
A Feedback Control Approach for Preventing System Resource Exhaustion Caused by Software Aging 1513

A Feedback Control Approach for Preventing System Resource

Exhaustion Caused by Software Aging

Yun-Fei Jia1, Zhi Quan Zhou2, Renbiao Wu1

1 Tianjin Key Laboratory for Advanced Signal Processing, Civil Aviation University of China, China
2 Institute of Cybersecurity and Cryptology, School of Computing and Information Technology,

University of Wollongong, Australia

yfjia@cauc.edu.cn, zhiquan@uow.edu.au, rbwu@cauc.edu.cn*

*Corresponding Author: Yun-Fei Jia; E-mail: yfjia@cauc.edu.cn

DOI: 10.3966/160792642019092005017

Abstract

The dynamic behavior of software systems attracts

widened attention through the phenomenon of software

aging. Software aging is caused by runtime environment

deterioration, such as the gradual loss of memory or CPU

cycles. The dynamic behavior of aged software systems

can be described by a set of evolving resource variables,

including CPU usage, I/O bandwidth, available memory

and the like. From this point of view, an aging software

system can be analogous to a dynamic system. Control

theory provides sound and rigorous mathematical

principles to analyze dynamic systems and build

controllers for them. This paper introduces control theory

to analyze and build a control model and apply control

techniques to an aged web server. First, we treated the

software system as a black box, and conducted controlled

experiments to build the relationship between input and

output. Then, these input-output couples are used to build

a control model via a system identification method.

Finally, a PI (proportional-integral) controller is designed

to adjust the aged state of the software system, and

software rejuvenation techniques are customized to target

the web server. Performance testing shows that our

approach can accurately track the reference value set by

the website administrator.

Keywords: Software aging, MIMO control, System

identification, Software rejuvenation,

Feedback control

1 Introduction

The wide-spread service-based software calls for

high availability. Nevertheless, when an application

server executes continuously for long periods of time,

it may accumulate many error conditions or

uncollected garbage in its process space. Consequently,

the process will have insufficient computing resources

to respond to the client’s requests. From this

perspective, software aging can be attributed to gradual

runtime environment degradation, caused by aging-

related bugs [1-2], where a process cannot get

sufficient computing resources. Eventually, the

computer system will crash or hang when all

computing resources are exhausted.

Software rejuvenation can clean runtime

environment before severe aging occurs. Commonly

used techniques are to reset the whole computer system

or to restart the software system when aging signs are

detected. Most literature focuses on the optimal timing

of rejuvenation, and the proposed rejuvenation

techniques are usually “heavyweight”, i.e., they usually

involve termination of service [2-5]. However, under

some conditions, service downtime will incur

tremendous economic loss, and some safety-critical

services cannot be reset.

To avoid crashes, the available computing resources

must be retained to some extent. Blindly limiting the

resource usage will also incur too much cost, such as

longer response time or lower throughput. Lightweight

control policy is expected to retain enough available

computing resources at the expense of lowering the

capacity of the computer system. In fact, lightweight

rejuvenation techniques have attracted more attention

in recent years, Machida et al. [6] proposes a life-

extension technique to maintain availability of an aged

virtualized system. A two-level rejuvenation policy is

proposed to reduce the downtime of rejuvenation [7],

which is improved by Ning et al. [4]. Kourai and Ooba

[8] proposes a type of lightweight rejuvenation

technique called “zero-copy migration”, which can

relocate aged VMs to a clean virtualized system

without any copying. Yan et al. [9] quantitatively

studies the relationship between resource consumption

and changing workload. The obtained results can help

an administrator tune the system properly to reduce

business losses incurred by software aging problems.

Although these lightweight rejuvenation techniques

incur much less downtime, they still have several

limitations. For example, Ning et al. [4] and Xie et al.

[7] require some assumptions on the arrival rate of

memory leaks, which hinders the application of their

1514 Journal of Internet Technology Volume 20 (2019) No.5

approaches. Furthermore, only one aging indicator

(memory leak) is considered in some studies [6, 8-9],

although more resources usually interact with each

other during the aging process.

There has been increasing research efforts in

applying control theory to behavior management for

web servers, databases and storage systems [10-11].

[12] provides an additional component to know the

nature of application, so that the performance

degradation, as a results of sudden rise of workload,

will be mitigated. [13] proposes a new algorithm for

multi objective task scheduling in cloud. [14] proposes

a GA-CAS algorithm to address multiple objective

optimization problem in cloud system. Inspired by

those studies, this paper intends to implement a

lightweight no-downtime rejuvenation technique

covering more aging indicators. In this paper, a

controlled experiment is conducted to study the

relationship between these parameters and resource

usage of a web server, Apache httpd (referred to as

Apache hereafter). Based on the experimental data, we

propose a linear model that approximates the

relationship between software aging and several

important parameters of Apache. Based on the MIMO

(multiple-input and multiple-output) model, we have

designed a PI (proportional–integral) controller to

online-control the resource variables of concern below

a specified threshold. Doing so will work around the

consequence of software aging with the target of not

stopping the server.

Since rejuvenation techniques usually have close

relationships with subject software, this paper

investigates the operating mechanism of a typical web

server–Apache. Most web servers provide certain

parameters for users to customize the system at

different runtime environments. Some of these

parameters may significantly affect the performance of

the software system and the usage of system resources

[15]. Adjusting these parameters can proactively avoid

resource exhaustion resulted from software aging.

More specifically, limiting the number of concurrent

threads or processes of a web server can mitigate the

effect of memory leakage. The consequential cost is

capacity shrinkage, i.e., only partial requests can be

handled and responded to. In addition, when the

workload of a web server is heavy, i.e., many requests

are incoming, the response time of all requests will

increase to some extent, and some of the requests will

be rejected by the web server. This is because most

web server applications work based on a best-effort

service model. Web servers have to dispatch and reject

those redundant requests. This process will also come

at the cost of some CPU cycles and memory. We have

to control the number of requests inputted into the

listening queue of the web server. This paper intends to

study the relationship between resource usage and

parameter setting of target software systems.

Compared to existing lightweight rejuvenation

techniques, our approach has several advantages:

(1) Several aging indicators can be incorporated in

our approach, such as free physical memory and

average load;

(2) No assumption on aging indicators (such as

arrival rate and memory leak speed) is required, which

enables our approach to be applicable to more target

software systems;

(3) Our approach can be used as a framework to

easily incorporate more rejuvenation techniques such

as memory add [6] and VM migration [8].

The rest of the paper is organized as follows.

Related studies are presented in Section 2. Section 3

reports the experiments that study the relationship

between software aging and related parameter settings.

A system identification method is employed to

quantitatively build a MIMO model in Section 4. This

model can quantitatively describe the relationship

between parameter settings and resource usage. A PI

controller is designed by a pole assignment method in

Section 5. In Section 6, our proposed controller is

evaluated in terms of fastness and accuracy, and the

cost of rejuvenation is also evaluated. Section 7

concludes this paper.

2 Related Work

Aging modelling and control are key questions

throughout two decades of software aging study [16].

Aging control study intends to seek cost-effective

techniques to clean the aged software system. Because

rejuvenation will usually incur larger cost, some newer

rejuvenation techniques are customized for the subject

software of concern.

[17] studied the abnormal behavior propagation

mechanism in networked software. Xie et al. proposed

a two-level rejuvenation policy based on the degree of

aging, i.e., when the subject software is slightly aged,

only some modules are restarted, and when it is

severely aged, the whole software should be restarted

[7]. Zhao et al. [18] constructed a model to ensure the

performance of the Apache HTTP server. Their

conclusions are based on an in-depth analysis of the

working mechanism of the target software system.

With the wide-spread acceptance of Cloud Computing,

the aging phenomenon in virtual machine is well

reported, and specific rejuvenation techniques are

implemented. The rejuvenation techniques for virtual

machines can allow for little downtime, which is

implemented by suspending and resuming the aged

instances [3]. Rejuvenation of aged instances can also

be implemented by mitigating it [19]. This technique

can incur little throughput loss and no downtime.

There is an increasing trend for using control theory

in performance guarantee. It is usually implemented by

monitoring the performance or predicated workload of

a web server, which are fed back to a “controller” to

compute whether it has crossed a specified threshold. If

A Feedback Control Approach for Preventing System Resource Exhaustion Caused by Software Aging 1515

it has, some control techniques will be invoked, such as

rejecting some requests, reducing the video frame rate

(for a video website), and so on. In fact, this method

forms a closed-loop to control the performance of a

website. Key et al. [20] reported the method and the

implementation of service differentiation. Service

differentiation provides some ideas about controlling

the performance of a web server. When the web server

is overloaded, only important parts of requests will be

handled, and others are discarded with the purpose of

ensuring the quality of service (QoS) of some VIP

clients. A differentiated caching mechanism is

proposed to multiple levels of service in proxy caches

[21]. They proposed a control-theoretical approach to

enforce performance differentiation on information

access. The feedback control principle is widely used

in QoS guarantee, although some literature does not

explicitly highlight this.

However, control theory application in software

aging has received much less attention. This paper

intends to lay well-understood theoretical foundations

for software aging control and seek applicable

techniques to prevent resource exhaustion.

3 Experimental Set-up

3.1 Software Experiment Methodology

It should be noted that there is a difference between

an empirical study and a controlled experiment.

According to Vaidyanathan and Trivedi [1], an

empirical study usually makes an observation of, and

collection of data from, the running real world

computer system. In an empirical study, the

experimental conditions are not controlled by the

researcher. The advantage of an empirical study lies in

that it can reflect the activity of a computer system in a

real working scenario. However, the disadvantage lies

in that we can hardly find the causes of the

observations, because the working condition of the

concerned software is not known. On the contrary, a

controlled experiment can adjust the working condition

of the subject software, whilst we must try to make the

working conditions or runtime profile adhere to its

real-world working conditions. In this paper, controlled

experiments are conducted in order to probe the

mechanism of software aging.

The subject software should be adopted carefully. In

a software aging experiment, the subject software

should be mature and widely applied in the real-world.

The subject software must be selected in such a way

that the resulting observations can make sense. In our

experiment, Apache is employed as our subject

software. Apache is the most popular web server used

on the Internet. The aging phenomenon of Apache 1.3

had been reported by Grottke et al. [22]. The current

stable version of Apache is 2.0, which is in use by

many websites. Although the newest version of

Apache httpd is 2.4, the 2.0 version is still widely used

in the world. In addition, the Apache 2.0 has mature

and similar features as the 2.4 version. Hence, we

select Apache 2.0 as our subject software. In

comparison to Apache 1.3, Apache 2.0 is enhanced

greatly in many respects, including Unix threading

support, multiprotocol support, updated regular

expression library, etc [15]. Thus, software aging in

Apache 2.0 should be revisited.

3.2 Experimental Design

The experimental set-up is the same as that in our

previous work [23], briefly described as follows: In our

experiments, Apache is deployed on a workstation.

This computer is used as a web server in our

experiments. Three other workstations with the same

hardware configuration are used as clients to generate

artificial concurrent requests to access the web pages

on the Apache server. All four workstations are

connected via a switch. A web server test tool, httperf

[24], is deployed on the clients to generate artificial

connection requests for static html pages with

exponential time intervals to the web server. System

resource variables are collected by DataCol, a shell

script written by us, including free physical memory

(memFree), average load (loadAvg), etc. The resources

variables can reflect the memory consumption and

CPU usage. In Linux OS, loadAvg refers to the number

of processes waiting for CPU or disk I/O [25]. The

vector (memFree, loadAvg) can be used as the output

of the control model.

Apache has many parameters influencing software

aging in terms of resource usage. The parameter

MaxClients has a direct relationship with the

accumulated effects of the residual defects in the

system [15]. Hence, we can implement a new

rejuvenation technique, i.e., limit the resource

consumption of Apache by adjusting the value of

MaxClients. Nevertheless, when too many requests are

incoming, limited child processes cannot handle and

respond to the requests in time. Thus, we must reject

some incoming requests according to a prespecified

policy. In this paper, both connection rate (conRate)

and MaxClients will be included in the model as input.

In the next step, we should build the relationship

between input and output, since our target is to limit

the value of output by adjusting the input. Because the

dynamic behavior and working mechanism of Apache

is much too complex, we cannot build a mathematical

control model based on its physical principle; instead,

such complex systems can be treated as a black box,

and control models can be built through a system

identification method. This method demands massive

input/output couple data to estimate their relationship.

Hence, we need to adjust the input and record the

corresponding output repeatedly to get sufficient

input/output observations.

1516 Journal of Internet Technology Volume 20 (2019) No.5

3.3 Online Parameters Control

Apache is a multiple parallel processing web server.

It will spawn a number of child processes to handle the

accepted requests in parallel. The parent process of

Apache will not handle requests but rather monitor the

status of the child processes. More specifically, when

the workload is lower, it will kill some excessive idle

child processes to release memory. When workload

surges, it will spawn more child processes to increase

its processing capacity. This feature can be used to

control the resource consumption thus retaining some

resources for other co-located applications. When

Apache starts, the default number of spawned child

processes is specified in the configuration file and read

into scoreboard. Scoreboard is a piece of shared

memory which can be read/written by the parent

process. In this paper, we modify the source code of

Apache, and specify the value of MaxClients by an

external module called Apache controller, a tool

implemented by us. More specifically, Apache

controller can write the value of MaxClients into

scoreboard. The parent process will repeatedly read the

scoreboard and then set the number of child processes,

thus resource usage of Apache will be adjusted

appropriately.

When a request is incoming, Apache will first buffer

it in its listening queue, then the parent process will

dispatch this request to a child process. In our

experiment, the arriving requests sent by httperf are

intercepted by the Apache controller. In this way, the

number of requests to arrive and to be handled by

Apache can be controlled. The working mechanism of

the controlled Apache is illustrated in Figure 1.

Child 1

scoreboard

 MaxClients

Parent

process

.

.

.

KILL

SPAWN

Apache controller
write

Httperf 0.9

Apache listening

queue

Child 2

...

Child n

Apache 2.0

Figure 1. Online parameters control

In Figure 1, mass artificial requests generated by

httperf are sent to the Apache controller. Some of those

will be discarded so that the number of remaining

requests arriving in the listening queue can be

controlled as we specified. The parent process will

dispatch each request to an idle child process. In

addition, the parent process will poll the scoreboard for

the status of child processes and some parameters

including MaxClients. When MaxClients changes, the

parent process will kill or spawn some child processes

accordingly.

Our approach can be implemented by a typical

feedback control system, as described in Figure 2.

MaxClients

conRate

Loadavg
memFree

+

-

loadavg*

memFree*
Eloadavg

EmemFree

MIMO model Apache httpd

Figure 2. Feedback control of apache

In Figure 2, the expected values of available

resources (loadavg, memFree) are set by the

administrator, and the collected resources are

compared against the expected values, with the error as

input into the MIMO model. Accordingly, the

parameters of Apache (Maclients, conRate) will be

adjusted by the output of the MIMO model.

To summarize, our approach can be implemented as

follows:

(1) To identify the relationship between available

resources and key parameters of Apache: This can be

implemented by a System Identification method.

(2) To monitor the available resources of an

operating system: Taking the Linux OS as an example,

reading the /proc can get the free memory and load

average values.

(3) When performance degradation occurs, available

resources degrade beyond a threshold (which can be

set by the administrator), a light rejuvenation will be

triggered.

(4) The light rejuvenation proposed in this paper can

be implemented by adjusting the parameters of Apache,

i.e., MaxClients and conRate. The adjusted quantity

can be calculated based on the relationship built in Step

1).

4 System Identification

Control theory and control engineering focuses on

model building and controller design. All techniques

for analysis and design of a control system are based

on an appropriate control model. Those mathematical

models can describe the dynamics of a real or virtual

system. Some models can be built based on the

working mechanism of a physical system. These

systems are usually small and simple. If the working

mechanism is not clear or not well understood, a

system identification technology can be employed to

build a control model.

In this section, following the method of system

identification [26], we constructed a linear MIMO

model of the relationship between resource

consumption and parameters setting of Apache. The

system identification technology treats the system

under consideration as a black box, and establishes a

mathematical representation of the physical system

from experimental data. Such a model is some form of

A Feedback Control Approach for Preventing System Resource Exhaustion Caused by Software Aging 1517

pattern that explains the observed experimental results

and allows for predictions of future system responses

to be made.

The quality of system identification partially

depends on the quality of the inputs, which are under

the control of the systems engineer. In order to trigger

the dynamics of Apache, the input design should

maximize the coverage of the entire input space. Using

a testing method reported in our previous study [23],

we conducted capacity testing and found that, when

MaxClients was set to 250 or larger, almost all

physical memory would be in use; if it was set larger

than that, the swap space would be used, and would

deteriorate the system’s capacity. We further found

that Apache had a capacity of 320 requests per second.

Figure 3 shows the input values of MaxClients and

conRate.

0 200 400 600 800 1000 1200 1400
0

100

200

300

M
a
x
C
li
e
n
ts

0 200 400 600 800 1000 1200 1400
200

250

300

350

time(five min slots)

c
o
n
R
a
te

Figure 3. Input in experiment

A typical discrete form of a MIMO control model

can be expressed by the following equations:

(1) () ()

() ()

x n Ax n Bu n

y n Cx n

+ = +

=

 (1)

Where n indexes time; in our case, y is a 2×1 vector

which indexes output; x is an m×m matrix which

indexes the state of the target system, and u is a 2×1

vector which indexes the input. More specifically, the

input of the model is u(n) = (MaxClients, conRate)T,

and the output is y(n) = (loadAvg, memFree)T. x(n) is

the intermediate variables of the server and x(0) can be

set to vector 0. x(n) represents a state-space model of m

dimensions (where m can be an arbitrary integer).

Usually, the higher m is, the more accurate the model

is. However, when m is too large, it will bring an over-

fitting problem that prejudices the generalization of the

model. Using a trial and error method, we got the best

trade-off when m is set to 2. The dimension m of x(n)

in equations (1) represents the complexity of our model.

This tells us that the relationship between the input

(MaxClients, conRate) and the output (loadAvg,

memFree) can be described by a simple model.

Nevertheless, our approach can be generalized to a

more complex model when the dimension m is large.

Equations (1) cannot be directly estimated by

experimental data. We must eliminate the intermediate

variable x by Z-transform. Z-transform is one of the

mathematical tools used for the analysis and design of

discrete-time control systems. The role of Z-transform

in digital control systems is analogous to that of the

Laplace transform in the continuous-time control

systems. Applying Z-transform to the upper equation

in Equations (1), we get:

 (1) () (0).x n zx z zx+ = − (2)

Then x(z) can be solved as follows:

 () () (0) ()zI A x z zx BU z− = + (3)

Substituting the above equation into the lower

equation in Equations (1), we get:

1() () (0) () ()y z zC zI A x C zI A BU z

−

= − + − (4)

Applying the inverse Z-transform to the above

equation, we can identify the relationship between y(n)

and u(n), which is shown in Equation (5).

11 1 11 2 11 12 1 12 2 12

1 2 1 2

1 1 1 1 1 1

1 1 1

21 1 21 2 21 22 1 22 2 22

20 1 2 0 1 2

2 1 2 2 1 2

1 1

1 1 ()
()

1 1

n n

n n

n m

n n

n n

n n

n n

n n

b z b z b z b z b z b z

a z a z a z a z u n
y n

ub b z b z b z b b z b z b z

a z a z a z a z

− − − − − −

− − − −

− − − − − −

− − − −

⎡ ⎤+ + + + + +
⎢ ⎥

+ + + + + +⎢ ⎥=
⎢ ⎥+ + + + + + + +
⎢ ⎥

+ + + + + +⎢ ⎥⎣ ⎦

� �

� �

� �

� �

1

2
()

h

n h

⎡ ⎤ ⎡ ⎤
+⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦
 (5)

In equation (5), the parameters a, b, and h need to be

estimated from the collected experimental data. In this

paper, a least-squares method is used to estimate those

parameters. In our case, the first half of the

observations are used to estimate the parameters via

the least-squares method. Then we use the last half of

our observations to validate our model. More

specifically, we use the first 600 observations to

estimate the above parameters, and use the resulting

model to forecast the (loadAvg, memFree) values of

the remaining 600 observations with the observations

as input. Figure 4 shows the last 600 observations

(corresponding to the data collected from the 50th hour

to 100th hour) and the corresponding estimated values.

From Figure 4, it can be observed that the curves of

loadAvg and memFree outputted by our model are

similar to those of the real data. The error shown in

Figure 4 can be attributed to the fact that, even if the

1518 Journal of Internet Technology Volume 20 (2019) No.5

number of MaxClients can be accurately set, the size

(memory consumption) of each child process may be

different. For example, a child process which has

processed many more requests will have more memory

consumption, because it will buffer into itsprocess

space the resources that are recently accessed.

600 700 800 900 1000 1100 1200
0

0.2

0.4

0.6

0.8

1

lo
a
d
A
v
g

600 700 800 900 1000 1100 1200
-0.2

0

0.2

0.4

0.6

0.8

1

time(five min slots)

m
e
m
F
re
e

model output

observations

model output

observations

Figure 4. Comparison of experimental observations and forecasted values

5 Design of Discrete Control System

With the control model built in the previous section,

we can design a controller to implement our control

policy following rigorous control theory. There are

several controllers that can be used in the literature

[26], such as proportional-derivative (PD) controller,

proportional-integral (PI) controller and proportional-

integral-derivative (PID) controller. PD controllers can

track the expected value quickly, and its weakness lies

in larger stable errors. PI controllers can eliminate

stable errors and have good robustness, however track

the expected value slowly. PID controllers can track

expected values quickly and can eliminate stable errors,

but is complex and time-costly for the engineer.

 When applying control theory to a target system,

the adoption of the controller depends heavily on the

properties of the target system. In our case, the

software system can adjust it parameters quickly,

because the inertia of the software system is much less

than a real mechanical system. For that reason, we

adopt a PI controller to control the Apache web server,

and evaluate the fastness and settling time. A typical PI

controller operates according to the following law:

1

1

n

n P n I j

j

u K e K e

−

=

= + ∑ (6)

Where
n

u refers to the controllable parameters of

Apache, and
n
e refers to the error between the

expected and real values of used system resources. In

our case, both
P

K and
I

K in Equations (3) are 2 2×

matrices, and will be designed by a pole assignment

method. Usually,
P

K can be used to increase the

fastness of the control system, and
P

K is used to

eliminate the steady-state error [21]. The PI controller

can be designed as follows:

To track the reference value set by the administrator,

we should transform the system model into an error

form. Equation (5) can be transformed into a discrete

state equation by an inverse Z-transform.

1

() (1) (1) ()
n n n

Y n AY n B n B u n E
−

= − + − + + (7)

Where A,
1n

B
−

,
n

B and
n

E can be calculated from

the estimated results of Equation (2).

Let e1=y1-y1r, e2=y2-y2r,
1

1 1

1

() (),
n

j

g n e j
−

=

=∑
2
()g n =

1

2

1

(),
n

j

e j
−

=

∑ g3(n)=y1(n), and g4(n)=y2(n), then Equation

A Feedback Control Approach for Preventing System Resource Exhaustion Caused by Software Aging 1519

(4) can be written as:

0 1

(1) () () (1)x n Ax n B u n B u n E+ = + + + +

Where A ,
0

B and
1

B can be directly calculated

from Equation (4), and

1

2

1

2

n

n

y r

y r
E

E

E

−⎡ ⎤
⎢ ⎥
−⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

.

Let u(n)=KG(n), we can get:

1

1 0

1

1

(1) (1) () ()

()

G n B K A B K G n

I B K E

−

−

+ = − +

+ −

 (8)

where K can be determined by a pole assignment

method. The name, ‘pole assignment’, refers to the fact

that the controller is determined in terms of obtaining a

closed-loop system with specified poles. The target

poles of a PI control system will involve compromises

between fastness and steady-state errors. Due to the

fact that the software system has little inertia, we pay

more attention to eliminating steady-state errors when

assigning the poles of Equation (8).

The designed closed-loop control system must be

stable. A linear time-invariant system is defined to be

bounded-input-bounded-output (BIBO) stable if a

bounded input gives a bounded output for every initial

value [26]. This definition provides us with a

straightforward way to test the stability of our designed

system. We set the input to the upper bound and then

the lower bound, and observe the outputs. Simulation

results validate the designed system as stable.

6 Experimental Results Analysis

6.1 Settling Time

In control theory, the designed controller can be

evaluated mainly in two aspects: steady-state error and

settling time. Steady-state error accounts for how

accurately the control system can track the reference

value and settling time measures how fast the control

system can track the reference value. Our design goals

are twofold: 1) zero steady-state errors; and 2) a small

settling time. In the obtained control model, we set two

different target values to test the above goals. Step

signals are employed in our tests, and the results are

illustrated in Figure 5.

0 50 100 150 200 250 300 350 400
0.75

0.8

0.85

0.9

0.95

M
a
x
C
li
e
n
ts

0 50 100 150 200 250 300 350 400
0.62

0.64

0.66

0.68

0.7

0.72

Time (second)

c
o
n
R
a
te

model output

expected value

model output

expected value

Figure 5. Settling time of PI controller

From the simulation results in Figure 5, we can see

that the target values and the output values can hardly

be distinguished. This validates that our design can

eliminate the steady-state errors accurately. In other

words, we can control the resource usage accurately. In

addition, from Figure 5 we can see that the settling

time is roughly less than 10 seconds, which is fast

enough for aging control purposes. This result can also

validate the assertion that a software system has little

inertia. In Figure 5, there is an obvious difference in

1520 Journal of Internet Technology Volume 20 (2019) No.5

settling time when the signal steps up and steps down.

When the reference value steps up, there is a larger

settling time. This can be explained by the working

mechanism of a computer system. Take the curve

MaxClients in Figure 5 as an example, when it rises,

more memory will be allocated, and when it descends,

some memory will be reallocated. Because memory

allocation will cost more time than cleaning it, there is

more settling time when tracking the stepping up signal

than the stepping down signal.

6.2 Cost Analysis

Since rejuvenation techniques are closely related

with subject software, we compare the performance of

our approach against identical software.

Using stochastic model to analyze the reliability of

large-scale system is reported in [27]. The aging

phenomenon in Apache has been reported by Zhao et

al. [18] and Grottke et al. [22]. As aforementioned,

Apache employs several child processes to handle the

incoming requests. Zhao et al. [18] employs the

M/Er/1/K model to simulate its operating mechanism.

We try to repeat their simulation with a slight revision,

i.e., we simulate aging caused by memory leak as

reported by Grottke et al. [22], while Zhao et al. [18]

simulate aging signs by service rate degradation. The

parameters in our simulation are λ=300reqs/s,

μ=320reqs/s, r=2 and K=250. It should be pointed out

that K refers to the MaxClients of Apache. The

memory leak rate is reported by Abdelmalek et al. [21],

i.e., 8.377kB/hr. The steps for our simulation are

described as follows:

(1) When a memory leakage is detected, wait until

the amount of leakage rises to the amount occupied by

one child process of Apache (2MB in our case).

(2) Decrement MaxClients by 1 to mitigate the

memory leakage.

(3) Calculate the degraded capacity of Apache, and

compare it against the workload (300 reqs/s).

(4) When the degraded capacity is lower than 300

reqs/s, the queue of Apache will rise continuously.

(5) Calculate the rejected requests if the number of

requests in the queue is larger than 250.

Following the above steps, we found that

rejuvenation is triggered for the first time 238.8 hours

from the beginning of the simulation. Then we

continue the simulation with a new model, M/Er/1/249,

since MaxClients is decremented by 1. This process is

continuous until there is a rejected request. The results

are listed in Table 1.

From Table 1 we can see that the rejection rate for

the first to fifth rejuvenation is 0. This is due to the fact

that the capacity of Apache is always higher than the

workload. This shows that our approach incurs a lower

rejection rate than that in [18]. In addition, the first

time request rejection occurs is 1552 hours from the

begging of the simulation, which is enough time to

back up important data by the administrator.

Table 1. Parameters setting in simulation

Time Model Rejection rate

Simulation start
M/Er/1/250

λ=300reqs/s,μ=320reqs/s
0

First rejuvation

238.8 hours

M/Er/1/249

λ=300reqs/s,μ=320reqs/s
0

......

Sixth rejuvation

1552 hours since

simulation

M/Er/1/244

λ=300reqs/s,μ=320reqs/s
0.004

Moreover, note that the workload of 300reqs/s

employed in our simulation is very heavy, since the

capacity of our computer is 320reqs/s. In fact, the

workload fluctuates at times within a day. For example,

the workload of a web server usually is lower at night.

Our approach has the potential to eliminate memory

leakage in child processes of the web server without

any rejected requests. More specifically, we can kill

most of the child process (keeping a few to respond to

requests) by adjusting MaxClients to a very low value

and restarting them in a clean state.

To sum up, the advantages of our approach are

described as follows:

(1) Slightly adjusting the parameters of Apache can

mitigate the effect of software aging and will not affect

the performance of existing services or applications on

the same computer system;

(2) Our approach only affects the capacity of the

web server. This will not inevitably incur request loss

since real-world workload is lower than the capacity of

the web server at most times;

(3) Since there is sufficient time to incur request

rejection, our controller will have many chances to

proactively eliminate memory leakage when the real-

world workload is low.

7 Conclusion

Insufficient available system resources can be one of

the main causes of software aging. Previous

rejuvenation techniques typically incur some system

down time, which is not allowed in some safety-critical

systems. This paper proposes a lightweight

rejuvenation technique, which can delay system

resource exhaustion as a result of software aging. This

technique is implemented by adjusting the parameters

of the target software system. First, we conducted a

controlled experiment to explore the relationship

between software aging (in terms of resource usage)

and the related parameter settings. Second, a system

identification method is used to extract a control model

from the mass amounts of collected data. Finally, a PI

controller is designed through a pole assignment

method to track the resource threshold which is set by

the administrator. In addition, the fastness and

accuracy are evaluated by a simulation experiment.

A Feedback Control Approach for Preventing System Resource Exhaustion Caused by Software Aging 1521

This is the first paper explicitly describing the

fundamental steps for introducing control theory into

software aging. This includes the definition of

input/output, control model building, control design

and performance testing. This control is designed in

consideration of the little inertia of a software system.

In addition, our approach can be used to control other

target software systems.

In the future, we will incorporate more fine-grained

rejuvenation techniques such as differentiated service

in our approach. In addition, since our approach rejects

some requests from clients, we will evaluate the overall

performance and optimal rejuvenation policy in a

cluster system or virtualized system.

Acknowledgements

We are grateful to Matt Witheridge of the University

of Wollongong for his valuable comments on this

manuscript. This work was supported in part by the

Open Fund of Tianjin Key Lab for Advanced Signal

Processing (Grant No. 2017ASP-TJ04), the Natural

Science Foundation of Tianjin (Grant No.

19JCYBJC15900), and the Civil Aviation Security

Capacity Building Foundation of China (No.

20600605). Z.Q. Zhou acknowledges the support of an

Australian Research Council linkage grant (Project ID:

LP160101691).

References

[1] A. Vaidyanathan, K. S. Trivedi, A Comprehensive Model for

Software Rejuvenation, IEEE Transaction on Dependable

and Secure Computing, Vol. 2, No. 2, pp. 124-137, June,

2005.

[2] L. Kumar, A. Sureka, Feature Selection Techniques to

Counter Class Imbalance Problem for Aging Related Bug

Prediction, Proceedings of 11th Innovations in Software

Engineering Conference, Hyderabad, India, 2018, pp. 1-11.

[3] J. Alonso, R. Matias, E. Vicente, A. Maria, K. S. Trivedi, A

Comparative Experimental Study of Software Rejuvenation

Overhead, Performance Evaluation, Vol. 70, No. 3, pp. 231-

250, September, 2013.

[4] G. Ning, J. Zhao, Y. Lou, J. Alonso, R. Matias, K. S. Trivedi,

B.-B. Yin, K.-Y. Cai, Optimization of Two-Granularity

Software Rejuvenation Policy Based on the Markov

Regenerative Process, IEEE Transactions on Reliability, Vol.

66, No. 4, pp. 1630-1646, June, 2016.

[5] H. Meng, J. J. Liu, X. H. Hei, Modeling and Optimizing

Periodically Inspected Software Rejuvenation Policy Based

on Geometric Sequences, Reliability Engineering and System

Safety, Vol. 133, No. 133, pp. 184-191, September, 2015.

[6] F. Machida, J. W. Xiang, K. Tadano, Y. Maeno, Lifetime

Extension of Software Execution Subject to Aging, IEEE

Transactions on Reliability, Vol. 66, No. 1, pp. 123-134,

October, 2017.

[7] W. Xie, Y. G. Hong, K. S. Trivedi, Analysis of A Two-Level

Software Rejuvenation Policy, Reliability Engineering and

System Safety, Vol. 87, No. 1, pp. 13-22, June, 2005.

[8] K. Kourai, H. Ooba, Zero-copy Migration for Lightweight

Software Rejuvenation of Virtualized Systems, Proceedings

of the 6th Asia-Pacific Workshop on Systems, Tokyo, Japan,

2015, pp. 1-8.

[9] Y. Q. Yan, P. Guo, B. Chen, Z. G. Zheng, An Experimental

Case Study on the Relationship between Workload and

Resource Consumption in A Commercial Web Server,

Journal of Computational Science, Vol. 25, pp. 183-192, May,

2018.

[10] Y. F. Wang, X. R. Wang, M. Chen, X. Y. Zhu, PARTIC:

Power-Aware Response Time Control for Virtualized Web

Servers, IEEE Transactions on Parallel and Distributed

Systems, Vol. 22, No. 2, pp. 323-336, April, 2011.

[11] Y. Lu, A. Saxena, T. F. Abdelzaher, Differentiated Caching

Services: A Control-theoretical Approach, Proceedings of the

21st International Conference on Distributed Computing

System, Mesa, AZ, USA, 2011, pp. 615-622.

[12] R. Achar, P. S. Thilagam, Applications Nature Aware Virtual

Machine Provisioning in Cloud, International Journal of Ad

Hoc and Ubiquitous Computing, Vol. 27, No. 2, pp. 93-107,

January, 2018.

[13] G. B. H. Bindu, K. Ramani, C. S. Bindu, Energy Aware Multi

Objective Genetic Algorithm for Task Scheduling in Cloud

Computing, International Journal of Internet Protocol

Technology, Vol. 11, No. 4, pp. 242-249, September, 2018.

[14] H. Y. Cui, Y. Li, X. F. Liu, N. Ansari, Y. J. Liu, Cloud

Service Reliability Modelling and Optimal Task Scheduling,

IET Communications, Vol. 11, No. 2, pp. 161-167, January,

2017.

[15] Apache HTTP Server Version 2.0, http://httpd.apache.org/

docs/2.0/mod/mpm_common.html.

[16] S. Russo, The Dual Nature of Software Aging: Twenty Years

of Software Aging Research, IEEE International Symposium

on Software Reliability Engineering Workshops (ISSREW),

Naples, Italy, 2014, pp. 431-432.

[17] C. Peng, M. Liu, X.-P. Yuan, L.-X. Zhang, J.-F. Man, A New

Method for Abnormal Behavior Propagation in Networked

Software, Journal of Internet Technology, