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Abstract 

In this paper, we have studied the coverage algorithm 

constructed positive definite Tridiagonal Matrices for 

identifying the positive definite symmetric matrix 

together with the properties in Wireless sensor networks 

(WSNs). Firstly, we have summarized the determinations 

of the positive definite symmetric matrix, respectively, 

from four different aspects including the definition, the 

Jordan normal form, the upper-left sub-matrices and the 

decomposition of the positive definite matrix. At the 

same time, the objects and precautions applying to the 

different positive definite matrices are described in detail. 

Secondly, we study the relevant properties of positive 

definite matrix, and construct the positive definite matrix 

by using the non-degenerate matrix on the basis of the 

determination of positive definite symmetric matrix. 

Finally, we prove the inequality of Hadamard in solving 

the practical problems by using the positive definite 

matrix. Furthermore, we get the Cauchy-Schwarz 

inequality satisfied with positive definite matrix [1-16]. 

Keywords: Symmetric matrix, Positive definite matrix 

1 Introduction 

The idea of matrix can be traced back to the study of 

solving linear equations by scholars in the Han 

Dynasty. The study of matrix, an important basic 

concept in mathematics, has always been a very hot 

issue. 

Matrix is an important basic concept in mathematics 

and a main research direction of algebra. Matrix theory 

has been widely used in geometry, physics, probability 

theory and optimization theory. Symmetric matrices 

play an important role in matrix theory because of their 

special properties [17-29]. 

Positive definite matrix plays a very important role 

in the theory of matrix, especially symmetric matrix. 

Therefore, it is very important to study the judgment 

and properties of positive definite matrix. 

The particularity of positive definite matrices in 

matrix theory has been discovered long ago. In the 

1960s and 1970s, scientists continued to find positive 

definite matrices in numerical calculation, engineering 

and other fields of wide application. A large number of 

judgment methods and properties of positive definite 

matrices have been discovered constantly, and the 

study of positive definite matrices is regarded as a 

breakthrough in the study of matrix theory. 

In this paper, we will start with the determination 

method of positive definite matrix, describe the 

determination method, application scope and matters 

needing attention of positive definite matrix from four 

different perspectives, and then continue to find out the 

related properties of positive definite matrix and carry 

out the corresponding properties of the promotion, 

finally, use the related properties of positive definite 

matrix to apply it to practical problems. 

2 Sequential Master-child Method 

Definition 2.2.1 [2]: let ( )
ij nn

A a=  be a matrix of order 

n, and the minor  

 ( )
ij nn

A a=  

 

11 12 1

21 22 2

1 2

i

i

i

i i ii

a a a

a a a
P

a a a

=

�

�

� � �

�

 

 ( 1, 2, ..., )i n=  

It’s called the sequential principal minor of matrix.  

Theorem 2.2.1 [3]: A symmetric matrix of order n is 

A positive definite matrix if and only if all the 

sequential principal minor of A are greater than zero.  
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Proof: (necessity)  

The positive qualitative decision of symmetric 

matrix is equivalent to the equal qualitative decision of 

quadratic form.  

Let n-order symmetric matrix A be a positive 

definite matrix, then for any n-dimensional vector X = 

(x1, x2, ..., xn), there is a 

 
1 1

( ) 0
n n

T

ij i j

i j

f X X a x x
= =

= >∑∑   

establish.  

For every k, 1 ,k n≤ ≤  let 
1 2

( , , , )
k n
f x x x =�  

1 1

.

k k

ij i j

i j

a x x

= =

∑∑  Now we only need to prove that 
k
f  is a 

positive definite quadratic form of k-elements, that is, 

for any group of real numbers 
1
, ,

k
c c�  which are not 

all zero. there is 

1 2
( , , , )

k k
f c c c�

1 1

k k

ij i j

i j

a c c

= =

= =∑∑ 1 2
( , , 0, , 0) 0f c c >�  

establish, So 
1 2

( , , , )
k n
f x x x�  is positive definite. 

Since the determinant of the positive definite matrix is 

greater than zero, then the determinant of the 

coefficient matrix of 
k
f  is positive definite 

 

11 1

1

0

k

k kk

a a

a a

>

�

� �

�

 

Where 1, 2, ..., .k n=  This proves that all the 

sequential principal minor of A are greater than zero. 

(Sufficiency) Prove it by mathematical induction.  

When 1,n =  2

1 11 1
( ) ,f x a x=  it is obvious that 

1
( )f x  

is positive definite quadratic form from the condition 

11
0.a >  

The assumption of sufficiency is true for 1n − -ary 

quadratic form. Now let’s prove the case of n-ary.  

