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Abstract 

The objects in remote sensing images often appeared in 

any direction, and thus multi-orientation object detection has 

received considerable attention. However, most existing 

oriented object detection methods rely on increasing the 

network layers, which wastes many computing resources 

while only bringing a slight improvement. We find that a few 

pixels around the convolution kernel participate in the 

calculation when extracting image features in the convolution 

network. If we can incorporate the global information into the 

feature map, the model’s performance will be significantly 

improved. In this paper, we proposed the dynamic pyramid 

attention network (DPANet) for remote sensing images, 

which consists of the self-attention feature pyramid network 

(SAFPN) and the dynamic feature map selection module 

(DFMS). The SAFPN employs the self-attention mechanism 

to learn the correlation between each pixel value and the 

global pixel in different feature layers by downsampling the 

upper feature layers to the lower one. Furthermore, the DFMS 

module dynamically selects feature maps to further expand 

the receptive field by weighing the effectiveness of different 

feature layers and reducing the interference of unnecessary 

feature maps. The remote sensing datasets HRSC2016, 

UCAS_AOD and NWPU_VHR are used to evaluate the 

performance of DPANet and the experiment results show that 

the proposed network outperforms the benchmark models 

significantly.  

Keywords: Oriented object detection, Remote sensing 

images, Self-attention, Feature layer selection

1  Introduction 

Object detection is a fundamental and difficult challenge 

of remote sensing research and receives a lot of interest due 

to the development of deep convolution neural networks. The 

performance of object detection has been dramatically 

improved in recent years [1-3], particularly in terms of speed 

and accuracy. Most object detection methods can be divided 

into two major types. The first is Faster-RCNN [4], which 

represents the two-stage object detection methods. It focuses 

on the extraction of region proposals and fine-tunes the 

location of the detection bounding box. The single-stage 

detection networks, such as YOLO (You Look Only 

Once)[5], SSD (Single Shot MultiBox Detector) [6], and 

RetinaNet [7] are the second type. Specifically, YOLO 

completes feature extraction, object classification, and 

coordinate regression simultaneously, which makes it faster 

but less accurate than the two-stage network. However, 

methods such as Faster-RCNN cannot be directly applied to 

multi-orientation object detection because the orientation will 

cause the objects and detection bounding boxes to be 

misaligned. As shown in Figure 1, the horizontal bounding 

box contains complex background and loses the shape 

information, whereas the oriented bounding box can preserve 

the target’s actual size. The adjacent horizontal bounding 

boxes typically have considerable overlap, and the bounding 

box with lower confidence will be easily suppressed during 

the process of non-maximum suppression, resulting in missed 

detection. 

Figure 1. Comparison of HBBs and OBBs. For adjacent ships, 

HBBs in image (a) have a larger overlap area than OBBs in 

image (b), and boxes with lower confidence scores will be 

suppressed. 

To address the shortcomings of horizontal bounding 

boxes, many researchers have proposed oriented bounding 

boxes methods for object detection in remote sensing images. 

Jiang et al. [8] detected the text content by incorporating 

anchor and multi-scale ROI-Pooling, and adding the loss of 

angle regression into the loss function (R2CNN). Ma et al. [9] 

proposed a region extraction-based method that combines 

RROI and ROI learning to improve the performance of rotated 

text detection (RRPN). Yang et al. [10] proposed a refined 

one-stage rotation detector (R3Det), which combines the 

advantages of horizontal anchor’s high recall rate and rotation 

anchor’s adaptability to dense scenes. Zhang et al. [11] 

designed a spatial and scale-aware attention module that 

makes the network focus on the areas with more information 

at an appropriate feature scale and suppresses irrelevant 

information simultaneously. Zhou et al. [12] proposed 

replacing the traditional five-coordinate method with the 

polar coordinate system and regressing the coordinates using 

a new loss function. A feature fusion structure designed by X. 

Yang et al. [13] can solve the small target problem from the 

perspective of feature fusion and anchor sampling (SCR-Det). 

They proposed a supervised multi-dimensional attention 

network that could mitigate the effects of background noise 

and solve the dense permutation problem. 

In the object detection network, the attention mechanism 

in the feature extraction part makes the deep neural network 

to learn the areas of interest in each image. According to 
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previous research, there are primarily three attention 

mechanisms. The first one is spatial attention, as illustrated in 

Figure 2. The Spatial Transformer Network proposed by 

Jaderberg et al. [14] learns a set of radical transformation 

parameters, allowing the input image to adjust the object in 

the image to a more appropriate position, completing the 

preprocessing work suitable for various tasks. The second one 

is channel attention, as illustrated in Figure 3. SENet proposed 

by J. Hu et al. [15] focuses on the channel features with the 

most information and suppresses the unimportant ones. The 

third mechanism is the attention mechanism that combines 

channel and space. S. Woo et al. [16] proposed a CBAM 

module that combines space and channel attention to improve 

performance. As a result, the application of the attention 

mechanism for feature extraction yielded promising results. 

In the past two years, the proposed Transformer [17], 

particularly the self-attention module, has achieved excellent 

results in the area of Natural language processing (NLP) and 

has a wide range of application in the field of computer vision. 
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Figure 2. The structure of Spatial attention Module 

The self-attention mechanism has been first used in the 

field of NLP. As shown in Figure 4, it is an attention 

mechanism with different positions of a single sequence used 

to calculate the interactive representation of sequences. In 

machine reading, Cheng et al. [18] utilize the self-attention 

mechanism that allows the network to learn the relationship 

between the current word and the previous part of the sentence. 

Xu et al. [19] describe the generation task in the image with 

the self-attention module. The attention weights visualization 

clearly shows which areas of the image the model is 

concerned with when output the results. Nowadays, an 

increasing number of researchers are focusing on the 

application of self-attention in other fields. Carion et al. [20] 

proposed a set-based global loss function and use Transformer 

to achieve end-to-end object detection. It uses binary 

matching and a transformer encoder-decoder architecture to 

compute unique predictions. A small set of fixed learning 

object queries is provided and the relationship between the 

target object and the global image context is then considered, 

with the final prediction set being output directly and in 

parallel. Wang et al. [21] divided a two-dimensional self-

attention module into two one-dimensional self-attention 

modules. Simultaneously, it establishes an attention module 

with a global sense field while reducing the calculation 

amount. It adds a position-sensitive attention layer, allowing 

it to use position information better and become an instance 

segmentation backbone network. According to the findings of 

the preceding studies, self-attention structure plays a critical 

role in learning global information. In multi-orientation object 

detection networks, it is difficult to accurately regress the 

angle of bounding boxes. Self-attention can help the network 

obtain richer structural characteristics of the objects, and the 

model can learn the correlation of global information and 

regress the coordinate information better. 
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Figure 3. The structure of Channel attention Module 
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Figure 4. The structure of Self-attention Module 

In this work, we propose the Dynamic Pyramid Attention 

network as a brand new and effective multi-scale feature 

extraction network to improve the global feature learning 

problem for multi-orientation object detection. The self-

attention module for learning global information embedded 

on the multi-scale feature network FPN is introduced in the 

area of remote sensing for oriented object detection. In the 

second part, the DPANet further enhances network learning 

through the self-attention module. Simultaneously, it 

dynamically selects feature maps to reduce the unnecessary 

interference of low-quality feature maps and reduces the 

calculation of the model. The experience results demonstrate 

that our method can achieve consistent and significant 

improvements in the detection of multi-directional objects 

with the experiments on various datasets, including the 

remote sensing dataset HRSC2016 and UCAS_AOD. 

Experiments on the dataset NWPU_VHR also show that our 

method is universal for object detection with the horizontal 

bounding box. Our proposed method is simple to incorporate 

into existing object detection pipelines. 

Our primary contribution includes the introduction of self-

attention to orientation object detection and a method for 

evaluating the efficiency of feature layers. We analyze the 

distribution of positive proposals from the different feature 

layers and highlight the different results brought by different 

distributions. In order to reduce feature dilation in the top-

down pathway, we proposed the SAFPN module to expand 

and change the receptive field of the feature map to the global 

receptive field. It is able to increase the information 

representation ability of feature maps with different sizes and 

improve the whole model’s high-quality feature extraction 

ability. 

 

2  DPA Network 
 

The architecture of our method is shown in Figure 5. The 

DPANet extends the framework of FPN in RetinaNet and 

consists of two stages: dynamic feature map selection 

(referred to as DFMS) and self-attention FPN (referred to as 

SAFPN) to generate proposals and refine the outputs. We 

dynamically evaluate the quality of feature maps generated 

from FPN in the DFMS stage and fine-tune the high-quality 

ones by inputting them into the self-attention module. The low 

semantic feature map and high semantic feature map obtained 

from the backbone network are convoluted to the same scale 

and used for self-attention calculation in the SAFPN stage. 
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Figure 5. Architecture of the proposed method (using RetinaNet as an embodiment). 'C1', 'C2', 'C3' are the feature maps 

extracted from ResNet’s layer2, layer3 and layer4. The SAFPN module and DFMS module enhance the learning of global 

features through the self-attention module to improve the generation of positive proposals. 

 

2.1 Multi-orientation Detector on RetinaNet 
 

In actual application scenarios, orientation object 

detection pays more attention to the real-time scene. 

Therefore, we use RetinaNet, a single-stage object detection 

network, as the backbone of our model. It uses ResNet [22] as 

the feature extraction network and an architecture similar to 

FPN to construct the multi-scale feature pyramid. Predefined 

horizontal anchors are set at levels P3, P4, P5, P6, P7. We 

denote the bounding box with (𝑥, 𝑦, 𝑤, ℎ, 𝜃 ) due to the 

additional angle parameters. For bounding box regression, we 

have: 

 

𝑡𝑥 =
𝑥 − 𝑥𝑎

𝑤𝑎
, 𝑡𝑦 =

𝑦 − 𝑦𝑎

ℎ𝑎
 (1) 

𝑡𝑤 = 𝑙𝑜𝑔
𝑤

𝑤𝑎
, 𝑡ℎ = 𝑙𝑜𝑔

ℎ

ℎ𝑎
, 𝑡𝜃 = tan(𝜃 − 𝜃𝑎) (2) 

 

where the 𝑥, 𝑦, 𝑤, ℎ, 𝜃 are the center coordinates, width, 

height and angle. 𝑥𝑎 denotes the anchor value. Given ground 

truth offset 𝑡∗ = (𝑡𝑥
∗ ,  𝑡𝑦

∗ ,  𝑡𝑤
∗ ,  𝑡ℎ

∗ ,  𝑡𝜃
∗) . The definition of the 

multitask loss formula is as follows: 

 

𝐿 = 𝐿𝑐𝑙𝑠( 𝑝, 𝑝
∗ + 𝐿𝑟𝑒𝑔(𝑡, 𝑡

∗) ) (3) 

 

in which 𝑝 denotes the score of prediction classification, 

𝑡 denotes the offset of prediction box, and 𝑝∗ denotes the class 

label of anchor ( 𝑝∗ = 1  denotes positive sample, 𝑝∗ = 0 

denotes negative sample). 

 

2.2 Dynamic Feature Map Selection 

It is well known that the low-level feature map contains 

less semantic information but an accurate target location. In 

contrast, the high-level feature map contains more semantic 

information but a rough target location. After extracting 

features, most object detection models directly input the 

feature maps to the decoder to output proposals for 

classification and regression. However, the quality of 

generated proposals is frequently deficient, complicating the 

training of the subsequent network. In this part, the self-

attention module is used to improve feature extraction 

capabilities, and experiments show that feature extraction 

capabilities for small feature maps via self-attention are 

insufficient. In the process of training, the network spatially 

matches the preset anchor and the real-labeled frame based on 

IoU and outputs an appropriate number of proposals as 

positive samples for regression by limiting a certain threshold 

(such as IoU>0.5). Figure 6 shows that the proportion of 

positive suggestions generated by different layers of feature 

maps in different datasets is different and unbalanced. We 

could better weigh the ability to vary scale feature maps to 

generate positive sample proposals through designing the 

efficiency 𝜑  of proposals. By dynamically evaluating the 

effectiveness of different feature layers and performing self-

attention operations on them separately, we can get better 

results than by operating directly on all feature maps. 𝜑 can 

be calculated as follows.  

 

𝜑𝑖 =
𝜔𝑖

∑ 𝜔𝑘
𝑛
𝑘

, 𝜔 =
𝑥𝑖

𝑦𝑖
 (4) 

where 𝑥 is the number of positive proposals in the 𝑖 -th 

feature layer and 𝑦 is the total number of proposals generated 

in the 𝑖 -th feature layer.

 
Figure 6. The proportion of positive proposals generated from each feature layer in datasets HRSC2016, UCAS_AOD and 

NWPU_VHR. The proportion of feature layers in different datasets varies due to the different size of target objects in 

different datasets. The main feature layers in HRSC2016 are p1, p2 and p3, the main feature layers in UCAS_AOD are p3, 

p4 and p5, and the main feature layers in NWPU_VHR are p1, p2 and p3. 
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Figure 7. Pipeline of SAFPN and DFMS. The feature maps C1, C2 and C3 are produced by layer 2, layer 3 and layer 4 

generated from ResNet. We downsample C1 to get the same size as the high semantic information feature maps C2 and C3, 

which we call C1' and C1". The feature map C1' serves as Key and Value and C2 serves as Query. Then, we added them 

into the self-attention module. Next we repeat the process for feature map C1". The new fusion feature map is acquired and 

loaded into the FPN. The feature layer selected by the DFMS module is used as K, V and Q, respectively calculated in the 

self-attention module. 

 

2.3 Self-Attention FPN 
 

The FPN baseline can only generate rough feature maps 

without any further attention modules [23]. In FPN 

architecture, there are two unavoidable issues. The first is 

when high-level information is gradually diminished as it is 

integrated into different feature levels of up-down paths [24]. 

The other issue is that extraneous information may influence 

this architecture and lower the model’s overall performance 

[25]. To address these two shortcomings of baseline FPN, we 

proposed a novel self-attention feature pyramid network 

(SAFPN). The goal of SAFPN is to improve high-level 

semantic features and then transmit the improved semantic 

information down to lower feature levels. Context 

information can be better utilized when using other feature 

pixels in the feature map to enhance the representation of 

target pixels. The proposed architecture is based on a 

traditional feature pyramid network (FPN) [26] and uses 

ResNet as the backbone. The basic FPN architecture is well 

known for its widespread application in a wide range of 

computer vision tasks, particularly detection tasks, where 

detection results may be more accurate due to the durability 

and rationality of its structure. As shown in Figure 7, we keep 

the basic frame but add two practical modules to improve 

performance. The self-attention module is composed of three 

steps: similarity calculation, softmax, and weighted average. 

The following are the calculation formulas.  

 

𝑄 = 𝑐𝑜𝑛𝑣1(𝑥1), 𝐾 = 𝑐𝑜𝑛𝑣1(𝑥2), 𝑉 = 𝑐𝑜𝑛𝑣3(𝑥3)   (5) 

𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄, 𝐾, 𝑉) = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 (
𝑄𝐾𝑇

√𝑑𝑘𝑉
) (6) 

𝑜𝑢𝑡𝑝𝑢𝑡 = 𝛾 ∗ 𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄, 𝐾, 𝑉 ) + 𝑥3         (7) 

 

where 𝑥1, 𝑥2, 𝑥3  are the input feature maps. 𝑄  and 𝐾 

denote the query and key. Query can be thought of as the 

concatenation of 𝑀 vectors with dimension 𝑑, and Key as the 

concatenation of 𝑁  vectors with dimension 𝑑 , 𝛾  is a hyper 

parameter. 

 

3  Experiments 
 

3.1 Datesets 
 

In this section, we evaluate the proposed method with 

quite a few comparative experiments on remote sensing image 

datasets, known as the HRSC2016, UCAS_AOD and 

NWPU_VHR datasets. 

HRSC2016 is a challenging dataset in the field of ship 

detection. It contains 1061 labelled images. The image sizes 

range from 300×300 to 1500×900 pixels. It is divided into 

the training set, validation set and test set, each with 436, 181 

and 444 images. 

UCAS_AOD is a dataset for detecting aerial aircraft and 

cars. The aircraft dataset contains 1000 images of 3210 

aircraft, and the vehicle dataset contains 510 images of 2819 

vehicles. All images are carefully chosen to ensure that the 

target direction is distributed evenly throughout the dataset. 

We randomly divide it into the training set, validation set and 

test set as 2:1:1. 

NWPU_VHR includes 10 different geospatial object 

classes. It contains 757 airplanes, 159 basketball courts, 302 

ships, 390 baseball squares, 524 tennis courts, 124 bridges, 

655 storage tanks, 477 cars, 163 track and field grounds and 

224 ports in the dataset. It is made up of 715 RGB images with 

spatial resolutions, ranging from 0.5m to 2m collected from 

Google Earth, as were 85 pan-sharpened infrared images with 

spatial resolutions of 0.08m. 

 

3.2 Evaluation Metrics 
 

We use the precision-recall curve (PRC) and average 

precision (AP) as the evaluation metrics, which are widely 

applied to measure the performance of models. 

The PRC is a measure of accuracy at different recall rates. 

The precision and recall are calculated by the number of true 

positive (referred to as TP), the number of false positive 

(referred to as FP ), and the number of false negative (referred 

to as FN). The precision and recall are defined as follows: 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
      (8) 

 

𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
      (9) 
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where the ratio of overlap area between the predicted box 

and ground truth box over 0.5, we recognized the box as TP; 

otherwise, it is FP. 

 The AP metric is the value of the area under the PRC, and 

the mean average precision (mAP) is the mean AP value of 

all object classes. The higher the value of mAP, the better 

performance of the model. They are defined as the following 

formulas: 

𝐴𝑃 =  ∫ 𝑃(𝑅)𝑑𝑅
1

0

× 100%         (10) 

𝑚𝐴𝑃 = 
1

𝑁𝑐𝑙𝑠
∑ 𝐴𝑃𝑖

𝑁𝑐𝑙𝑠

𝑖=1

         (11) 

where 𝑃(𝑅) denotes the P-R function, 𝑁𝑐𝑙𝑠 represents the 

number of categories.  

 

3.3 Implementation details 
 

The baseline network that we use is DAL [27], which uses 

RetinaNet as the backbone network and adds a matching 

matrix to balance the positive and negative samples. In the 

dataset HRSC2016, UCAS_AOD and NWPU_VHR, the ratio 

of anchor we use are (0.5, 1, 2). All the pictures are resized to 

800×800 in the data preprocessing part. The data is enhanced 

by randomly flipping and rotating the images to boost the 

robustness of the model. The optimizer we use in the network 

is Adam, and the learning rate is set to 0.0001. We trained our 

model on an NVIDIA GTX1080Ti for 100 epochs with a 

batch size of 2. All the experimental results are evaluated 

under PASCAL VOC 2012 metric. 

 

3.4 Ablation study 
 

3.4.1 Effect of DFMS  

 

To illustrate the efficacy of our method, we conducted a 

series of comparative experiments. We find that the different 

choices of feature layers, which are selected by DFMS and 

sent to the self-attention module, will produce different results. 

The feature layer with a higher proportion will outperform the 

feature layer with a lower proportion. Table 1, Table 2, and 

Table 3 show that the selection of feature maps improves the 

mAP significantly compared to the baseline method. The PRC 

of various methods in datasets HRSC2016, UCAS_AOD and 

NWPU_VHR are depicted in Figure 8, Figure 9 and Figure 

11. 

 

Table 1. Detection results of different layers in DFMS 

module in dataset HRSC2016 

Methods Layers mAP 

Baseline - 88.60 

Baseline+SAFPN - 90.19 

Baseline+SAFPN(DFMS) p2 90.42 

Baseline+SAFPN(DFMS) p2+p3 91.52 

Baseline+SAFPN(DFMS) p4+p5 90.90 

Baseline+SAFPN(DFMS) p2+p3+p4+p5 91.39 

 

Table 2. Detection results of different layers in DFMS 

module in dataset UCAS_AOD 

Methods Layers mAP 

Baseline - 89.87 

Baseline+SAFPN - 92.24 

Baseline+SAFPN(DFMS) p2+p3 92.74 

Baseline+SAFPN(DFMS) p4+p5 92.22 

Baseline+SAFPN(DFMS) p2+p3+p4 93.36 

Baseline+SAFPN(DFMS) p2+p3+p4+p5 92.26 

 

Table 3. Performance evaluation of HBB task on 

NWPU_VHR 

Methods Layers mAP 

Baseline - 88.30 

Baseline+SAFPN - 89.42 

Baseline+SAFPN(DFMS) p2 89.50 

Baseline+SAFPN(DFMS) p2+p3 89.36 

Baseline+SAFPN(DFMS) p2+p3+p4 90.74 

Baseline+SAFPN(DFMS) p2+p3+p4+p5 89.72 

 

3.4.2 Effect of SAFPN  

 

SAFPN is a brand-new designed structure that enhances 

the semantic representation of each feature layer by using 

low-level feature maps. Due to the intervention of feature 

maps with high semantic information, combined with the self-

attentive module, the confidence level of the proposals output 

from each feature layer is increased. Thus, the number of 

positive proposals output from each feature layer is increased, 

which provides a good guarantee for coordinate position 

regression. Figure 10 shows that positive proposals from 

HRSC2016 increased by 4.6%, UCAS_AOD increased by 

17.5%, and NWPU_VHR increased by 5.3%. 

 
Figure 8. Precision-recall curves of test results by different methods in HRSC2016 
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Figure 9. Precision-re call curves of different methods for each category in UCAS_AOD 

 

 

 

 
Figure 10. Comparison of the number of positive proposals among the three dataset 

 

 

4  Results 
 

4.1 Results on HRSC2016 
 

The objects in HRSC2016 are with high aspect ratios and 

multiple directions. Table 4. shows an experiment 

comparison of our method with other methods. The 

comparison shows that our method achieves the most 

advanced performance. We use ResNet-50 as the backbone 

network and resize the input image to 800×800. Furthermore, 

our model is a single-stage detection network, and its 

performance is not inferior to some two-stage detection 

networks. The comparison results of the dataset are shown in 

Figure 12. 

 

 

 

Table 4. Comparisons with state-of-the-art detectors on 

HRSC2016 

Methods Backbone Size mAP 

Two-stage    

R2CNN [8] ResNet101 800×800 90.19 

RRPN [9] ResNet101 800×800 90.42 

RoI Trans [28] ResNet101 800×800 91.52 

Gliding Vertex [29] ResNet101 512×800 90.90 

CSL [30] ResNet101 - 91.39 

One-stage    

RRD [31] VGG16 384×384 84.30 

ROPDet [32] ResNet101 800×800 89.16 

GWD [33] ResNet101 512×512 89.85 

Baseline ResNet50 800×800 88.60 

DPANet(Ours) ResNet50 800×800 91.52 
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Figure 11. Precision-recall curves of different methods for each category in NWPU_VHR 

 

4.2 Results on UCAS_AOD 
 

The experiment results in Table 5 show that the result of 

our method has been improved by 3.49% compared to the 

baseline, and 3.33% higher than PRSdet, whose backbone is 

much deeper. It also indicates that the confidence of the 

detection target has also been significantly improved. The 

detection results are compared in Figure 13. 

 

Table 5. Comparisons with state-of-the-art detectors on 

UCAS_AOD 

Methods Backbone Size mAP 

FR-O [34] ResNet101 800×800 88.30 

RoI Trans [28] ResNet101 800×800 88.95 

PRSDet [12] ResNet101 512×512 90.03 

Baseline ResNet50 800×800 89.87 

DPANet(Ours) ResNet50 800×800 93.36 

 

4.3 Results on NWPU_VHR 
 

The results show that our method is both effective for 

target detection whether it use horizontal frames or rotating 

frames. As shown in Table 6, the detection results of storage 

tank, harbor, vehicle, ground-track-field and baseball-

diamond have achieved the best performance. The addition 

of DPANet can improves the object detection performance of 

horizontal bounding box. The significant improvement 

demonstrates the adaptability of our method. Figure 14 

depicts a comparison of the experiment results. 

 

5  Conclusion 
In this paper, we proposed a dynamic pyramid attention 

network for oriented objects detection in remote sensing 

images, which consists of SAFPN and DFMS. SAFPN is a 

self-attention-based improved FPN that can improve the 

inherent disadvantages of FPN through enhancing high-level 

semantic features and transmitting the enhanced semantic 

information to different feature levels. The DFMS module is 

a dynamic selection of training feature map layers based on 

proposal distribution. It can achieve much better results with 

less computation with the help of self-attention. The 

experiment results show that our method can detect rotating 

objects in  complex scenes. The shortcoming of our method 

is that the addition of two modules greatly lengthens the 

training time. However, the advantage of DPANet is that it 

could be added to any other one-stage object detection 

network, whether OBB or HBB, to improve detection results. 
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Table 6. Performance evaluation of HBB task on NWPU_VHR 

Class SSD[6] RI-CAO[35] Multi-scale FFN[36] ODNN[37] DPANet (ours) 

Airplane 95.7 99.70 93.4 93.0 99.59 

Ship 92.8 90.80 77.1 84.5 89.46 

Storage tank 85.6 90.61 87.5 87.1 94.24 

Baseball-diamond 96.6 92.91 93.0 92.8 97.42 

Tennis Court 82.1 90.29 82.7 82.0 88.10 

Basketball Court 86.0 80.13 83.8 89.0 82.23 

Ground-track-field 58.2 90.81 83.7 78.0 99.74 

Harbor 54.8 80.29 82.5 76.0 92.16 

Bridge 41.9 68.53 72.5 81.0 76.89 

Vehicle 75.6 87.14 82.3 81.5 87.57 

mAP 75.9 87.12 83.8 84.8 90.74 

 

(a)

(b)

Our methodBaseline
 

Figure 12. Comparison of visualization results in dataset HRSC2016. The proposed method presents a better detection accuracy 

than baseline method. In group (a), the baseline method missed an object. The proposed method obtains better regression 

coordinates in group(b). 

Our methodBaseline

(a)

(b)

 
Figure 13. Comparison of visualization results in dataset UCAS_AOD. In group (a), the proposed method performed better in 

directional regression.  In group (b), the baseline method missed some objects. 
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Our methodBaseline

(a)

(b)

 
Figure 14. Comparison of visualization results in dataset NWPU_VHR. In group (a), the proposed method can distinguish each 

nearby target one by one. In group (b), a wrong object is identified in the baseline method. 
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