡, 𝑖, 𝑚, 𝑚′) to 𝐷𝑆𝑖; 
21: // Step 3: DocEntropy calculation 
22: for i in all classes (1, k): 
23:      calculate 𝐷𝑜𝑐𝐸𝑛𝑡𝑟𝑜𝑝𝑦(𝐷𝑆𝑖 , 𝑀𝑈𝑇 ); 
24:      add 𝐷𝑜𝑐𝐸𝑛𝑡𝑟𝑜𝑝𝑦(𝐷𝑆𝑖 , 𝑀𝑈𝑇 ) to DVS; 
25: output DVS. 

 
𝑑1 = |𝑦𝑖 −

1

𝑘
|                                         (2) 

 

𝑑2 = |𝑦𝑖
′ −

1

𝑘
|                                        (3) 

 

𝑑𝑖𝑠(𝑡, 𝑖, 𝑚, 𝑚′) = 𝑑1 + 𝑑2                  (4) 

 
 

𝐷𝑜𝑐𝐸𝑛𝑡𝑟𝑜𝑝𝑦(𝐷𝑆𝑖 , 𝑀𝑈𝑇) = 
𝑑𝑖𝑠𝑠𝑢𝑚

|𝑀𝑈𝑇|
∗ (− ∑

𝑑𝑖𝑠 

𝑑𝑖𝑠𝑠𝑢𝑚
ln

𝑑𝑖𝑠 

𝑑𝑖𝑠𝑠𝑢𝑚

|𝐷𝑆𝑖|

𝑗=1 )                 (5) 

 

 

Formula (5) presents the calculation of DocEntropy. 
𝑑𝑖𝑠𝑠𝑢𝑚  denotes the sum of all distances in 𝐷𝑆𝑖 , |𝑀𝑈𝑇| 
denotes total number of mutants, and |𝐷𝑆𝑖|  denotes the 
number of distances in the set 𝐷𝑆𝑖. Entropy is an indicator to 
measure the degree of disorder [17], which has been proved to 
be a better indicator to measure the variety of data than other 
measurement indicators [18]. The more chaotic the object, the 
greater the entropy value. The diversity of decision boundary 
changes helps find test data close to the boundary. In mutation 
testing, mutants whose decision boundaries close to the 
original ones could misclassify fewer data. Mutants that have 
similar decision boundaries could misclassify the exact data 
close to the boundaries. They both have a negative 
contribution to diversity. If the entropy is used to measure the 
various changes of decision boundaries, the above mutants 
could be found.  

 
4  Empirical Study 

 

We conduct an empirical study to verify the effectiveness 
of the proposed method. This experiment is conducted on 
Keras (ver.2.3.1) with Tensorflow (ver.1.15.2) backend, 
which runs on a high-performance computer with an Ubuntu 
system (ver.20.10) on I9-10900K CPU with 64 GB of RAM 
and an NVIDIA RTX3080 GPU with 10G. 

 
4.1 Experimental Design 

 
We select MNIST [6], which is frequently used in DL 

software testing research, as the experimental subject. MNIST 
is a ten-classes classification number-picture dataset. The 
number in it ranges from 0 to 9. MNIST contains 70,000 
pictures, including 60,000 training pictures and 10,000 testing 
pictures. The distribution of each class of pictures are the same.  

We select model1 [19] and model2 [20] as the evaluation 
subjects. Model1, named LeNet-5, is a classic ConvNet model 
in the DL area. It performs well in solving classification 
problems such as handwriting recognition [21]. Currently, 
researchers have treated LeNet-5 as the benchmark model for 
measuring DL testing adequacy [22]. We also selected model2 
as a supplement because it is widely used in the DL mutation 
testing area [5]. Table 2 summarizes the characteristics of the 
models used in the experiments. For each model, its name 
(column 1), the number of trainable parameters (column 2), 
the number of convolutional layers (column 3), the number of 
pooling layers (column 4), and their classification accuracies 
(columns 5 and 6) are described. As is shown, both models 
achieve a high classification accuracy on the MINIST dataset. 