Let 

111 1, 1

1

1,1 1, 1 1,

,

nn

n n n n n

aa a

A a

a a a

−

− − − −

⎛ ⎞
⎜ ⎟

= = ⎜ ⎟
⎜ ⎟
⎝ ⎠

�

� � �

�

 

So matrix A can be written in blocks 

 
1

T

nn

A
A

a

α

α

⎛ ⎞
= ⎜ ⎟
⎝ ⎠

 

Since all the sequential principal minor of A are 

greater than zero, of course, all the sequential principal 

minor of 
1
A  are greater than zero. According to the 

inductive hypothesis, 
1
A  is a positive definite matrix, 

that is, there exists an invertible matrix G of order 

1n −  such that 

 
1 1

T

n
G AG E

−

=  

Where 
1n

E
−

 represents the identity matrix of order 

1.n −   

Let  
1

0

0 1

G
C

⎛ ⎞
= ⎜ ⎟
⎝ ⎠

 be 

 
1 1

1 1

11

TT

T n

T T

nn nn

A G O E GG O
C AC

a O G aO

α α

α α

−

⎛ ⎞⎛ ⎞⎛ ⎞⎛ ⎞
= ⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠⎝ ⎠ ⎝ ⎠
 

Let  1

2

0 1

T

n
E G

C
α

−

⎛ ⎞−
= ⎜ ⎟
⎝ ⎠

 be 

1 1 1

2 1 1 2

1 1

T T

nT T n n

T T

nn

E O E G E G
C C ACC

G G a O

α α

α α

−

−
−
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1n

T T

nn

E O

O a GGα α

−

⎛ ⎞
= ⎜ ⎟

−⎝ ⎠
  

Let  
1 2

,

T T

nn
C C C GGα α α α= − =  

be 

1

1

T
C AC

a

⎛ ⎞
⎜ ⎟
⎜ ⎟=
⎜ ⎟
⎜ ⎟
⎝ ⎠

�
 

Take the determinant of both sides 2| | | |C A a=  

From the known conditions, | | 0,A >  so 0,A >  

obviously 

 

11 1

11 1

1

1

1

a a

a

⎛ ⎞⎛ ⎞ ⎛ ⎞
⎜ ⎟⎜ ⎟ ⎜ ⎟
⎜ ⎟⎜ ⎟ ⎜ ⎟=
⎜ ⎟⎜ ⎟ ⎜ ⎟
⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟

⎝ ⎠ ⎝ ⎠⎝ ⎠

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠

�� �
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That is to say, matrix A is consistent with identity 

matrix, that is to say, it is proved that A is a positive 

definite matrix  

Example 2.3.2 Symmetric real tridiagonal matrices A  

 

1 1

1 2 2

2

1

1

n

n n

a b

b a b

A b

b

b a

−

−

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟=
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

� �

� �

  

Where 0 ( 1, 2, , )
i
a i n> = �  and matrix A is strictly 

diagonally dominant, then symmetric real tridiagonal 

matrix A is positive definite. 
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Proof: since the sequential principal minor of 

symmetric real tridiagonal matrix A are all greater than 

zero [4-5]. It can be known from the above theorem 

2.2.1, symmetric real tridiagonal matrix A is a positive 

definite matrix. Therefore, for symmetric real 

tridiagonal matrix A, it satisfies 

 
1

| | | |

( 1, 2, , )

i i i
a b b

i n

−

> −

= �

 

Where 
0

0,b =  then a symmetric real tridiagonal 

matrix A is a positive definite matrix. 

This kind of symmetric matrix has a lot of practical 

applications in computer programming, statistical 

partial differential equations, engineering science and 

so on. 

2.1 Principal Minor Method 

Definition 2.2.2. all the sub formulas with the same 

row index and column index in the matrix are called 

principal sub formulas. 

Theorem 2.2.2 [6] n symmetric matrix A is a positive 

definite matrix if and only if all the principal minor of 

a are greater than zero.  

Prove: (sufficiency) 

Since the definition of the principal minor shows 

that all the principal minor of A are greater than zero, 

including all the sequential principal minor are greater 

than zero, theorem 2.2.1 shows that the symmetric 

matrix A of order n is a positive definite matrix. 

(necessity)  

Let ( )
ij n n

A a
×

= be a positive definite matrix, and its 

principal minor of order k is 

 | | =

1 1 1

1

( )

�

� �

�

k

k k k

i i i i

k

i i i i

a a

A

a a

 

For any 
0 1

( , , ) 0,T

i ik
y b b= ≠�  let 

0 1
( , , ) ,T

i ik
x c c= �  

where 

 
0

i

i

b
c

⎧
= ⎨
⎩

 where 
2

( , , , )
i k

i i i i= �   

 other 

because T
x Ax  is a positive definite quadratic form, 

there are 
0 0

0
T
x Ax >  So there is ( )

0 0 0 0 0
T T k
x Ax y A y= > . 

Because of the arbitrariness of 
0
y , we know that 

( )

0 0

T k
y A y  is a positive definite quadratic form, so 

( )| | 0.k
A >  

2.2 Rodan’s Standard form Method 

For a square matrix A of order n over any complex 

field, there exists a unique Jordan canonical form. The 

diagonal elements of each Jordan block are the 

eigenvalues of the square matrix A. For a special 

square matrix, positive definite matrix, its eigenvalues 

are more special. 

2.2.1 Some Equivalent Conditions and Mutual 

Derivation of Jordan Canonical Form of 

Positive Definite Matrix 

Due to the particularity of Jordan canonical form of 

positive definite matrix, the following three 

propositions are equivalent [6]:  

(1) Square matrix A is a positive definite matrix 

(2) There is an orthogonal matrix H of order n such 

that 

 
1 2

( , , ..., )T

n
H AH diag λ λ λ=  (1) 

Where 
i

λ  is the eigenvalue of A and 
1

0,λ >  

1, 2, ..., .i n=   

(3) There is an invertible square matrix S of order n 

such that 

 T

n
S AS E=  (

n
E  is the identity matrix of order n) 

Prove: (1) ⇒  (1)  

Considering the relationship between the real 

symmetric matrix and the symmetric transformation, 

we only need to prove that the symmetric 

transformation σ  has a standard orthogonal basis 

made of n eigenvectors. Now we make a mathematical 

induction for the dimension n of space.  

When 1,k =  there is a conclusion.  

Assuming 1,k n= −  the conclusion holds. It is 

proved that k n=  also holds. For n-dimensional 

Euclidean space n

R , the linear transformation σ  has 

an eigenvector 
1

α  whose eigenvalue is a real number 

1
.λ  The transformation unites 

1
α  and uses 

1
α  to 

represent it. The orthogonal complement of 
1

( )L α  is 

set to 
1

V , and 
1

V  is an invariant subspace of σ , whose 

dimension is 1.n −  
1

|Vσ  clearly satisfies the property 

of a symmetric transformation 

 ( ( ), ) ( , ( )) , n

Rσ α β α β α β= ∀ ∈  

That is to say, 
1

|Vσ  is still a symmetric 

transformation. 

According to the inductive hypothesis, 
1

|Vσ  has 

1n − eigenvectors 
1 2
, , ,

n
α α α�  as the standard 

orthogonal basis of 
1

V , so that 
1 2
, , ,

n
α α α�  are the 

standard orthogonal basis of n

R , then there are n 

eigenvectors 
1 2
, , ,

n
α α α�  as the standard orthogonal 

basis of σ . 

(2)⇒ (3) 

By (2) known 



738 Journal of Internet Technology Volume 22 (2021) No.4 

 

1 2
( , , ..., )T

n
H AH diag λ λ λ=   

            

1 1
1

1
n n

λ λ

λ λ

⎛ ⎞ ⎛ ⎞⎛ ⎞
⎜ ⎟ ⎜ ⎟⎜ ⎟

= ⎜ ⎟ ⎜ ⎟⎜ ⎟
⎜ ⎟⎜ ⎟ ⎜ ⎟
⎝ ⎠⎝ ⎠ ⎝ ⎠

� � �  

Let 

1

n

S H

λ

λ

⎛ ⎞
⎜ ⎟

= ⎜ ⎟
⎜ ⎟
⎝ ⎠

� , and 

 

1

| | | | 0

n

S H

λ

λ

⎛ ⎞
⎜ ⎟

= ≠⎜ ⎟
⎜ ⎟
⎝ ⎠

�  

is an invertible matrix, then 

 T

n
S AS E=  (

n
E  is the identity matrix of order n) 

(3)⇒ (1) 

Let ( ) T
F X X=  make a reversible linear 

transformation, 

let ,X SY=   

then ( ) ( )T T T T

n
f X X AX s SY Y S ASY Y E Y= = = =  

Let ( ) ,T

n
g Y Y E y=  since the positive inertia index 

of real quadratic form ( )g Y  is n, then real quadratic 

form ( )g Y  is positive definite quadratic form, that is to 

say, real quadratic form ( )f X  is real quadratic form, 

that is, square matrix A is positive definite matrix. 

From the variant form of (1) in the above equivalent 

proposition 

 
1 2

( , , ..., ) T

n
A Hdiag Hλ λ λ=  

It is called the spectral decomposition of positive 

definite matrices A.  

2.2.2 Rodan Canonical Form Method Applicable 

Objects and Matters Needing Attention 

By using the Rodan canonical form method to 

determine the positive qualitality of the symmetric 

matrix, the eigenvalue problem of the symmetric 

matrix can be determined firstly, When all the 

eigenvalues are positive, the symmetric matrix can be 

determined as positive definite matrix, then the 

orthogonal matrix H is determined by the eigenvalues. 

Finally, we get the Rordan canonical form of the 

symmetric matrix A.  

If the standard form method is used to determine the 

positive definiteness of symmetric matrix, there is no 

general algebraic solution and formula for finding the 

roots of ( 5)n n ≥  degree equation. Therefore, this 

method should be used with caution when the order of 

symmetric matrix A is 5n ≥ . 

2.3 Special Decomposition Method of Positive 

Definite Matrix  

2.3.1 Real full Rank Square Matrix Decomposition 

of Positive Definite Matrix  

For the real full rank square matrix decomposition of 

positive definite matrix, that is to say, the positive 

definite matrix is expressed as the product form of 

invertible matrix. According to the proof process of 

Jordan canonical form method 2.3 of positive definite 

matrix, the order symmetric matrix is positive definite 

matrix if and only if there is an invertible matrix, such 

that 

 T
A B B=   

It is a real full rank square matrix decomposition 

form of positive definite matrix. 

Another special decomposition of orthogonal 

matrices is introduced——before the trigonometric 

invertible matrix factorization on the positive line, let’s 

first prove the lemma. 

Lemma 1 [7] Any real invertible matrix can be 

uniquely decomposed into the product of an orthogonal 

matrix and a trigonometric matrix on a positive line. 

Prove: let matrix 

11 1

1

n

n nn

a a

A

a a

⎛ ⎞
⎜ ⎟

= ⎜ ⎟
⎜ ⎟
⎝ ⎠

�

� �

�

 is an invertible 

matrix, then its n column vectors are denoted as 

1 2
, , , ,

n
α α α�  because 0,A ≠  so 

1 2
, , , ,

n
α α α�  are 

linearly independent, so 
1 2
, , , ,

n
α α α�  are a group of 

bases of n

R .  

By using Schmidt orthogonalization process, from 

1 2
, , , ,

n
α α α�  get an orthonormal basis 

1 2
, , , ,

n
β β β�  

which satisfies 

 

1 1

2 2 2 1 1

1 1 1 1

( , )

( , ) ( , )
n n n n n

n

β α

β α α η η

β α α η η α η η
− −

=

= −

= − − −

�

�

 

Among them i

i

i

β
η

β
= ( 1, 2, , ).i n= �  Let 

i i i
β β η=  

( 1, 2, , )i n= �　 to the left of each equation, transference 

arrangement can be obtained 

 

1 11 1

2 12 1 22 2

1 1 2 2n n n nn n

t

t t

t t t

α η

α η η

α η η η

=⎧
⎪

= +⎪
⎨
⎪
⎪ = + + +⎩

�

�

 

Among them 0 ( 1, 2, , )
ii i
t i nβ= > = �　 , then 
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1 2

11 12 1

22 2

1 2

( , , , )

( , , , )

n

n

n

n

nn

A

t t t

t t

t

α α α

η η η

=

⎛ ⎞
⎜ ⎟
⎜ ⎟=
⎜ ⎟
⎜ ⎟
⎝ ⎠

�

�

�
�

� �

 

Let 

11 12 1

22 2

,

n

n

nn

t t t

t t
T

t

⎛ ⎞
⎜ ⎟
⎜ ⎟=
⎜ ⎟
⎜ ⎟
⎝ ⎠

�

�

� �
 then T is a triangle 

matrix on the plus line. 
i

η  is n dimensional column 

vectors, matrix Q is composed of 
1 2
, , ,

n
η η η�  

columns, that is 

 
1 2

( , , , )
n

Q η η η= �  

Because 
1 2
, , ,

n
η η η�  are orthonormal bases, so Q is 

an orthogonal matrix, and .A QT=  If there are 

1 1 1 1
, ,Q T A QT=  is another decomposition of A , then 

 
1 1

1 1

1 1

,Q T QT

Q Q TT
− −

=

=

  

Because 
1
,Q Q  are orthogonal matrices, then 1

1
Q Q

−  

is also orthogonal matrix, so 1

1
TT

−  is also orthogonal 

matrix. On the other hand, 1

1
TT

−  is an upper triangular 

matrix, so the main diagonal elements of 1

1
TT

−  are 

diagonal matrices of 1 or - 1, while the main diagonal 

elements of 
1

,T T  are positive, so 

 1

1
TT E

−

=  

that is  
1

T T=  

thus  
1

Q Q=  

Theorem 2.4.1 [8] the symmetric matrix A of order n 

is a positive definite matrix if and only if there exists a 

triangular invertible matrix T on the main line, make 

 T
A T T=  

Prove: (sufficiency) 

Let 

11 12 1

22 2

0 ( 1, 2, , )

n

n

ii

nn

t t t

t t
T t i n

t

⎛ ⎞
⎜ ⎟
⎜ ⎟= > =
⎜ ⎟
⎜ ⎟
⎝ ⎠

�

�
�

� �
　

 be 

a triangular invertible matrix on the main line, then 

1

0

n

ii

i

T t

=

= >∏  is reversible, then there exists 1
T

− , 

make 

 1 1( )T
T AT E

− −

=  

Therefore, the symmetric matrix A of order n is a 

positive definite matrix. 

(necessity) 

Since the symmetric matrix A of order n is a positive 

definite matrix, there exists an invertible matrix B, 

make 

 T T
A B EB B B= =  

From lemma 1 

 B QT=  

So  T T T
A T Q QT T T= =  

2.3.2 Non Degenerate Matrix Factorization of 

Positive Definite Matrices 

Theorem 2.4.2 the symmetric matrix A of order n is 

positive definite if and only if there are invertible 

matrix B and orthogonal matrix H, make A HB= . 

Among them, invertible matrix B and orthogonal 

matrix H are pairwise existence and uniqueness. 

Prove: (sufficiency) 

First, let’s prove such a lemma 

Lemma 2 [9] any real invertible matrix B must be 

expressed as the product of a positive definite matrix 

and an orthogonal matrix 

 
1 1 2 2

B Q H H Q= =  

Where 
1 2
,Q Q  are positive definite matrices and 

1 2
,H H  are orthogonal matrices. 

Since B is a real invertible matrix, BBT is a positive 

definite matrix in theorem3.4.1. Therefore, from the 

inference in theorem 3.1.5, we can see that there exists 

a positive definite matrix 
1
A , such that 

 2

1

T
BB A=  

Let  
1 1

1 1 1 2
,A B H BA H

− −

= =  

then  
1 1 2 2 1 2

B Q H H Q Q Q= = =（ ） 

and  1 1 1 1

1 1 1 1 1 1
( )( ) ( )T T T T

H H A B A B A BB A
− − − −

= =  

 1 2 1

1 1 1
( )TA A A E

− −

= =  

That is to say, 
1

H is proved to be an orthogonal 

matrix. Similarly, 
2

H  is proved to be an orthogonal 

matrix.  

Now let’s prove the sufficiency of theorem 2.4.1.  

By using lemma 2, an invertible matrix B can be 

decomposed into the product of a positive definite 

matrix with an orthogonal matrix, Let the orthogonal 

matrix be T
H , then there exists a positive definite 

matrix 
1
A , which satisfies 

 
1

T
B A H=  

 
1

T
A HB HAH= =  

Since matrix A is orthogonal to positive definite 

matrix 
1
A , matrix A is positive definite matrix.  
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(necessity) 

Since the symmetric matrix A of order n is a positive 

definite matrix, according to the Jordan canonical form 

of positive definite matrix, there can be an orthogonal 

matrix H, so that 

 
1 2

( , , , )T

n
H AH diag λ λ λ= �  

establish, then 

 
1 2

( , , , ) T

n
A Hdiag Hλ λ λ= �  

let  
1 2

( , , , ) T

n
B diag Hλ λ λ= �  

Because of the uniqueness of the orthogonal matrix 

determined by Schmidt orthogonalization, the 

existence and uniqueness of the reversible matrix B 

and the orthogonal matrix H are pairwise. 

3 Conclusion 

In this paper, the determination method of positive 

definite matrix is expounded in detail from the four 

aspects of definition, normal form, matrix subform and 

special decomposition of positive definite matrix, and 

the corresponding sufficient and necessary conditions 

are obtained. On this basis, the properties of the 

relative deformation matrix, the partition matrix and 

the decomposition of the positive definite matrix are 

discussed respectively, and then the application of the 

positive definite matrix in some practical problems is 

given, which fully reflects the particularity and 

universality of the positive definite matrix.  
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