
LSTM Network for Transportation Mode Detection 891

LSTM Network for Transportation Mode Detection

Sachin Kumar1, Agam Damaraju1, Aditya Kumar1, Saru Kumari2, Chien-Ming Chen3

1 Department of Computer Science and Engineering, Ajay Kumar Garg Engineering College, India
2 Department of Mathematics, Chaudhary Charan Singh University, India

3 College of Computer Science and Engineering, Shandong University of Science and Technology, China

imsachingupta@rediffmail.com, agamdamaraju@hotmail.com, adityakumar24jun@gmail.com,

saryusiirohi@gmail.com, chienmingchen@ieee.org*

*Corresponding Author: Chien-Ming Chen; E-Mail: chienmingchen@ieee.org

DOI: 10.53106/160792642021072204016
1 http://cs.unibo.it/projects/us-tm2017/tutorial.html

Abstract

The study of Transportation Mode Detection (TMD)

has become a popular research field in recent years. It

will be a crucial part of Smart mobility and Smart cities

in upcoming years. In our study, using the approach of

TMDataset
1
, we have gathered the data from different

user’s Smartphones up to 5 different transportation

modes. However, as the raw data contains noise, we use

Feature Engineering to extract useful features from the

raw dataset and convert it into different feature frames to

feed into a deep learning model called Long Short-Term

Memory (LSTM). We used different sized feature frames

to input the LSTM network for efficient transportation

mode detection and achieved up to 98% classification

accuracy for five transportation modes.

Keywords: Transportation mode, Deep learning, LSTM,

Feature engineering, Intelligent transportation

system

1 Introduction

Surveys in the travel domain are crucial for

transportation engineers and researchers to understand

human behavior. It can help to develop and maintain

transportation systems.

These surveys help to gather the travel data,

including the origin, destination, duration, and other

factors. This data must be used to improve travel

understanding concerning the location and choice [1].

This data collection plays an essential role in

inspecting transportation behavior. This data type

provides more elaborated knowledge on travel patterns

and selections during a long period to those extracted

from traditional survey methods. One of its purposes is

to make arrangements for transportation in rural and

urban areas.

Researchers are focusing on citizen movement in

regular life to manage city transportation effectively.

The details of these points would help the government

estimate the needs of a city or a country [2]. The

detection of transportation types may also allow us to

showcase advertisements for the required users. For

example, for a person traveling in a car, car service

advertisements could be shown, or for a person who is

transporting on a bus, PCs and books can be advertised.

The main target of transportation mode for locating

systems [3-4] is location-based services [5].

Smartphone sensors’ improved capabilities,

combined with their easy programming and effective

distribution channels, helped Smartphone develop into

an impactful tool for efficiently monitoring travel

behavior. Instead of the accuracy and utilization of

Smartphone sensors, there remain challenges to

overcome. Pointing to the data size and complexity,

more advanced algorithms are required to gather travel

information.

In section 2 will review the related work of

transportation mode detection and mention its

limitations. In Section 3, we describe our approach for

overcoming the drawbacks. We will discuss the data

collection and its use in transportation mode detection

in section 4. Following our proposed methodology, in

Section 5. The detailed study with experiment results

and model comparison is in Section 6, section 7, and

section 8. Eventually, we state the overall conclusion

of this research in Section 8.

2 Related Work

Here, we list the methods and the sources of data

used in related studies. We present the relevant work

on transportation mode detection. Then we identify

some limitations in various aspects for further

improvement in the performance of travel mode

detection.

TMD can be used as a significant step in activity

recognition studies. It includes the two main tasks: (i)

determining the movement of participants; (ii) what

type of transportation methods one uses; for example,

the study conducted by Broach et al. [6] shows that

892 Journal of Internet Technology Volume 22 (2021) No.4

transportation mode can be efficiently detected using

the Multinomial Logit Model. The authors used four

transportation modes: Walk, Bike, Auto, and transit,

and collected the data using accelerometer and GPS

sensors. Their proposed model performed slightly

efficiently, and the accuracy reached up to 91%.

However, Wang et al. [7] took a traditional approach

for transportation mode detection. They used a random

forest technique that was able to achieve up to 93%

accuracy. However, they have collected the data from

the GPS of six different transportation modes: walking,

bicycle, e-bike, bus, car, and subway.

Another transportation mode detection study was

done by Xiao et al. [8]. They have used the Continuous

Hidden Markov Model and the GPS data of five

transportation modes: walk, bicycle, e-bicycle, bus,

and car. The authors used the feature extraction process

has been used by the authors for the collection of

various features such as Average speed, 95th percentile

speed, average absolute acceleration, traveled distance,

low-speed point rate, and average heading change.

Using a continuous hidden Markov model classifier,

the authors achieved up to 94% accuracy.

An attempt by Soares et al. [9] takes the help of

AutoML for selecting algorithms and optimizing the

hyperparameters with the data from sensors employed

as input variants on the TMDataset
1. In the Auto ML

component, the authors performed meta-learning using

AutoSklearn [10] to determine the configurations that

will get tested. The authors compared the accuracy of

classification efficiently up to 97% while training the

machine learning classifiers using the sensors’ features.

Reviewing all these studies, the common challenge

while using machine learning algorithms lies in

configuring their hyperparameters and the data selected

by us. Setting the parameters for the extracted feature’s

data can directly affect the generated model’s accuracy

and training loss than the machine learning algorithm

itself [11]. That is why Feature Engineering plays a

crucial role in any transportation mode detection

process. The choices were made based on some

statistical insights and some other previous works; this

led authors to create the Automated Machine Learning

frameworks to automatically identify machine learning

algorithms’ filtered configuration.

In terms of Deep Learning techniques for TMD,

Soares et al. [12] performed a study using SFNN,

DFNN, and LSTM networks. They used orientation

sensors and collected the data from 16 users. For data

preparation, they extracted some time domain as well

as some frequency-domain features. Eventually, they

performed the classification of five transportation

modes, i.e., still, walking, train, bus, and car, and

gained an overall 90% performance accuracy.

2.1 Limitations

Previously, many studies have achieved high detection

rates. However, there remain some limitations with

sample size, feature selection to classify the modes,

and quantity of extracted features. Feature selection

should be the higher priority, which is necessary before

implementing classification to the transportation modes.

Proper feature selection could increase detection

accuracy and decrease the algorithm’s complexity to a

significant level.

3 Our Approach

Several Deep Learning architectures are available in

the literature, and Each works well with a particular

type of data set; for example, Convolutional Neural

Networks works well with image datasets [13-14].

Since we experiment with sensor responses concerning

time, we use the Recurrent Neural Networks (RNNs)

as RNNs support sequential data efficiently [14]. There

are two popular versions of RNNs, i.e., Gated

Recurrent Unit (GRU) and Long Short-Term Memory

(LSTM). Since LSTMs outperform in comparison to

GRUs [14] and can avoid the vanishing gradient

problem [14].

Our work collected the 226 labeled data files of 5

different transportation modes of 16 users with nine

sensors using the TMD Data collection technique

described by the University of Bologna researchers.

We apply data cleaning, Window Partitioning, and

feature extraction methods to extract crucial features

and frame the collected data for sequence learning of

the model. We use normalization and feed the prepared

data in our LSTM model for scaling the values of

different parameters of the stated data. For loss

convergence, Hyperparameter optimization is used

after getting optimal accuracy by observing the results.

We have also compared our work with Soares et al.

[12] that uses Bayesian Network as a classifier. The

authors use Knowledge Discovery in Database (KDD)

technique to perform Transportation Mode Detection.

The overall accuracy metrics could only reach up to

91%. The Precision, recall, and f-score metrics could

reach only up to 44%, 50%, and 47%, respectively. In

our work, before feeding the data from sensors to the

LSTM classifier, we use feature vector framing, i.e.,

grouping extracted features in different vector frames

and the Normalization technique following an

additional Feature Engineering technique. Our model

performed comparatively well with accuracy, Precision,

Recall, and f-score of 98% in each.

In brief, our primary contribution as listed:

‧ We have taken the LSTM network as RNN’s suffer

vanishing gradient problem [15], and Convolutional

Neural Networks works well with image datasets.

‧ Before feeding the data from sensors to the LSTM

classifier, we use feature vector framing, i.e.,

grouping extracted features in different vector

frames and Normalization technique following an

additional Feature Engineering technique.

LSTM Network for Transportation Mode Detection 893

‧ We also compare our study with some existing

studies that used SFNN, DFNN, LSTM, AutoML

frameworks, and other traditional machine learning

techniques.

‧ Our model performed comparatively well with

accuracy, Precision, Recall, and f-score of 98% in

each.

4 Data Collection Technique for

Transportation Mode Detection

Researchers of the University of Bologna

demonstrated the TMD data collection technique and

created a sample TMDataset1. We have collected our

transportation mode data using the same process

described in TMDataset1.

4.1 Role of Sensors in Data Collection

This technique consists of some phases. Data

preprocessing at an initial stage is one of them,

including data cleaning operations. To make the values

of speed and sound sensors positive, we deleted the

measures from the sensors. Further, the sensors with

single data value outputs were used directly. In this

technique, we will use an orientation-independent

metric applicable to sensors based on coordinate

systems. We can find the magnitude using equation (1).

 2 2 2

(,) (,) (,)() | | ()
x s y s z s

S magnitude v v v v= = + + (1)

Here, vx,s, vy,s, and vz,s are the given values of sensors

on the x, y, and z axes. For the processing of these

sensor data, samples need to be cut in time windows.

The size of the time window depends on the types of

actions to be recognized. As per our data samples, we

came up with two optimal window sizes, i.e., 0.5

seconds and 5 seconds. However, for complex activity

recognition, it is advisable to use a large window size

[16]. Hence, we consider 5 seconds of window size.

Apart from the orientation-based sensors, we use

some proximity sensors and ambient sensors. This

method helps to obtain the dataset into 5 seconds time

windows. We have also extracted different features

such as the mean, standard deviation, maximum, and

minimum from these sensors. We used two resampling

methods, i.e., downsampling and Up-sampling.

However, we removed bias and infrequently occurred

classes with Down-sampling [17] without making the

dataset denser.

4.2 Transportation Modes of the Dataset

The dataset has 226 labeled files.

Before Down-sample the dataset, as shown in Figure

1 and Figure 2, the dataset consists of 16 users, and the

data collected using the android application installed in

their Smartphones observed, 24% were not moving,

26% were walking, 25% were using the car, 20% were

using train and only 5% of users using the bus.

Figure 1. Samples collected by each transportation

mode

Figure 2. Samples collected by each user

We have used only nine sensors (Table 1) as per

their expected availability in every user’s smartphones

[18].

Table 1. Considered sensors-set

Accelerometer Sensor

Orientation Sensor

Linear-Acceleration Sensor

Uncalibrated Gyroscope Sensor

Gyroscope Sensor

Game-Rotation Vector Sensor

Rotation-Vector Sensor

Sound Sensor

Sensors

Speed Sensor

4.3 Discussion

We use an accuracy metric to evaluate the

performance of each classifier. It can be defined as

equation (2).

TP TN

Accuracy
TI

+
= (2)

894 Journal of Internet Technology Volume 22 (2021) No.4

Here, TP represents True Positives, TN represents

True Negatives, and TI represents Total Interference.

The accuracy provides a fraction of the optimum

classifications. However, it cannot evaluate the correct

insights about the sensitivity of the classifier. Hence,

Precision, Recall, and F-Score metrics are crucial to

calculating [19-20]. (3, 4, 5) shows the Precision,

Recall, and f-score metrics.

TP

Precision
TP FP

=

+

 (3)

TP

Recall
TP FN

=

+

 (4)

 2
Precision Recall

F Score
Precision Recall

×
− = ×

+

 (5)

Here, TP represents True Positives, FP represents

False Positives, and FN represents False Negatives.

5 Proposed Methodology

We propose a method to implement the

dimensionality reduction technique for evaluating the

effect on classification accuracy. Besides, we describe

the proposed model (Figure 3). For Feature

Engineering, we sample the data from the

Smartphone’s built-in sensors and the timestamps

according to the transportation modes for performing

data cleaning and window partitioning tasks, as

described in section 4. Afterward, we extract the

features from the time window for dimensionality

reduction using Principal Component Analysis (PCA)

[21].

Figure 3. Our proposed real-time TMD model

5.1 Feature Engineering

Feature Engineering is the technique that addresses

the challenges we face during extracting relevant

features from the raw dataset for training a regression

or a classification model using traditional ML

algorithms. This technique requires domain knowledge

because it involves the data cleaning process that

includes transformation, construction, combination,

and selecting appropriate features from extracted

features [22].

An alternative of an LSTM network with additional

Feature Engineering is the ConvLSTM network [23-

24]. Since most of the data readings in the collected

raw TMDataset1 are based on the orientation of a 3-

dimensional coordinate system, there are still some

other sensors like Ambiental sensors and proximity

sensors that return only a single data value. Hence, data

cleaning and time window partitioning become

necessary for the sake of the proposed model’s

performance efficiency [25]. This additional Feature

Engineering technique is more beneficial for the

overall model performance than the proposed deep

learning architecture. There is another technique called

Principal Component Analysis (PCA), which

transforms the large variable-set into the small-variable

set without losing some of the most valuable

information. In this stage, we traditionally extracted

various features like mean, standard deviation,

maximum, and minimum from all the sensor’s 5

second time window and applied PCA for reducing the

dimensionality of the data. Hence, the additionally

applied Feature Engineering phase makes our model

less complex and more performance efficient. A basic

self-experiment strategy is applied for selecting

different components consisting of choosing the first

‘s’ components. For example, initially, there were 12

features extracted using three sensors, namely

Accelerometer, sound, and Gyroscope, in the smallest

sensor setting. From those 12 features, we have

selected the first three components using PCA,

reducing the number of predictor variables by 75%,

which reduces the time and computational costs related

to model fitting. While performing experiments for

performance evaluation, we compare classification cost

and accuracy and the sensors’ extracted features to

evaluate the trade-off for online transportation mode

detection.

5.2 Normalization

Every extracted feature’s value lies in different

ranges. For example, one sensor’s mean goes for

thousands, while that sensor’s standard deviation often

stays close to zero. For scaling each feature’s value,

normalization has been applied to all the features in the

range of 0 to 1. Normalization is represented by (6).

 min

max min

x x

x

x x

−

=

−

 (6)

5.3 Long Short-Term Memory (LSTM)

Network

Training the model is the last step of our proposed

method. The Recurrent Neural Network is almost a

traditional Deep Learning’s Deep Neural Network

LSTM Network for Transportation Mode Detection 895

architecture. However, it consists of additional weight

for the hidden layer’s every cell, termed as a Hidden

State. In this, past activities store to use them with a

new set of inputs on the future iterations. The Bi-

directional RNNs are known for using data from the

present and the past. Hence, it is the best model for

feedbacked sequential data. Here, window overlapping

has been avoided because RNN remembers the

previous inputs and the patterns.

Considering the input sequence as x, such as x1, x2,

x3,, xn, the hidden state ht can be represented by (7).

1

0, 0

(,),
t

t t

t
h

h x otherwise
−

=⎧
= ⎨

Φ⎩
 (7)

Where ‘Φ’ is an Activation Function, we can update

the hidden state of RNN using (8) [26].

1

()
t t t
h g wx Uh

−

= + (8)

Nevertheless, RNN is difficult for training for the

long-term sequences due to a gradient-based

optimization algorithm. Long sequences are impossible

to train sufficiently because of the vanishing gradient

problem, i.e., the change ratio to the weights that

reduce slowly concerning the time. Thus, initial inputs

are getting worthless because of future information.

Therefore, Long Short-Term Memory (LSTM) was

developed by Sepp Hochreiter and Jurgen

Schmidhuber in 1997 [27]. LSTM can remember the

data for a long time because it consists of a cell or a

memory capable of reading, writing, deleting, and

updating it. We can see the structure of LSTM in

Figure 4.

Figure 4. A basic LSTM cell structure

Ct represents the line following signal, the hidden

state is represented by ht, and the input vector is

represented by xt. ft is the output that can be found after

the input and past hidden state enter the forgetting gate.

It can be defined as (9).

 (1)((,))t f t t ff w h x bδ
−

= + (9)

The following two steps are for selecting the inputs

as described in (10).

 (1)((,))
t i t t i
i w h x bδ

−

= +

 (1)
ˆ tanh((,))

c t t c
C w h x b

−

= + (10)

Now the LSTM will update Ct using these two gate

equations in (11).

 (1)
ˆ(() ())

t t t t t
C f C i C

−

= × + × (11)

Eventually, these changes are applied to ht in (12),

after updating the hidden state.

 (1)((,))
t o t t o
o w h x bδ

−

= +

 tanh()
t t t
h o C= × (12)

In our method, LSTM is used because it is very

efficient for different sequence modeling. We have

used only one layer yet multiple cells of LSTM in our

study. There are 256 features in each frame, and these

features are the input-set of the LSTM. Say there are

‘x’ features in a window, then the input-set is being

iterated ‘x’ times throughout the LSTM network.

After features (F) are extracted, we arrange them in

various frames ({ })
t

F We are shown in (13) and (14).

 min

max min

{ } n

t

F F
F

F F

−

=

−

 (13)

1

(,) (() ,)m m m m

t t m t t t
H C LSTM F C

−

= (14)

Here, m, t = 1, 2, …., n.

The most commonly used number of LSTM cells,

i.e., 128, 256, 512, and 1024 in the literature, are being

tested. Overall, we used Adam optimizer with a

dropout of 0.1 to maintain the rate of 73% and obtained

prediction and loss using Categorical Cross-Entropy

and Softmax activation function as there are five modes

of transportation in our dataset. We can see our

proposed LSTM model in Figure 5.

Figure 5. Structure of LSTM network for the proposed

model

896 Journal of Internet Technology Volume 22 (2021) No.4

5.4 Hyperparameter Tuning

Hyperparameters are the neural network model’s

different parameters that play a crucial role in model

performance. Sometimes, choosing optimum

hyperparameters manually one-by-one becomes

difficult due to the complexity of the model. There

were some hyperparameter tuning techniques

introduced recently. Using these hyperparameter

tuning techniques, we can improve the computation

cost [28]. It is the process of choosing the best

hyperparameters to maintain the efficiency of model

performance. Essential hyperparameter tuning

techniques are given as Grid search, Bayesian

optimization, and Cross-validation.

5.4.1 Grid Search

Grid search is one of the best hyperparameter tuning

techniques. Although it can be computationally costly,

it increases the model performance metrics such as

accuracy, Precision, Recall, and F1-value while being

non-adaptive [9]. We used GridSearchCV from scikit-

learn in our proposed model.

5.4.2 Bayesian Optimization

Bayesian optimization is the most advanced

hyperparameter tuning technique [29]. It chooses the

optimum hyperparameters based on previous

performances of the model automatically. Due to its

dependency on the Gaussian process, it can be

computationally faster. However, it might sometimes

perform poorly.

5.4.3 Cross-validation

Cross-validation is the commonly used technique to

compute bias-variance trade-offs. It is referred to as k-

fold cross validation because we divide the dataset in

‘k’ folds; each fold has a ‘k-1’ training division and 1

test division [30]. It does not provide the exact best

hyperparameters, but it efficiently estimates the model

performance through a bias-variance trade-off [31].

However, Cross-validation is practically very hard to

perform with our hardware. Thus, as we are working

with a large dataset, Cross-Validation can make the

process computationally costlier [32]. Hence, we prefer

to use the Holdout method in our proposed model.

5.5 Experimental Setup

All our paper experiments are conducted on a high-

performing laptop with the specifications of Intel Core

i7-9750H, 2.40 GHz processor, 16GB RAM, Nvidia

GeForce GTX 1080Ti GPU on Windows 10 workstation.

For performing the experiments and observing the

results, Anaconda’s Spyder IDE [33] is used. The data

preparation, i.e., Feature Engineering, is performed

using Pandas and NumPy computational libraries and

scikit-learn scientific library [34]. For implementing

our proposed LSTM network, a high-level Neural

Network API, i.e., the Keras library and the

TensorFlow library for backend processing, is used

[35].

6 Empirical Study

Our proposed algorithm for transportation mode

detection using Feature Engineering and LSTM

network (deep learning technique) is mentioned in

Table 2.

Table 2. Proposed algorithm

Algorithm: LSTM network for Transportation Mode

Detection

1. initialize: m framed data ← sensors

2. for data in a range (1, len(m)):

3. [Data] ← cleansing (data)

4. For window in data:

5. [Windows] ← partitioning (window)

6. For a feature in windows

7. [Fv] ← n frames (k sized features)

8. [fv] ← (timestamp × k features (normalization ([fv])))

9. lstm ← LSTM network

10. [traning_set].[validation_set] ← train_test_split ([fv]))

11. lstm ← Dropout (lstm)

12. lstm ← lstm (softmax, categorical_cross_entropy)

13. for q_epochstrain (fit ([training_set], lstm)):

14. loss_function, lstm_updated ← GridSearchCV

(lstm)

15. performance_metrics ← lstm_updated [validation_set]

16. End

First of all, we sample data with ‘m’ sized frames.

We apply Feature Engineering, including data cleaning,

window partitioning, and selecting appropriate features

from the data. For example, as mentioned in the sample

Python code snippet: 1, we divide the Bus

transportation mode into different sample time

windows. We have extracted its mean, minimum,

maximum, and standard deviation features for each

time window.

Snippet 1: Feature Extraction

We create frames of vectors and store 256 features,

including some new attributes, for example, turn

frequency, stationary duration, and signal strength of

LSTM Network for Transportation Mode Detection 897

the base station in each frame. Then for normalization,

we use MinMaxScaler from scikit-learn’s preprocessing

to normalize the data in the range of 0 to 1, as

mentioned in Python code Snippet: 2.

Snippet 2: Normalization

We set a time step to reshape the data by multiplying

the normalized data with its time step. As discussed

earlier, the scaled data goes into the LSTM network as

its input, but we input different sized samples. Then,

we perform forward propagation with some dropout to

calculate training performance and loss using Softmax

activation function and Categorical cross-entropy. We

use Keras’s Sequential, Dense, LSTM, and Dropout

procedures to create an LSTM network. Further, we

compile the system using Adam optimizer and adjust

the weight according to gathered loss and training

performance after the forward propagation for each set

of the input sample, as shown in Python code snippet:

3.

Snippet 3: The LSTM network

In the end, we apply scikit-learn’s GridSearchCV

hyperparameter optimization technique to get optimal

parameters to the convergence of the loss function. In

sample Python code snippet: 4, we perform

hyperparameter optimization using GridSearchCV.

KerasClassifier function is used from Keras’s wrapper

class to join the hyperparameter tuning operation to the

LSTM network.

Snippet 4: Hyperparameter tuning

7 Experimental Results

We have explained our model in the previous

section, where we have proposed an end-to-end

process of transportation mode detection, where our

model performed up to 98%. This section will focus on

the results and observations of the proposed model

based on various parameters.

7.1 Frame Dimension (FD)

Selecting the dimension of the frame is a crucial

factor that can easily affect model performance. Frame

dimensions can slightly disturb frame count, increasing

or decreasing the input of the LSTM network. The

window dimension used here is 720, and the size of

every feature is 72. That gives us ten feature frames

(LSTM input) for each window. In this way, we

focused on the frame dimension because if the frame

increases to the optimum size, it provides us with more

features and the highest possible accuracy.

7.2 Window Dimension (WD)

The window dimension can have an impact on the

model’s performance rate. More oversized windows

can contain the highest number of feature frames.

Nevertheless, it can increase the performance time of

the model as well. In the proposed method, we used

360 and 720 sample dimensions of windows to observe

the model’s accuracy.

7.3 LSTM Cell Dimension (LCD)

As discussed, we have run several experiments on

the different dimensions of LSTM cells. However, we

have used only one layer of LSTM cells in the

proposed method. More LSTM cells could give better

accuracy, but it could also increase the whole

network’s complexity. 128, 256, 512, and 1024 are the

optimum dimensions of the LSTM cells, as used in the

literature.

7.4 Training Data after the Split (TDS)

We split our dataset into training dataset and

validation dataset before we train our classification

model. The training data covers 70%-80% of the

dataset, which allows the model to train and validate

the performance using the remaining 20%-30% of the

validation dataset. The training data takes most of the

data because it helps the model learn more from the

training data. However, if the training data is not

optimum, it can lead the model to either overfitting or

underfitting. In the proposed method, we split the

training data into 75%.

7.5 Count of Epoch (CE)

One-time forward propagation and backward

propagation combined is called an Epoch during the

model’s training phase. An optimum number of epochs

can make the model learn more efficiently. We have

experimented with several Epoch counts and found the

suitable count of the epoch for our model.

Here, we use the notation FD-WD-LCD-TDS-CE to

represent the result. Our experiment used different

898 Journal of Internet Technology Volume 22 (2021) No.4

frames and window dimensions with constant LSTM

cell dimensions, train data split, and epoch count. For

example, we have used 36 sample frame dimensions

and 360 sample window dimensions. LSTM cell of 256

measurements with a train data split rate is 75% used,

requiring a 20-optimum number of epochs. These

parameters give us an accuracy of 94.17%, mentioned

in Table 3. The following parameters can be denoted as

36-360-256-75-20.

Table 3. Frames and windows dimensions comparison

FD WD LCD TDS EC Acc (%)

18 360 256 75 20 94.46

36 360 256 75 20 96.17

36 720 256 75 20 95.43

72 720 256 75 20 95.54

Here: FD = Frame Dimension, WD = Window Dimension,

LCD = LSTM Cell Dimension, TDS = Train Data Split,

CE = Count of Epoch, Acc = Accuracy

In Table 4, we experiment with different LSTM cell

dimensions, and we let the other parameters be

constant. Table 3, 36-360-256-75-20, gives an

accuracy of 96.17%, the highest among all the

additional accuracy present in the table.

Table 4. Different LSTM cell dimension comparison

FD WD LCD TDS CE Acc (%)

36 360 128 75 20 95.68

36 360 256 75 20 96.17

36 360 512 75 20 95.78

36 360 1024 75 20 96.10

Here: FD = Frame Dimension, WD = Window Dimension,

LCD = LSTM Cell Dimension, TDS = Train Data Split,

CE = Count of Epoch, Acc = Accuracy

In Table 5, we experiment with different train data

split rates while the remaining parameters are constant.

Surprisingly, the parameters in Table 5 that resulted in

the highest accuracy and the highest accuracy are the

same as the parameters in Table 3 and Table 4, which

resulted in their highest accuracy and accuracy.

Table 5. Different training data split rate comparison

FD WD LCD TDS CE Acc (%)

36 360 256 65 20 94.87

36 360 256 70 20 94.83

36 360 256 75 20 96.17

36 360 256 80 20 95.83

Here: FD = Frame Dimension, WD = Window Dimension,

LCD = LSTM Cell Dimension, TDS = Train Data Split,

CE = Count of Epoch, Acc = Accuracy

Therefore, in Table 3, Table 4, and Table 5, we

observe that only 36-360-256-75 facilitates the highest

accuracy among all the other Accuracies. After

comparing all three tables, we find that these tables’

highest Accuracies are the same and result in the same

parameters. Hence, we can conclude that 36 frame

dimensions, 360 window dimensions, 75% train data

split rate, and 256 LSTM cell dimensions are the

optimum parameters. Now, as we have found all the

optimum parameters in the above observations,

however, the epoch’s count remained constant in all

the experiments that we have performed. Count of the

epoch plays a vital role in deep learning. Epoch can

lead a model to the underfitting or the overfitting state

as more epochs result in more training with the data

and fewer epochs result in less training with the data.

Hence, we will be careful while experimenting with

different epoch counts and focusing on the optimum

number of epoch counts. As shown in Table 6, we have

tested with varying counts of the epoch. Initially, when

we increase the count from 10 to 20, the accuracy

improves by 2.21%. Nevertheless, the accuracy’s

increase rate is 0.04% between epoch count of 40 and

epoch count of 50.

Table 6. Different count of the epoch comparison

FD WD LCD TDS CE Acc (%)

36 360 256 75 10 94.00

36 360 256 75 20 96.21

36 360 256 75 40 97.68

36 360 256 75 50 98.11

Here: FD = Frame Dimension, WD = Window Dimension,

LCD = LSTM Cell Dimension, TDS = Train Data Split,

CE = Count of Epoch, Acc = Accuracy

Figure 6 demonstrates the loss convergence graph;

we can observe that the graph convergence rate is in

saturation point from 40 to 50 epochs. Hence, 50

epochs result in 98.11% accuracy, which is the highest

optimum accuracy facilitated by 36-360-256-75-50

parameters.

Figure 6. Drop rate of the loss concerning epoch count

Observing the above experiments, 36-360-256-75-

50 are suitable parameters. Using these parameters,

data collection for Feature Engineering consumes 5

LSTM Network for Transportation Mode Detection 899

seconds. However, Feature Engineering and deep

learning processes consume 90 milliseconds and 722

µ-seconds.

Table 7 demonstrates the confusion matrix for

different class labels of our proposed classification

model. In our confusion matrix, we observe that the

predicted walk class performed almost entirely. The

car and the bus classes confuse me the most. Overall,

using our confusion matrix, we have calculated

Precision and Recall for each class label.

Table 7. Confusion matrix of our proposed model

Pred. →

True ↓
Still Car Bus Walk Train Recall (%)

Still 639 0 1 13 4 97.26

Car 2 3070 34 5 18 98.11

Bus 0 27 1180 7 9 96.48

Walk 9 4 4 2474 6 99.07

Train 0 9 6 10 1387 98.22

Precision (%) 98.30 98.71 96.32 98.60 97.40

The accuracy of the model describes the

performance of the model. Similarly, Recall and

Precision demonstrate the model’s overall relevance to

the results [36]. We calculate F-Score, the calculated

Precision, and Recall average to represent the perfect

Precision and Recall for each class. Table 8 shows the

average Precision, Recall, and F-Score.

Table 8. Average Recall, Precision, and F1-Score

calculation

Parameter Calculation (%)

Recall 97.82

Precision 97.86

F-Score 97.83

8 Model Performance

This section will compare our model’s performance

with the other different models from the study done by

Broach et al. [6], Wang et al. [7], Xiao et al. [8], Soares

et al. [9] and Soares et al. [12]. Table 9 contains a

comparison of the observations of various performance

parameters of different models. We have compared

Accuracy, Recall, Precision, and F-Score [37] of

Multinomial Logit Model, Random Forest, Continuous

Hidden Markov Model, Travel Mode Detection

Ensemble, and our model Travel Mode Detection with

Deep Learning. We observe that the Multinomial Logit

Model’s performance accuracy is lowest, i.e., 91%,

among all the other models, but the overall performance

is good in Precision, Recall, and f-score, i.e., 94% in

all. Random Forest gives an accuracy of 93%, but the

rest of the parameters could not achieve more than 90%.

The continuous Hidden Markov Model surprisingly

achieves many efficient performance parameters.

However, Travel Mode Detection Ensemble (TMDE)

performed with 97% Accuracy, Recall, Precision, and

F-Score, which is the best among all the above-

discussed models. However, the study was done by

Soares et al. [12] used Feed-Forward Neural Network

and Long Short-Term Memory (TMD-LSTM). Since

this study uses a deep learning approach, there can be

structural similarities between this study and our study.

However, the authors in TMD-LSTM collected the

data using only orientation sensors, whereas, in our

study, we collected the data using orientation sensors

and ambient and proximity sensors. Apart from data

collection, we extracted features from only the time

domain and fed them in our LSTM network after

framing. In TMD-LSTM, authors extracted features

from both time and frequency-domain and fed them in

FNN and LSTM. However, the performance of TMD-

LSTM is slightly efficient with 90% in Accuracy,

Precision, Recall, and F-Score parameters compared to

the study with Random Forest. Our proposed

Transportation Mode detection’s performance parameters

with LSTM Network resulted slightly well with a 1%

increment than the TMDE in all the performance

parameters. Our model scored 98% of Accuracy,

Precision, Recall, and F-Score. Hence, our proposed

model performed more effectively among all the other

compared models.

Table 9. Comparison of different models’ performance with our model performance

Models Accuracy (%) Precision (%) Recall (%) F-Score (%)

MNL (Broach et al.) [6] 91 94 94 94

RF (Wang et al.) [7] 93 89 88 88

CHMM (Xiao et al.) [8] 94 91 90 90

TMDE (Soares et al.) [9] 97 97 97 97

TMD-LSTM (Soares et al.) [12] 90 90 90 90

TMD-LSTMN (Our) 98 98 98 98

Here: MNL = Multinomial Logit Model, RF = Random Forest,

TMDE = Travel Mode Detection Ensemble, CHMM = Continuous Hidden Markov Model, TMD-LSTM = Travel Mode

Detection with FNN and LSTM, TMD-LSTMN = Travel Mode Detection with LSTM Network.

900 Journal of Internet Technology Volume 22 (2021) No.4

8.1 Impact of Transportation Mode Detection

Technique on Intelligent Cities

Transportation mode detection has a substantial

impact on intelligent transportation [38-39] and smart

cities. Depending on the user location and situation, it

can work as the best recommender system for choosing

the transportation modes [40]. Unlike other systems

dependent mainly on centralized servers, the intelligent

transportation mode detection technique focuses on

each user’s Smartphone separately. Hence, it can

reduce complexity and cost compared to the traditional

transportation mode recommender systems [41-42].

The governments can also use this system smartly by

collecting the users’ transportation history data and can

provide them with the best recommendation or

facilitate the required transportation modes in

particular areas.

Similarly, on-demand cab service providers and

traditional taxi services can also use this system to

serve their customers smartly [31, 21]. These are the

fundamental advancements that can take place using

intelligent transportation mode detection. The most

crucial area where it can benefit is that many

businesses use this system for the transportation

modes’ recommendation systems and create the user

profile [1] and mobility as the right platforms [43] to

provide efficient facilities future. Hence, it can be

optimized in smart transportation mode

recommendations and intelligent pricing [44].

9 Conclusion

We have introduced a novel deep learning approach

to the transportation mode detection model and studied

the impact of feature engineering on transportation

modes’ classification performance. We have collected

the user transportation mode dataset using the

technique used in TMDataset1 using nine mentioned

sensors from the smartphone application. We proposed

a method that performed the success rate of up to 98%

while the other compared models could achieve only

up to 97% of the success rate. Moreover, we believe

that the Epoch count and frame size are two factors in

our study: the number of feature frames that positively

affect the performance. However, the limitation of the

model’s high computational cost, learning rate, drop

rate, and error detection could improve in new future

transportation mode detection studies.

References

[1] A. C. Prelipcean, G. Gidófalvi, Y. O. Susilo, Transportation

mode detection – an in-depth review of applicability and

reliability, Transport Reviews, Vol. 37, No. 4, pp. 442-464,

2017.

[2] D. Shin, D. Aliaga, B. Tunçer, S. M. Arisona, S. Kim, D.

Zünd, G. Schmitt, Urban sensing: Using smartphones for

transportation mode classification. Computers, Environment

& Urban Systems, Vol. 53, pp. 76-86, September, 2015.

[3] C. Zhou, H. Jia, J. Gao, L. Yang, Y. Feng, G. Tian, Travel

mode detection method based on big smartphone global

positioning system tracking data, Advances in Mechanical

Engineering, Vol. 9, No. 6, pp. 1-10, June, 2017.

[4] L. Wu, B. Yang, P. Jing, Travel mode detection based on

GPS raw data collected by smartphones: a systematic review

of the existing methodologies, Information, Vol. 7, No. 4,

Article No. 67, December, 2016.

[5] S. Kaplan, S. Bekhor, Y. Shiftan, Web-based survey design

for unravelling semi-compensatory choice in transport and

urban planning, Transportation Planning and Technology,

Vol. 35, No. 2, pp. 121-143, February, 2012.

[6] J. Broach, J. Dill, N. W. McNeil, Travel mode imputation

using GPS and accelerometer data from a multi-day travel

survey, Journal of Transport Geography, Vol. 78, pp. 194-

204, June, 2019.

[7] B. Wang, L. Gao, Z. Juan, Travel Mode Detection Using GPS

Data and Socioeconomic Attributes Based on a Random

Forest Classifier, IEEE Transactions on Intelligent

Transportation Systems, Vol. 19, No. 5, pp. 1547-1558, May,

2018.

[8] G. Xiao, Q. Cheng, C. Zhang, Detecting travel modes from

smartphone-based travel surveys with continuous hidden

Markov models, International Journal of Distributed Sensor

Networks, Vol. 15, No. 4, pp. 1-15, April, 2019.

[9] E. F. Soares, C. A. Campos, S. C. Lucena, Online travel mode

detection method using automated machine learning and

feature engineering, Future Generation Computer Systems,

Vol. 101, pp. 1201-1212, December, 2019.

[10] M. Feurer, A. Klein, K. Eggensperger, J. T. Springenberg, M.

Blum, F. Hutter, Auto-sklearn: Efficient and Robust

Automated Machine Learning, in: F. Hutter, L. Kotthoff, J.

Vanschoren (Eds.), Automated Machine Learning, Springer,

Cham, 2019, pp. 113-134.

[11] M. M. Salvador, M. Budka, B. Gabrys, Automatic Composition

and Optimization of Multicomponent Predictive Systems

With an Extended Auto-WEKA, IEEE Transactions on

Automation Science and Engineering, Vol. 16, No. 2, pp.

946-959, April, 2019.

[12] E. F. d. S. Soares, H. Salehinejad, C. A. V. Campos, S.

Valaee, Recurrent Neural Networks for Online Travel Mode

Detection, 2019 IEEE Global Communications Conference,

Waikoloa, HI, USA, 2019, pp. 1-6.

[13] Q. Wu, K. Ding, B. Huang, Approach for fault prognosis

using recurrent neural network, Journal of Intelligent

Manufacturing, Vol. 31, No. 7, pp. 1621-1633, October, 2020.

[14] A. Krizhevsky, I. Sutskever, G. E. Hinton, ImageNet

classification with deep convolutional neural networks,

Communications of the ACM, Vol. 60, No. 6, pp. 84-90, June,

2017.

[15] K. Greff, R. K. Srivastava, J. Koutník, B. R. Steunebrink, J.

Schmidhuber, LSTM: A Search Space Odyssey, IEEE

Transactions on Neural Networks and Learning Systems, Vol.

LSTM Network for Transportation Mode Detection 901

28, No. 10, pp. 2222-2232, October, 2017.

[16] O. Banos, J-M. Galvez, M. Damas, H. Pomares, I. Rojas,

Window Size Impact in Human Activity Recognition,

Sensors, Vol. 14, No. 4, pp. 6474-6499, April, 2014.

[17] P. Domingos, A few useful things to know about machine

learning, Communications of the Association for Computing

Machinery, Vol. 55, No. 10, pp. 78-87, October, 2012.

[18] D. Lu, D. Nguyen, T. Nguyen, H. Nguyen, Vehicle Mode and

Driving Activity Detection Based on Analyzing Sensor Data

of Smartphones, Sensors, Vol. 18, No. 4, Article No. 1036,

April, 2018.

[19] J. Cook, V. Ramadas, When to consult precision-recall curves,

The Stata Journal, Vol. 20, No. 1, pp. 131-148, March, 2020.

[20] T. Fawcett, An introduction to ROC analysis, Pattern

Recognition Letters, Vol. 27, No. 8, pp. 861-874, June, 2006.

[21] A. Anand, M. A. Haque, J. Alex, N. Venkatesan, Evaluation

of Machine learning and Deep learning algorithms combined

with dimentionality reduction techniques for classification of

Parkinson’s Disease, 2018 IEEE International Symposium on

Signal Processing and Information Technology (ISSPIT),

Louisville, Kentucky, USA, 2018, pp. 342-347.

[22] H. Liu, H. Motoda, Feature Selection for Knowledge

Discovery and Data Mining, The Springer International

Series in Engineering and Computer Science, Springer, 1998.

[23] A. Nawaz, H. Zhiqiu, W. Senzhang, Y. Hussain, I. Khan, Z.

Khan, Convolutional LSTM based transportation mode

learning from raw GPS trajectories, IET Intelligent Transport

Systems, Vol. 14, No. 6, pp. 570-577, June, 2020.

[24] S. Kumar, R. Asthana, S. Upadhyay, N. Upreti, M. Akbar,

Fake news detection using deep learning models: A novel

approach, Transactions on Emerging Telecommunications

Technologies, Vol. 31, No. 2, Article No. e3767, February,

2020.

[25] Y. Zhong, S. Fong, S. Hu, R. Wong, W. Lin, A Novel Sensor

Data Pre-Processing Methodology for the Internet of Things

Using Anomaly Detection and Transfer-By-Subspace-

Similarity Transformation, Sensors, Vol. 19, No. 20, Article

No. 4536, October, 2019.

[26] S. Sivakumar, S. Sivakumar, Modulation of Activation

Function in Triangular Recurrent Neural Networks for Time

Series Modeling, 2019 International Joint Conference on

Neural Networks (IJCNN), Budapest, Hungary, 2019, pp. 1-8.

[27] S. Hochreiter, J. Schmidhuber, Long Short-Term Memory,

Neural Computation, Vol. 9, No. 8, pp. 1735-1780, November,

1997.

[28] L. Li, K. G. Jamieson, G. DeSalvo, A. Rostamizadeh, A.

Talwalkar, Hyperband: A Novel Bandit-Based Approach to

Hyperparameter Optimization, Journal of Machine Learning

Research, Vol. 18, pp. 1-52, 2018.

[29] K. Kandasamy, K. R. Vysyaraju, W. Neiswanger, B. Paria, C.

Collins, J, Schneider, B. Poczos, E. Xing, Tuning

Hyperparameters without Grad Students: Scalable and Robust

Bayesian Optimisation with Dragonfly, Journal of Machine

Learning Research, Vol. 21, pp. 1-27, 2020.

[30] G. Dupret, M. Koda, Bootstrap re-sampling for unbalanced

data in supervised learning, European Journal of Operational

Research, Vol. 134, No. 1, pp. 141-156, October, 2001.

[31] M. Belkin, D. Hsu, D. Ma, S. Mandal, Reconciling modern

machine-learning practice and the classical bias-variance

trade-off, Proceedings of the National Academy of Sciences,

Vol. 116, No. 32, pp. 15849-15854, July, 2019.

[32] J. Awwalu, F. Ogwueleka, On Holdout and Cross Validation:

A Comparison between Neural Network and Support Vector

Machine, International Journal of Trend in Research and

Development, Vol. 6, No. 2, pp. 235-239, March-April, 2019.

[33] R. Patra, B. Khuntia, Predictive Analysis of Rapid Spread of

Heart Disease with Data Mining, 2019 IEEE International

Conference on Electrical, Computer and Communication

Technologies, Coimbatore, India, 2019, pp. 1-4.

[34] F. Nelli, Python Data Analytics, Apress, 2015.

[35] K. Ramasubramanian, A. Singh, Machine Learning Using R,

Apress, 2019.

[36] F. Tortorella, Preface: Special issue on “ROC Analysis in

Pattern Recognition”, Pattern Recognition Letters, Vol. 27,

No. 8, pp. 859-860, June, 2006.

[37] L. A. Jeni, J. Cohn, F. Torre, Facing Imbalanced Data--

Recommendations for the Use of Performance Metrics, 2013

Humaine Association Conference on Affective Computing and

Intelligent Interaction (ACII), Geneva, Switzerland, 2013, pp.

245-251.

[38] K. Wang, C. Chen, M. S. Hossain, G. Muhammad, S. Kumar,

S. Kumari, Transfer reinforcement learning-based road object

detection in next generation IoT domain, Computer Networks,

Vol. 193, Article No. 108078, July, 2021.

[39] J. Zhang, D. He, N. Kumar, K. R. Choo, An Efficient and

Secure Authentication Scheme for Vehicle Sensor Networks,

Journal of Internet Technology, Vol. 20, No. 2, pp. 617-627,

March, 2019.

[40] S. Porru, F. E. Misso, F. E. Pani, C. Repetto, Smart mobility

and public transport: Opportunities and challenges in rural

and urban areas, Journal of Traffic and Transportation

Engineering (English Edition), Vol. 7, No. 1, pp. 88-97,

February, 2020.

[41] L. Sarv, K. Kibus, R. M. Soe, Smart city collaboration model:

a case study of university-city collaboration, 13th International

Conference on Theory and Practice of Electronic Governance

(ICEGOV 2020), Athens, Greece, 2020, pp. 674-677.

[42] V. Karachay, D. Prokudin, O. Kononova, D. Pilyasova,

Sociocultural information urban space in smart city context,

13th International conference on Theory and practice of

Electronic Governance (ICEGOV 2020), Athens, Greece,

2020, pp. 568-575.

[43] R. Logesh, V. Subramaniyaswamy, V. Vijayakumar, A

personalised travel recommender system utilising social

network profile and accurate GPS data, Electronic

Government, an International Journal (EG), Vol. 14, No. 1,

pp. 90-113, January, 2018.

[44] C. Hsieh, J. Chen, C. Kuo, P. Wang, End-to-End Deep

Learning-Based Human Activity Recognition Using Channel

State Information, Journal of Internet Technology, Vol. 22,

No. 2, pp. 271-281, March, 2021.

902 Journal of Internet Technology Volume 22 (2021) No.4

Biographies

Sachin Kumar is currently working

as a Professor of Computer Science

and Engineering at Ajay Kumar Garg

Engineering College, Ghaziabad,

India. His area of interest includes

Computer Networks and Applied

Cryptography. He has published more

than 30 papers in the SCI/ Scopus Index Journals from

IEEE, Elsevier, Springer, John Wiley, etc. Some of his

research findings are published/ accepted in top-cited

journals such as IEEE Transactions on Industrial

Informatics, Computer Networks of Elsevier, Peer to

Peer Networking and Applications of Springer, and

International Journal of Communication System of

Wiley.

Agam Damaraju is a highly motivated

technology enthusiast. Currently, he is

a final year student of Bachelors of

Technology in Computer Science and

Engineering at Ajay Kumar Garg

Engineering College, Ghaziabad,

India. He is a diploma holder in

Engineering with a specialization in

Electronics. He has hands-on experience in numerous

research projects related to Data Engineering, Machine

Learning, Deep Learning, Computer Vision, IoT and

Automation. His current research interests include

Computer Vision, Automation, and Cognitive

Computing. He is seeking to explore research

applications in the field of Autonomous Systems and

Healthcare. He also published a research article on

Technological Trends aftermath of Covid-19 pandemic

in PHD Chamber Journal of ideas and innovation.

Aditya Kumar is currently a Bachelor

of Technology student with Computer

Science and Engineering major at

Ajay Kumar Garg Engineering

College, Ghaziabad, India. His area of

interest includes Artificial Intelligence,

Internet of Things(IoT), Robotics, Data Analysis, and

Automation. He has hands-on experience in

programming Embedded Systems, various Machine

Learning, and Deep Learning techniques to solve

complex problems. He also has hands-on experience

on some industry-based Embedded System projects

and Industrial Robot Arm programming. He has the

certification in Robot Arm programming valid globally.

Saru Kumari is currently an Assistant

Professor with the Department of

Mathematics, Chaudhary Charan Singh

University, Meerut, Uttar Pradesh,

India. She received her Ph.D. degree

in Mathematics in 2012 from

Chaudhary Charan Singh University,

Meerut, UP, India. She has published more than 215

research papers in reputed International journals and

conferences, including more than 195 research papers

in various SCI-Indexed Journals. She is on the editorial

board of more than a dozen of International Journals,

of high repute, under IEEE, Elsevier, Springer, Wiley

and others including IEEE Systems Journal. She has

served as the Guest Editor of many special issues in

many SCI Journals under IEEE, Elsevier, Springer and

Wiley. She has been involved in the research

community as Technical Program Committee (TPC)

member or PC chair for more than a dozen of

International conferences of high repute. She is also

serving as a reviewer of dozens of reputed Journals

including SCI-Indexed of IEEE, Elsevier, Springer,

Wiley, Taylor & Francis, etc.

Chien-Ming Chen (Senior Member,

IEEE) received the Ph.D. degree from

National Tsing Hua University,

Taiwan. He is currently an Associate

Professor with the Shandong

University of Science and Technology,

China. His current research interests include network

security, the mobile Internet, IoT, and cryptography.

He also serves as an Associate Editor for IEEE

ACCESS and an Executive Editor for the International

Journal of Information Computer Security.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (Adobe RGB \0501998\051)
 /CalCMYKProfile (Japan Color 2001 Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHT <FEFF005b683964da300c9ad86a94002851fa8840002b89d27dda0029300d005d0020005b683964da300c8f3851fa0033003000300064002851fa88400029300d005d00204f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks true
 /AddPageInfo false
 /AddRegMarks false
 /BleedOffset [
 8.503940
 8.503940
 8.503940
 8.503940
]
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MarksOffset 9.354330
 /MarksWeight 0.141730
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed true
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