 
Table 2. Evaluation subjects 

Model #Trainable 
parameters 

#Convolutional 
layers 

#Pooling 
layers 

Training 
accuracy 

on MNIST 

Testing 
accuracy 

on MNIST 
model1 107,786 2 2 99.14% 98.89% 

model2 694,402 4 2 98.45% 97.71% 
 
 
Operator LR works on the Dense layer and 

BatchNormalization layer. The input shape and the output 
shape should be consistent. Since both model1  and model2  
do not meet these requirements, LR cannot generate mutants. 

With regards to operators LD and LAm, they work on the layer 
that has the consistent shape of input and output. Model1 and 
Model2 do not meet this requirement. Thus, LD and LAm also 
cannot be used. We discard them in our empirical study. 
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Usually, the threshold of defect detected rate on the test set is 
20% [5]. Mutants that have a higher defect detected rate will 
be discarded. For each of the remaining thirteen operators, we 
randomly generate 30 mutants, where the detected rate of each 
is equal to or lower than 20%. Note that fewer AFRm mutants 
(i.e., one for model1, two for model2) exist. To summarize, 
as shown in Table 3, thirteen DL mutation operators and 723 
mutants (i.e., 361 for model1, 362 for model2) are used in our 
empirical study.  

Mutation operator reduction aims to decrease the number 
of mutants. Generating, compiling, and executing a mutant 
will cost a specific time. Thus, the more mutants, the more 
time we’ll spend on mutation testing. Therefore, we use the 
reduction ratio (i.e., |𝑀𝑈𝑇𝑟𝑒𝑑𝑢𝑐𝑒𝑑|/|𝑀𝑈𝑇𝑎𝑙𝑙|) to evaluate the 
effectiveness of mutation operator reduction. Mutation 
operator reduction can also improve the accuracy of mutation 
testing. We use mutation score to evaluate the ability of 
accuracy improvement [5]. 

 
 

Table 3. Number of candidate mutants 
Operators 𝑀𝑂𝑑 𝑀𝑂𝑝 𝑀𝑂𝑛 𝑀𝑂𝑙 Total 

No. of 
mutants 

model1 150 60 150 1 361 
model2 150 60 150 2 362 

 

      
Figure 6. DocEntropy values of all classes 

 

     
Figure 7. Mutation scores of all classes 

 
Table 4. Result of operators and mutants reduction 

Results model1 model2 

Before 
reduction 

After 
reduction 

Reduction 
radio 

Before 
reduction 

After 
reduction 

Reduction 
radio 

No. of 
operators 13 8 38.46% 13 8 38.46% 

No. of mutants 361 240 33.52% 362 240 33.70% 

 
 

4.2 Experimental Results and Analysis 
 
Figure 6 depicts the DocEntropy values corresponding to 

the operator groups, 𝑀𝑂𝐺𝑝,𝑛,𝑙 , 𝑀𝑂𝐺𝑑,𝑛,𝑙 , 𝑀𝑂𝐺𝑑,𝑝,𝑙 , and 

𝑀𝑂𝐺𝑑,𝑝,𝑛. For each class of model1, the mutants generated by 
𝑀𝑂𝐺𝑑,𝑝,𝑙  archive the highest DocEntropy values, shown in 
Figure 6 (a). For example, in class 8, the value of 𝑀𝑂𝐺𝑑,𝑝,𝑙 is 
124.07, which is an increase of nearly 47.39% compared to the 
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second 𝑀𝑂𝐺𝑑,𝑝,𝑛, 84.18. The average value of 𝑀𝑂𝐺𝑑,𝑝,𝑙 is
65.51, and the second is 47.44 of 𝑀𝑂𝐺𝑑,𝑝,𝑛. It is an increase
of nearly 38.09%. This shows that the change of decision 
boundaries of the mutants generated by 𝑀𝑂𝐺𝑑,𝑝,𝑙  is more
diverse than the change of the other three groups. Compared 
with 𝑀𝑂𝑑 ,   𝑀𝑂𝑝 ,  and 𝑀𝑂𝑙 , 𝑀𝑂𝑛  is not included
in  𝑀𝑂𝐺𝑑,𝑝,𝑙 , but is included in 𝑀𝑂𝐺𝑝,𝑛,𝑙 , 𝑀𝑂𝐺𝑑,𝑛,𝑙 , and
𝑀𝑂𝐺𝑑,𝑝,𝑛. The mutants generated by 𝑀𝑂𝑛 have a negative
effect on the change of decision boundaries. Therefore, 𝑀𝑂𝑛

