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Abstract 

With the popularity of wireless application environments, 

smart antenna technology has completely changed the 

communication system. In order to improve the quality of 

wireless transmission, smart antennas have been widely used 

in wireless devices. Wireless signal modeling and prediction 

machine learning gradually replaced the traditional smart 

antenna selection method in the antenna selection solution. 

This article utilizes mobile devices to adjust the diversity 

antenna pattern for test verification in a MIMO wireless 

communication environment. The proposed method 

manipulates signal parameters through error vector 

magnitude (EVM) and adds data-driven training data. The 

results show that the SVM and NN methods proposed in this 

paper are 10.5% and 14% higher than the traditional EVM 

calculation methods, respectively. Thereby, realize precise 

antenna adjustment of mobile devices and improving wireless 

transmission quality. 

Keywords: Antenna selection, Diversity antenna pattern, 

Data-driven, Error Vector Magnitude

1  Introduction 

Till now the wireless transmission has become the 

mainstream application of communication data. The wireless 

communication standard is still under development. The clear 

goals are a higher data rate, lower latency, and more stable 

transmission performance. The research focuses on 

improving the quality of wireless transmission in the existing 

wireless transmission architecture (including hardware, chips, 

software, and front-end antennas). We believe that improving 

antenna performance is a direct and cost-effective approach. 

In traditional antennas, most ways to improve wireless 

transmission efficiency are to establish compliance with 

regulations to create the maximum coverage of the antenna 

radiation pattern. Therefore, the smart antenna [1] design with 

the variability of the field type should be born. The MIMO 

systems used parallel transmission of data streams. 

Multi-channel transmission can significantly improve system 

throughput, and it has become popular in current and 

next-generation wireless networks. The antenna selection 

techniques discussed in the literature improve the 

transmission efficiency by diversity antenna selection. The 

antenna selection techniques discussed in this manuscript 

improve the transmission efficiency by diversity antenna 

selection. Most literature studies have used ML/DL 

algorithms to formulate smart antenna adjustment schemes. 

Most of these methods are based on the premise of 

experimental design that does not consider space and cost and 

does simulation test verification. These types of methods may 

be able to achieve the verification of the theoretical method. 

Can the actual data be improved in-field wireless 

transmission? 

This article aims to predict the efficiency of the MIMO 

system [2] by data-driven [3] and related wireless signal data, 

an adaptive antenna selection technology. The proposed 

method is to make a complete experimental design in a 

limited environmental space. It is a design method that uses 

an external MCU module to drive a variety of antenna options. 

A complete experimental design is made in a general 

notebook computer and a MIMO wireless transmission 

environment in a limited environmental space. In addition to 

the diversified adaptive antenna architecture, the use of 

dynamic modeling methods and appropriate algorithms to 

achieve a better antenna pattern selection and coverage 

increases the efficiency and stability of the wireless 

transmission. Its architecture is shown in Figure 1: 

Figure1. Experimental scheme 

This article utilizes the multi-class classification 

algorithm to compare the traditional EVM method, support 

vector machine (SVM) [4-5], and the neural network (NN) 

[6-7]. Use the training channel state information (CSI) as the 

input signal and add data-driven to provide enough channels 

(data) as training data. Use a variety of classification models 

to classify and predict the new channel to obtain the best 

antenna selection. The CSI signal data contains the system's 

bit error rate (BER), received signal strength indication 

(RSSI), SNR, EVM, and the data-driven results from different 

angles in the experiment. This research provides an in-depth 

understanding of the convergence of machine learning and 

wireless communication antenna selection.The significant 

contributions of this paper are:  (1) A novel structure expects 
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to fully use existing wireless communication devices to move 

towards active antennas fully. (2) The CSI and data-driven 

dynamic modeling of data materials are sufficient to achieve 

the purpose of timely antenna adjustment. (3) The addition of 

data-driven data labeling can improve the accuracy of antenna 

selection and traditional calculation methods by at least 20%. 

(4) The purpose of this article is to expect such algorithms to 

be further advanced from the MIMO verification environment 

to antenna applications such as massive MIMO (mMMIO) [8], 

Large-scale (LSMIMO) [8-9]. 

The rest of this article is organized as follows. Section 2 

explains some related preparations for this research. In 

section 3, Methodology of Machine-Learning assisted 

antenna modeling methods. Section 4, Prediction and 

validation, Section 5, Conclusion. 

 

2  Related Works 
 

As mentioned in the previous section, this article proposes 

an application with adjustable antenna patterns in the wireless 

transmission environment of an existing laptop to enhance 

better wireless performance at any time. Therefore, we use 

existing equipment to consider point-to-point MIMO 

communication as the subject of the experiment, in addition 

to the CSI-related channel signal information taken, to be 

closer to the actual transmission application. This article adds 

the data-driven method to achieve a higher accuracy of 

antenna selection in the chamber simulation experiment of the 

labeling. 

 

2.1 Experimental framework 
 

First, this research uses 2 Tx and 2 Rx MIMO antenna 

transmissions, and the hardware architecture is shown in 

Figure 1. The structure of this experiment uses main and aux 

main antenna streams to control four different planar 

inverted-F antennas (PIFA) [10]. Under this framework, the 

MCU controls the two-stream antenna to create = 16 

different antenna patterns. Through the adjustment of 

different antenna patterns, 16 different CSI signal data will be 

generated. This experiment obtained various x-y, y-z, x-z 

plane radiation patterns. This experiment obtained various 

x-y, y-z, z-x plane radiation patterns. Figure 2 and Figure 3 

indicate wireless channel 149 as the Main and Aux antenna, 

x-y plane radiation patterns in the experiment as example 

patterns. 

This article uses Figure 1 as the experimental equipment 

to obtain wireless signal data at different angles and 

attenuations in the chamber. Many CSI signal input data, 

including data-driven, received signal strength indicator 

(RSSI), signal strength, signal-to-noise ratio (SNR), and BER 

are used as the basis for antenna adjustment. 

 

2.2 Experimental environment 
 

Under the MIMO transmission architecture, it takes M 

transmitting and N receiving antennas as an example. The 

multiple data streams can be spatially multiplexed on M 

transmitting antennas and received by N receiver antennas. 

Because multiple data streams are transmitted on the same 

available frequency band, spatial multiplexing increases the 

link's capacity. Therefore, the reliability of the link improves 

in the MIMO environment. Figure 3 below shows the 

transmission mode of the MIMO antenna, and Figure 4 below 

represents the CSI [14] signal architecture operating under the 

MIMO system. 

 

 
Figure 2. Channel 149, 5745MHz 2D Main x-y plane 

radiation pattern 

 

 
Figure 3. Channel 149, 5745MHz 2D Aux x-y plane 

radiation pattern 

 

 
Figure 4. MIMO system representation 

 

 
Figure 5. MIMO from a channel perspective 

 

It is represented by Figure 5 above, where  represents 

the channel from the kth transmitting antenna to the ith 

receiving antenna. Assuming the multipath channel length is l, 
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the signal  received by the th antenna can be expressed as 

(without noise consideration). 

 

           (1) 

 

The signal received by the ith antenna is the sum of the 

channels transmitted by each antenna to i. (This can also be 

said to be, each receiver antenna not only receives the direct 

signal intended for it but also receives the signal from other 

propagation paths) Consider the noise, such as Figure 5 

MIMO from a channel perspective. The receiving vector y is 

represented by the channel transmission matrix H, the input 

vector x, and the noise vector n as: 

 

                           (2) 

 

In the MIMO environment, the dimension of the channel 

matrix is NxM. Then equation (2) will be rewritten into a 

multi-dimensional equation.  

Note that the response of the MIMO link is expressed as a 

set of linear equations. 

For the 2x2 MIMO architecture configuration proposed in 

this article, the received signal vector is expressed as 

 

   (3) 

 
Following this model, we consider a simple point-to-point 

communication using the transmitter (Tx) and receiver (Rx) 

antennas of  and  as training data in the MIMO 2x2 

antenna environment. Select a set of antenna index vectors, 

 ∈ , is defined as N = { , . . ,  }, where the 

elements of the represent the index of the selected antenna 

[11], 

 
 =              (4) 

 

Because of the  in equation (6), the corresponding 

transmission and reception optimize the actual channel gain. 

In addition, adding data-driven test results provides the best 

antenna selection basis for wireless signal judgment. 

Finally, the transmission matrix (also called CSI) 

determines the applicability of the MIMO technology and 

affects the wireless transmission capacity. The CIS is constant 

in the single input single out (SISO) wireless channel and 

does not change bit by bit. Therefore, knowledge of CSI in the 

SISO link is usually not required because steady-state SNR 

characterizes it. In the case of a fast-fading channel, the 

channel state information changes rapidly. The channel 

change can be decomposed into spatially separated 

sub-channels by using the MIMO feature. Under this 

characteristic, to obtain the CSI (at the transmitter or receiver), 

develop a system design that incorporates this information 

into the smart antenna. It can achieve rapid adjustment and 

stably improve the wireless transmission quality, which is the 

purpose of this article. 

 

2.3 Data preparation 
 

As mentioned previous section, this article is based on the 

experimental equipment of the traditional laptop plus the 

signal data obtained in the chamber and related instruments. 

Among them, the chamber is shown in Figure 6 and Figure 7. 

 

 
Figure 6. Laptop for testing in a chamber 

 

 
Figure 7. 2x2 MiMO test environment in a chamber 

 

Different signal attenuation and adjustable horizontal 

angles in this environment are added because the chamber 

isolation factor will have less noise interference CSI signal 

data. This experiment uses the attenuator from 0 dB to 50 dB 

from the horizontal angle of 0 degrees to 360 degrees. For 

example, Table 1 shows the level of 0 degrees, and the 

attenuation is 0 dB plus the calculated EVM value [12-13]. 

However, during the experiment, it was found that signal 

fluctuation sometimes occurs, especially when the signal 

condition is weak or at high dB attenuation. The reasons for 

signal fluctuation are as follows. The received signal strength 

is the magnitude of the vector sum of various propagation 

paths. The strength of the received signal is a random variable, 

and the propagation environment is time-varying, so the 

fading of the wireless channel is also time-varying. To reduce 

the signal fluctuation of the wireless, the accuracy of antenna 

selection deteriorates. To reduce this phenomenon, the 

method used in this article is to use the EVM calculation 

method to pre-process the data. EVM is generally used to 

evaluate the modulation quality of the transmitter signal, 

avoiding the use of multiple parameters to characterize the 

transmitted radio frequency signal. It is a valuable indicator of 

the entire signal quality during the development and design 

process. Figure 8 illustrates the schematic diagram of the 

EVM. Its practice and equation (5) are as follows: The 

method used in this article is to use the EVM calculation 

method to pre-process the data. The result is shown in Table 1 
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in the red number column. Table 1 shows the red number column. 

 

 

 

 
Figure 8. Schematic diagram of error vector signal 

definition 

 

The n is symbol index, Ierr is I Ref – I Meas, Qerr is Q 

Ref – Q Meas, and the A is a normalization factor. 

 

   (5) 

 

3  Methodology 

 

In generating the training set, the training sample is the 

input of the learning system, which is called the input variable, 

feature, predictor variable, or attribute. From Figure 5, the 

channel matrix  (or vector) of M ×  is used for training 

in the transmission in communication. Because the training 

sample is a real-valued vector, it is necessary to process 

channels for N real-valued features. For example, the angle, 

signal value (real part), and attenuation (imaginary part) are 

substituted by , where  is the (i, j)th complex number-the 

value element of . There is a manipulated real-valued 

matrix T ∈  and the corresponding class label vector c = 

 in this mode. It uses the labeled training data set, 

namely T and c. To build a learning system: a trained 

multi-class classifier whose input is CSI and output is the 

index of the selected antenna set (mode). In addition, the 

training samples must be normalized, that is, feature 

normalization, to avoid apparent deviations in training. For 

example, the procedures used in this study are as follows: 

 

3.1 SVM 
 

The SVM algorithm was designed originally for binary 

classification problems. When dealing with 

multi-classification problems, it is necessary to construct a 

Table 1. CSI signal data with horizontal degree 0 and attenuation 0 dB 

Att. Ant Angle 
Data- 

Driven 
CCK OFDM 1 Stream 

2 Stream  

antenna 1 

2 Stream  

antenna 1 

dB mode 
horizontal 

plane 
bits/sec rssi rssi evm snr rssi evm snr rssi evm snr rssi evm snr 

0 0 0 671.712 0 75 32 31 0 0 0 70 27 30 67 29 31 

0 1 0 646.344 0 75 32 31 0 0 0 70 27 30 70 29 29 

0 2 0 673.199 0 74 33 31 0 0 0 71 28 30 64 30 31 

0 3 0 669.614 0 75 32 31 0 0 0 70 28 30 68 29 30 

0 4 0 669.863 0 75 32 31 0 0 0 71 27 30 67 29 31 

0 5 0 646.674 0 75 32 31 0 0 0 71 26 30 70 28 29 

0 6 0 675.411 0 75 33 31 0 0 0 71 28 30 63 30 31 

0 7 0 660.308 0 75 32 31 0 0 0 71 28 30 68 29 30 

0 8 0 659.205 0 76 32 31 0 0 0 71 27 30 67 29 31 

0 9 0 659.882 0 76 32 31 0 0 0 71 28 30 70 29 29 

0 10 0 666.122 0 76 33 31 0 0 0 71 28 30 64 29 31 

0 11 0 670.945 0 76 32 31 0 0 0 71 29 30 68 29 30 

0 12 0 661.179 0 76 32 31 0 0 0 72 27 30 67 29 31 

0 13 0 663.736 0 76 32 31 0 0 0 72 27 30 70 29 29 

0 14 0 666.945 0 76 33 31 0 0 0 72 28 30 64 29 31 

0 15 0 669.992 0 76 32 31 0 0 0 72 28 30 68 29 30 
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suitable multi-class classifier that can generally be divided 

into two categories: 

(1)  Direct method: modifies directly on the target 

function. Merge the parameter solution of multiple 

classification planes into one optimization issue and realize 

multi-class classification by solving the optimization problem 

'one trial'. This method seems simple, but its computational 

complexity is high and challenging to implement. It is only 

suitable for minor issues. 

(2)  Indirect method: The construction of multiple 

classifiers is mainly realized by combining multiple two 

classifiers. Common methods are "one-versus-one" and 

"one-versus-all". 

The method chosen in this experiment is the 

"one-versus-all" binary classification method in the indirect 

method. The detailed procedure is as follows. 

 

Algorithm 1. SVM 

This article utilizes Figure 8 to Figure 11 to illustrate the 

flow of the SVM algorithm. 

Input: From the CSI signal value, which includes different 

angles, the signal value obtained in the attenuation includes 

RSSI, SNR, EVM, and data-driven results. 

Output: Antenna mode result , . . , }. 

 

 

Figure 9. SVM initial procedure 

 

 

Figure 10. SVM Labeling procedure 

 

In , for multi-class SVM, the method of this experiment 

is to set  { } with different attenuations, and 

N is the number of attenuations. Then repeat and  for all 

m CSI samples . 

 

 
Figure 11. The SVM classification procedure 

 

We use |A| binary classifiers. Each classifier recognizes 

one category from other categories, that is, the one-versus-all 

binary classification method. Such as procedure S3. Define 

{ } for all . Then, we perform an SVM to classify the 

two training groups  and , where ,  are two 

different attenuation label matrices. T vector from  by 

eliminating rows. 

Generate a binary label vector,  

For the ath binary classification, if  if , 

otherwise [m] = 0. After the step , we constructed a 

matrix {TNM} to represent the feature set: 

 

T =                             (6) 

 

Suppose there are n types of samples to be classified. In 

this experiment, n=16, then n classification functions will 

need to be constructed. For example, the ith SVM separates 

the samples of the ith class from all other classes. For this 

reason, the category number of the sample should be revised 

again. The ith sample category is marked as +1, and the labels 

of other categories are marked as -1. The class with the largest 

classification function output is selected as a prediction in the 

classification process. 

For M training samples, it belongs to the kth category, 

( , ),……,( , ), , is an m dimensional feature 

vector and  { 1,2,..., M}, i=1,2,…, M. The i-th SVM 

solves the following series of problems. 

 

                (7) 

 

Class of x ≌ arg                     (8) 

 

The training sample  is mapped to a high-dimensional 

space through Ф. C is the penalty function used to balance the 

bias, and overfitting will reduce the number of misclassified 

samples. The penalty function as: 

 

                                         (9) 
 

When classification, assign the category of the unknown 

sample to the category with the largest value of the 

classification function: 

 

Repeat . for all   {1, . . . , |A|}. 
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3.2 ANN 
 

ANN [15] has strong parallel distributed processing 

capabilities. In addition to solid robustness and fault tolerance 

to noise nerves, it can also fully handle complex nonlinear 

relationships. Therefore, this experiment uses the 

characteristics of ANN to solve the problem of multi-antenna 

selection. Thereby appropriate signal fields can be quickly 

and accurately selected to achieve the application of smart 

antennas. The method uses the signal value changes in M Tx 

antennas and N Rx antennas to predict the best signal antenna. 

Especially in the power minimization problem, the optimal 

solution exists. The proposed NN uses a supervised learning 

method to update network parameters, using mean square 

error (MSE) as a metric in the loss function. The choice of 

backpropagation ANN in this experiment is mainly due to its 

versatility, fast convergence rate, and other advantages. Take 

x1, x2... and other CSI antenna signal data as input and pass 

through a four-layer network with the first layer, two as the 

hidden layer, and one output layer. It comprises 600 sets of 

neurons and is defined by the rule function, and the third layer 

consists of a set of neurons with linear functions. Its structure 

is shown in Figure 12. 

 

 
Figure 12. NN structure 

 

The Figure 12 above, the NN architecture of this 

experiment i, j, k, is the input layer, j, k is the hidden layer, 

and l is the neuron of the output layer. First, calculate the net 

weight input. 

 

                   (10) 
 

The n is the number of inputs (CSI signal + data-driven 

value),  is the neuron threshold. Here we use sigmoid as the 

activation function. The main reason is to ensure that the 

output of the neuron is between 0 and 1. The error (signal) of 

the zth iteration of neuron l can be defined as : 

 

                 (11) 
 

 is the expected output of the zth iteration of neuron 

. 

 is the expected output of the zth iteration of neuron .  

 

Weight modification: 

 

 (12) 

 

weight correction 

 

The weight correction of the multilayer network in this 

experiment is:  

 

 x      (13) 

 

, It is the error gradient of the neuron at the zth 

iteration of the output layer and  is the learning rate here. 

The error gradient is : 

 

            (14) 

 

input for the net weight of the zth iteration neuron l. 

The sigmoid function: 

 

     (15) 

 

              (16) 

 

the  

 

For the weight correction of the hidden layer, take the 

input layer as an example to do the calculation: 

 

 x                    (17) 

 

Where  is the error gradient of the 

hidden layer neuron j 

 

       (18) 

 

the  

 

                     (19) 

 

In this way, the hidden layer's weight correction and 

gradient error are calculated, and the backpropagation 

neural network can be derived. 

 

Algorithm 2. ANN 

This article utilizes Figure 13 to Figure 15 to illustrate the 

flow of the ANN algorithm. 

Input: From the CSI signal value, which contains the signal 

value obtained from different angles and attenuation, 

including data such as RSSI, SNR, EVM, and data-driven 

results. 

Output: Antenna mode, . 

 

 
Figure 13. ANN initial procedure 
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Figure 14. ANN activation functions procedure 

 

Stimulate the backpropagation ANN by applying 

the input  and the expected output , where z 

is the number of iterations. 

 

 
Figure 15. ANN training weight procedure 

 

After S3 is modified, the weight of the ANN is 

passed to it. 

The number of iterations p+1 go back to step 2 and 

repeat the above process until the deviation 

requirement is satisfied. 

 

This section details description of these three 

algorithm methods EVM, Multi-class SVM, and 

backpropagation NN, applied to the calculation process 

of this experiment. The following section will describe 

the results of these three algorithms on the diversity 

antenna selection mechanism comprehensively 

compare the accuracy of antenna selection.  

 

4  Prediction and Validation 
 

This experiment is based on the chamber at wireless 

channel 149, frequency 5745MHz, to obtain the signal data. It 

includes different horizontal angles, adjusted the dB value of 

different attenuators, and the data-driven emphasized in this 

experiment. Under such an experimental environment, the 

beamforming and interference generated by MIMO have been 

reflected in the test's real data-driven value. Estimate based on 

measurement data to verify the performance. This experiment 

obtained more than 5000 sets of training data selected from 

the collected measurement data. 

4.1 Multi-class SVM prediction 
 

When using the One-Versus-All SVM algorithm [16] 

to classify faces, select the radial basis function (RBF), 

adjust the penalty factor and the kernel parameters. In 

this experiment, the SVM classification function is 16. 

This experiment adjusts the penalty factor C and the 

radial kernel parameter σ. A good classifier will obtain 

from training for data-driven and antenna mode 

selection. The measurement data is obtained in the 

darkroom and uses multi-class SVM to classify 

one-versus-all and cross-validation methods. This 

experiment uses traditional EVM to calculate the test 

data obtained from various horizontal angles and signal 

strengths. This EVM data is used as the result of 

traditional smart antenna selection and imported into 

the entire data set and used as the SVM and NN in the 

experiment as input data for training. Cross-validation 

with complete data is shown in Figure 16 and Figure 17. 

From the comparison of experimental results, the best 

accuracy of Multi-class SVM and the EVM 

measurement method is improved by 10.5%. 

 

 
Figure 16. Comparison of accuracy between EVM 

and SVM 

 

4.2 Backpropagation NN prediction 
 

From the various signal parameters of Table 1, including 

15 input neurons including data-driven, there are 16 neurons 

in the output layer, with two hidden layers. In Figure 16, the 

error is plotted for the 6,000 epochs. Note how the error is 

saturated at the value 4.15e-13, which is very close to 0.0 

 

 
Figure 17. The chart of iteration number and error  
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The next figure shows how the predicted output 

changed by iteration. The output is saturated at the 

value 0.8458, very close to 0.845.  

 

 
Figure 18. The chart of iteration number and prediction  

 

The verification is shown in Figure 19. Compared 

with the experimental results, the best accuracy rate of 

backpropagation NN [17] and the multi-class EVM 

measurement method are improved by 14%. 

 

 
Figure 19. Comparison of accuracy between EVM and 

ANN 

 

 
Figure 20. Comparison with the EVM, SVM, and ANN 

antenna selection prediction 

 

 

Table 2. Antenna selection accuracy prediction 

Antenna Selection Prediction 

Attenuation (dB) EVM SVM NN 

0 0.702 0.811 0.863 

5 0.754 0.832 0.833 

10 0.723 0.785 0.781 

15 0.702 0.757 0.713 

20 0.723 0.822 0.802 

25 0.728 0.812 0.822 

30 0.732 0.784 0.845 

35 0.676 0.712 0.783 

40 0.686 0.821 0.862 

45 0.693 0.763 0.833 

50 0.651 0.732 0.801 

average 0.707 0.790 0.812 

 

From Table 2 above, it can be observed that the 

average accuracy of the multi-call SVM and traditional 

EVM algorithms used in this experiment is  higher than 

8.3%. However, the average of the individual 

attenuation values at 40dB is higher than 14%. The 

average accuracy of the backpropagation NN and 

traditional EVM algorithms used is higher than 10.5%. 

The average attenuation value at 40dB also has  an 18% 

accuracy improvement. 

This result presents two manners. First,  the EVM 

algorithm used in this experiment significantly 

improves against wireless signal fluctuation, especially  

in a weak signal environment. Second, multi-class 

machine learning with the multi-class SVM and 

backpropagation NN can effectively improve antenna 

selection accuracy because the method in this 

experiment is data-driven, which will also enhance the 

quality of wireless transmission. 

 

5  Conclusion 
 

The method proposed in this paper uses machine learning 

such as SVM and ANN for diversity antenna selection in a 

MIMO environment. The simulation results using data-driven 

in the chamber show that the prediction results of these two 

machine methods are more effective than the traditional EVM 

prediction model. It is enough to illustrate the results of using 

machine learning methods and adding data-driven antenna 

selection schemes in a simulation in the chamber. The results 

of this experiment are used in general wireless transmission 

applications with specific practical value. 
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