should be reduced in model1 . Operators in 𝑀𝑂𝐺𝑑,𝑝,𝑙

composed of 𝑀𝑂𝑑, 𝑀𝑂𝑝, and 𝑀𝑂𝑙 and should be selected
as the reduced result. 

In model1, the mutation scores of mutants generated by 
𝑀𝑂𝐺𝑑,𝑝,𝑙 are compared with ones generated by all mutation
operators. The result is shown in Figure 7 (a). After 𝑀𝑂𝑛 are
reduced, the mutation score of each class is improved. Among 
them, the most considerable improvement is class 0. The 
mutation score increases by nearly 34.86%, from 6.57% to 
8.86%. In classes 2 and 9, the mutation score reaches the 
highest value of 10%. The average mutation score of all 
classes increases by nearly 9.61%. This shows that the mutants 
generated by the reduced mutation operator group can be 
killed by more data, which improves mutation score accuracy. 

As shown in Table 4, the total number of mutation 
operators is reduced from thirteen to eight after selecting 
𝑀𝑂𝐺𝑑,𝑝,𝑙, and the reduction ratio is 38.46%. The total number
of mutants generated and executed was decreased from 361 to 
240, and the reduction ratio was 33.52%. 

For each class of Model2, we perform a similar analysis. 
The difference is that the mutants generated by 𝑀𝑂𝐺𝑝,𝑛,𝑙

have the highest DocEntropy values, shown in Figure 6 (b). 
Take class 3 for an example. The value of 𝑀𝑂𝐺𝑝,𝑛,𝑙 is 125.94,
which is an increase of nearly 50.59 % compared to the second 
𝑀𝑂𝐺𝑑,𝑝,𝑛 , 83.63. The average value of 𝑀𝑂𝐺𝑝,𝑛,𝑙  is 84.17,
and the second is 55.97 of 𝑀𝑂𝐺𝑑,𝑛,𝑙. It is an increase of nearly
50.28%. This shows that the change of decision boundaries of 
mutants generated by 𝑀𝑂𝐺𝑝,𝑛,𝑙  is more diverse than the
change of other three groups. Compared with 𝑀𝑂𝑝, 𝑀𝑂𝑙 ,

𝑎𝑛𝑑 𝑀𝑂𝑙, 𝑀𝑂𝑑 is not included in 𝑀𝑂𝐺𝑝,𝑛,𝑙, but is included
in 𝑀𝑂𝐺𝑑,𝑛,𝑙 , 𝑀𝑂𝐺𝑑,𝑝,𝑙 , and 𝑀𝑂𝐺𝑑,𝑝,𝑛 . The mutants
generated by 𝑀𝑂𝑑 have a negative effect on the change of
decision boundaries. Therefore, 𝑀𝑂𝑑  should be reduced.
Operators in 𝑀𝑂𝐺𝑝,𝑛,𝑙  composed of 𝑀𝑂𝑝, 𝑀𝑂𝑛 , and 𝑀𝑂𝑙

and should be selected as the reduced result. 
In model2, the mutation scores of mutants generated by 

𝑀𝑂𝐺𝑝,𝑛,𝑙 are compared with ones of all mutants. The result is
shown in Figure 7 (b). After 𝑀𝑂𝑑 are reduced, the mutation
score of each class is improved. Among them, the most 
considerable improvement is class 8. The mutation score 
increased nearly 13.43%, from 8.56% to 9.71%. The average 
score of all classes increased by almost 9.29%, from 8.40% to 
9.18%. This shows that the method improves the mutation 
score accuracy.  

As is shown in Table 4, the total number of mutation 
operators is reduced from 13 to 8 after selecting 𝑀𝑂𝐺𝑝,𝑛,𝑙, and
the reduction ratio is 38.46%. The total number of mutants 
generated and executed was decreased from 362 to 240, and 
the reduction ratio was 33.70%. 

It is observed that the level of mutation operators reduced 
on model1  and model2  is different. Still, both can 

effectively select the operator set corresponding to the mutants 
with the most diverse decision boundary changes. The 
conclusion is that the mutation operator reduction method on 
model1  and model2  can effectively reduce the mutants, 
decrease the number of mutants generated and executed, and 
improve the accuracy of mutation scores. 

4.3 Threats to Validity 

This chapter mainly analyzes the threats from internal 
validity and external validity. 

The internal validity mainly includes two aspects. First, 
the way the operator combination is worthy of analysis. One 
level of operators is ignored to form a group of the aggregation 
of multiple types of mutation operators. In the experiment, we 
can always find a mutation operator group with much high 
DocEntropy for all classes, proving the method has strong 
stability. On model1, the mutation operators 𝑀𝑂𝑑 and 𝑀𝑂𝑝, 
which act on the two related objects before training, produce 
higher quality mutants. With the increase of the model’s 
trainable parameters, the operators 𝑀𝑂𝑝 and 𝑀𝑂𝑛 related to
the model are more effective on model2 . The above two 
aspects show that the combination of mutation operators is 
effective and reduces the threat. Second, the reliability of some 
artificial setting parameters in the experiment is worthy of 
analysis. To avoid contingency, 30 mutants are generated for 
each effective mutation operator to make the results 
convincing. Moreover, the mutation rate was set to 1%, 5%, 
and 10% to generate more effective mutants. After comparing 
the number of non-valid mutants generated, we select 1% of 
the least non-valid mutants to increase overall quality. It 
effectively ensures the conduct of the experiment. 

The external validity is mainly the effect of the 
equivalence [23] and redundancy [24], which are the objects 
that need to be considered in mutation testing. In the paper, 
decision boundary change measurement takes them into full 
consideration by DocEntropy calculation. Specifically, 
mutants with decision boundaries similar to the original model 
have fewer changed boundary distances to be measured, 
negatively contributing to DocEntropy. This shows that the 
reduction method proposed is sensitive to equivalences. In 
addition, mutants with similar decision boundaries can reduce 
the diversity of decision boundary changes. DocEntropy 
would rapidly decrease in the set of low-diversity mutants. 
This shows that the reduction method proposed is sensitive to 
redundancies. Thus, the reduction method proposed can 
reduce the mutation operators of the generated equivalences 
and redundancies. 

5  Related Work 

5.1 DL Software Testing 

With DeepXplore [25] presented in 2018, the testing of DL 
software has gradually been valued by researchers. For a time, 
research directions such as test input generation, test coverage 
indicators, and test input selection have been developed one 
after another. 

Test input generation is mainly used to generate data that 
the model can misjudge. The most used is the adversarial 
sample generation technology. They add interference to the 
data that is not visible to the human eye, causing errors in the 
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model output [26]. Adversarial models are another effective 
way to test input generation. DeepTest [27] synthesizes the 
autopilot scene with various weather backgrounds and 
generates images that make the autopilot decision model 
errors. Test coverage indicators are such as neuron coverage 
[28]. These methods seek to find more model defects by 
increasing the coverage of the DL model. However, coverage 
indicators are still difficult to interpret [29]. The test input 
selection is mainly to improve the effectiveness of the test by 
selecting data in the dataset. DeepGini [15] uses a statistical 
method to identify data that can misclassify the model quickly. 
The quality of the model is improved by training these data. 
From the uncertainty of the model output, Ma et al. [30] 
selected data that could be classified incorrectly by the model. 
Experiments showed that this method is more efficient than 
test coverage indicators.  
 

5.2 Mutation Testing Cost Reduction 
 

Traditional program-based mutation testing is often 
divided into three steps: select mutation operators, generate 
mutations, and calculate mutation scores. According to 
whether a mutant is generated before reduction, mutation 
reduction is divided into mutation operator reduction and 
mutant reduction. 

Since the reduction of mutation operators was proposed in 
1991, it has been used quite a lot. Mathur. Offutt et al. [31] 
presented 2-selective, 4-selective, and 6-selective mutation 
strategies for the mothra mutation operator set, which ignores 
2, 4, or 6 mutation operators to achieve the effect of reducing 
the number of mutants. Namin et al. [32] chose to use a 
statistical analysis program to identify the characteristic of 
mutation operators and achieve mutation operators reduction. 
Experimental results show that this method can fully predict 
the mutation score using a small number of mutants. Silva et 
al. [33] applied the search-based testing method to mutation 
testing, selecting a more efficient mutation operator and 
effectively reducing the cost of testing.  

The reduction method of mutants, which is more regular, 
is mainly divided into three random selections, specific kinds 
of mutants selection, and multiple operators acting as one 
mutant. The random selection method selects mutants from the 
generated mutants according to a certain ratio, such as 10%, 
20%. According to the experiment of Wong et al. [34], it can 
be concluded that when the ratio exceeds 10%, the random 
selection method is feasible. Zhang et al. [35] proved that 
randomly selecting mutants is better than mutants selection 
oriented by mutation operators. Meanwhile, this also shows 
that reduction based on mutants is more valuable for research. 
However, Yao et al. [36] reduced the mutants based on the 
characteristic of the mutation operators. Experimental results 
show that this method can effectively reduce equivalent 
mutants and make mutation scores more accurate. Harman et 
al. [37] found that injecting multiple mutation operators into a 
program can achieve mutant reduction. Simultaneously, by 
increasing the requirements for killing mutants, the set of test 
cases is increased. This also reflects that the method of 
multiple operators acting as one mutant is efficient. 

 

 

 

 

6  Summary 
 

In the paper, we firstly propose a mutation operator 
reduction method for DL mutation testing. Specifically, we 
calculate the distances of the decision boundaries between the 
original model and each mutant. Then, we apply DocEntropy 
to evaluate the diversity of distances, representing the decision 
boundary changes. Finally, we select the operators with the 
highest value as the reduction result. In the experiment, this 
method successfully reduced thirteen mutation operators to 
eight, decreasing nearly 33.61% mutants generated and 
executed. Moreover, the accuracy of mutation scores 
improves an average of 9.45%. In the future, we will try to use 
high-order mutants to improve the efficiency of DL software 
mutation testing.  

 
Acknowledgements 
 

The work is partly supported by the Postgraduate Research 
& Practice Innovation Program of Jiangsu Province 
(KYCX21_1140), the General Project of Basic Natural 
Science in Colleges and Universities of Jiangsu Province 
(21KJB520027), the Key Project of University Education 
Information Research (2021JSETKT023) and the Project of 
University-Industry Collaborative Education (202002180001). 

 
References 
 

[1] J. Li, J. Wang, X. Chen, Z. Luo, Z. Song, Multiple Task-
driven Face Detection Based on Super-resolution 
Pyramid Network, Journal of Internet Technology, Vol. 
20, No. 4, pp. 1263-1272, July, 2019. 

[2] C. Chen, A. Seff, A. Kornhauser, J. Xiao, Deepdriving: 
Learning Affordance for Direct Perception in 
Autonomous Driving, Proceedings of the IEEE 
International Conference on Computer Vision (ICCV), 
Santiago, Chile, 2015, pp. 2722-2730. 

[3] Z. Wang, M. Yan, S. Liu, J. Chen, D. Zhang, Z. Wu, X. 
Chen, Survey on Testing of Deep Neural Networks, 
Journal of Software, Vol. 31, No. 5, pp. 1255-1275, May, 
2020. 

[4] A. P. Mathur, W. E. Wong, A Theoretical Comparison 
between Mutation and Data Flow based Test Adequacy 
Criteria, Proceedings of 1994 ACM Computer Science 
Conference (CSC’94), Phoenix, Arizona, USA, 1994, pp. 
38-45.  

[5] L. Ma, F. Zhang, J. Sun, M. Xue, B. Li, F. J. Xu, C. Xie, 
L. Li, Y. Liu, J. Zhao, Y. Wang, DeepMutation: Mutation 
Testing of Deep Learning Systems, 2018 IEEE 29th 
International Symposium on Software Reliability 
Engineering (ISSRE), Memphis, TN, USA, 2018, pp. 
100-111. 

[6] L. Deng, The Mnist Database of Handwritten Digit 
Images for Machine Learning Research [Best of the 
Web], IEEE Signal Processing Magazine, Vol. 29, No. 6, 
pp. 141-142, November, 2012. 

[7] F. Belli, C. J. Budnik, A. Hollmann, T. Tuglular, W. E. 
Wong, Model-based Mutation Testing—Approach and 
Case Studies, Science of Computer Programming, Vol. 
120, pp. 25-48, May, 2016. 

[8] M. Papadakis, M. Kintis, J. Zhang, Y. Jia, Y. L. Traon, 
M. Harman, Mutation Testing Advances: An Analysis 



Mutation Operator Reduction for Cost-effective Deep Learning Software Testing via Decision Boundary Change Measurement 609 

and Survey, Advances in Computers, Vol. 112, pp. 275-
378, 2019. 

[9] T.-G. Tsuei, C. H. Ting, H.-C. Chao, Laws of Computing:
A View from Forth, Journal of Internet Technology, Vol.
1, No. 2, pp. 59-66, December, 2000.

[10] M. E. Delamaro, J. Offutt, P. Ammann, Designing
Deletion Mutation Operators, IEEE Seventh
International Conference on Software Testing,
Verification and Validation, Cleveland, OH, USA, 2014,
pp. 11-20.

[11] W. Shen, Y. Li, L. Chen, Y. Han, Y. Zhou, B. Xu,
Multiple-boundary Clustering and Prioritization to
Promote Neural Network Retraining, Proceedings of the
35th IEEE/ACM International Conference on
Automated Software Engineering (ASE), Melbourne,
VIC, Australia, 2020, pp. 410-422.

[12] H. Karimi, J. Tang, Decision Boundary of Deep Neural
Networks: Challenges and Opportunities, Proceedings
of the 13th International Conference on Web Search and
Data Mining (WSDM), Houston, TX, USA, 2020, pp.
919-920.

[13] W. Y. Chiu, G. G. Yen, T. K. Juan, Minimum Manhattan
Distance Approach to Multiple Criteria Decision
Making in Multiobjective Optimization Problems, IEEE
Transactions on Evolutionary Computation, Vol. 20, No.
6, pp. 972-985, May, 2016.

[14] G. F. C. Contreras, H. J. Dulcé-Moreno, R. A. Melo,
Arduino Data-logger and Artificial Neural Network to
Data Analysis, 5th International Meeting for
Researchers in Materials and Plasma Technology, San
José de Cúcuta, Colombia, 2019, pp. 1-7.

[15] Y. Feng, Q. Shi, X. Gao, J. Wan, C. Fang, Z. Chen,
Deepgini: Prioritizing Massive Tests to Enhance the
Robustness of Deep Neural Networks, Proceedings of
the 29th ACM SIGSOFT International Symposium on
Software Testing and Analysis (ISSTA), Virtual Event,
USA, 2020, pp. 177-188.

[16] B. Kurtz, P. Ammann, J. Offutt, M. E. Delamaro, M.
Kurtz, N. Gökçe, Analyzing the Validity of Selective
Mutation with Dominator Mutants, Proceedings of the
2016 24th ACM SIGSOFT International Symposium on
Foundations of Software Engineering (FSE), Seattle,
WA, USA, 2016, pp. 571-582.

[17] C. Ezeh, T. Ren, Y. Xu, S. Sun, Z. Li, Entropy and
Structural-Hole Based Node Ranking Methods, Journal
of Internet Technology, Vol. 22, No. 5, pp. 1011-1019,
September, 2021.

[18] Q. Shi, Z. Chen, C. Fang, Y. Feng, B. Xu, Measuring the
Diversity of a Test Set with Distance Entropy, IEEE
Transactions on Reliability, Vol. 65, No. 1, pp. 19-27,
March, 2016.

[19] Y. LeCun, LeNet-5, Convolutional Neural Networks,
URL:http://yann.lecun.com/exdb/lenet.

[20] C. Xiao, B. Li, J. Zhu, W. He, M. Liu, D. Song,
Generating Adversarial Examples with Adversarial
Networks, January, 2018,
https://arxiv.org/abs/1801.02610.

[21] A. Khan, A. Sohail, U. Zahoora, A. S. Qureshi, A Survey
of the Recent Architectures of Deep Convolutional
Neural Networks, Artificial Intelligence Review, Vol. 53,
No. 8, pp. 5455-5516, December, 2020.

[22] S. Yan, G. Tao, X Liu, J. Zhai, S. Ma, L. Xu, X. Zhang,
Correlations Between Deep Neural Network Model

Coverage Criteria and Model Quality, 28th ACM Joint 
Meeting on European Software Engineering Conference 
and Symposium on the Foundations of Software 
Engineering (ESEC/FSE), Virtual Event, USA, 2020, pp. 
775-787.

[23] L. Madeyski, W. Orzeszyna, R. Torkar, M. Józala,
Overcoming the Equivalent Mutant Problem: A 
Systematic Literature Review and a Comparative
Experiment of Second Order Mutation, IEEE
Transactions on Software Engineering, Vol. 40, No. 1,
pp. 23-42, January, 2014.

[24] C. Iida, S. Takada, Reducing Mutants with Mutant
Killable Precondition, 2017 IEEE International
Conference on Software Testing, Verification and
Validation Workshops, Tokyo, Japan, 2017, pp. 128-133.

[25] K. Pei, Y. Cao, J. Yang, S. Jana, Deepxplore: Automated
Whitebox Testing of Deep Learning Systems,
Proceedings of the 26th Symposium on Operating
Systems Principles, Shanghai, China, 2017, pp. 1-18.

[26] I. J. Goodfellow, J. Shlens, C. Szegedy, Explaining and
Harnessing Adversarial Examples, December, 2014,
https://arxiv.org/abs/1412.6572.

[27] Y. Tian, K. Pei, S. Jana, B. Ray, Deeptest: Automated
Testing of Deep-neural-network-driven Autonomous
Cars, Proceedings of the 40th International Conference
on Software Engineering (ICSE), Gothenburg, Sweden,
2018, pp. 303-314.

[28] L. Ma, F. J. Xu, F. Zhang, J. Sun, M. Xue, B. Li, C. Chen,
T. Su, L. Li, Y. Liu, J. Zhao, Y. Wang, Deepgauge: Multi-
granularity Testing Criteria for Deep Learning Systems,
Proceedings of the 33rd ACM/IEEE International
Conference on Automated Software Engineering (ASE),
Montpellier, France, 2018, pp. 120-131.

[29] J. Chen, M. Yan, Z. Wang, Y. Kang, Z. Wu, Deep Neural
Network Test Coverage: How Far Are We?, October,
2020, https://arxiv.org/abs/2010.04946.

[30] W. Ma, M. Papadakis, A. Tsakmalis, M. Cordy, Y. L.
Traon, Test Selection for Deep Learning Systems, ACM
Transactions on Software Engineering and Methodology,
Vol. 30, No. 2, pp. 1-22, April, 2021.

[31] A. J. Offutt, A. Lee, G. Rothermel, R. H. Untch, C. Zapf,
An Experimental Determination of Sufficient Mutant
Operators, ACM Transactions on Software Engineering
and Methodology, Vol. 5, No. 2, pp. 99-118, April, 1996.

[32] A. S. Namin, J. Andrews, D. Murdoch, Sufficient
Mutation Operators for Measuring Test Effectiveness,
2018 ACM/IEEE 30th International Conference on
Software Engineering (ICSE), Leipzig, Germany, 2008,
pp. 351-360.

[33] R. A. Silva, S. R. S de Souza, P. S. L. Souza, A 
Systematic Review on Search Based Mutation Testing,
Information and Software Technology, Vol. 81, pp. 19-
35, January, 2017.

[34] W. E. Wong, A. P. Mathur, Reducing the Cost of
Mutation Testing: An Empirical Study, Journal of
Systems and Software, Vol. 31, No. 3, pp. 185-196,
December, 1995.

[35] L. Zhang, S. S. Hou, J. J. Hu, T. Xie, H. Mei, Is Operator-
based Mutant Selection Superior to Random Mutant
Selection?, Proceedings of the 32nd ACM/IEEE
International Conference on Software Engineering
(ICSE), Cape Town, South Africa, 2010, pp. 435-444.



610 Journal of Internet Technology Vol. 23 No. 3, May 2022 

[36] X. Yao, M. Harman, Y. Jia, A Study of Equivalent and
Stubborn Mutation Operators Using Human Analysis of
Equivalence, Proceedings of the 36th International
Conference on Software Engineering (ICSE), Hyderabad,
India, 2014, pp. 919-930.

[37] M. Harman, Y. Jia, W. B. Langdon, A Manifesto for
Higher Order Mutation Testing, Third International
Conference on Software Testing, Verification, and
Validation Workshops, Paris, France, 2010, pp. 80-89.

Biographies 

Li-Chao Feng received his B.S. degree in 
computer science and technology from 
Nanjing Tech University, Jiangsu, China, in 
2020. He is currently pursuing an M.S. 
degree in Nanjing Tech University, Jiangsu, 
China. His current research interest is 
intelligent software testing. 

Xing-Ya Wang received his B.S. and Ph.D. 
degrees in computer science and technology 
from China University of Mining and 
Technology, Jiangsu, China, in 2012 and 
2017. He is currently the Associate 
Professor at Nanjing Tech University. His 
current research interest includes AI 
software testing and smart contract testing. 

Shi-Yu Zhang received his B.S. degree in 
computer science and technology from 
Nanjing Tech University, Jiangsu, China, in 
2021. He is currently pursuing an M.S. 
degree in Nanjing Tech University, Jiangsu, 
China. His current research interest includes 
intelligent software testing, Blockchain 
(smart contract) analysis and testing. 

Rui-Zhi Gao received his B.S. degree from 
Nanjing University and then received his 
M.S. degree and Ph.D. degree under the
supervision of Professor W. Eric Wong at
UTD. Dr. Gao focuses on software testing
and program debugging. He is now working
as a Principal Software Development
Engineer at Sonos Inc.

Zhi-Hong Zhao received his B.S., M.S., 
and Ph.D. degrees in computer science and 
technology from Nanjing University, 
Jiangsu, China, from 1993 to 2002. He is 
currently the Professor in computer science 
and technology at Nanjing Tech University. 
His current research interest includes 
Software engineering, information system 

engineering, machine learning. 


	JIT2303 Cover
	JIT2303 Table of contents
	組合 1
	01
	02
	03
	04
	05
	06
	07
	08
	09
	10

	組合 2
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20
	21

	JIT2303-Information for Authors
	空白頁面
	空白頁面
	空白頁面
	空白頁面
	空白頁面
	空白頁面
	空白頁面
	空白頁面
	空白頁面
	空白頁面
	空白頁面
	空白頁面
	空白頁面
	空白頁面


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (Adobe RGB \0501998\051)
  /CalCMYKProfile (Japan Color 2001 Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHT <FEFF005b683964da300c9ad86a94002851fa8840002b89d27dda0029300d005d0020005b683964da300c8f3851fa0033003000300064002851fa88400029300d005d00204f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks true
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        8.503940
        8.503940
        8.503940
        8.503940
      ]
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MarksOffset 9.354330
      /MarksWeight 0.141730
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /LeaveUntagged
      /UseDocumentBleed true
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice




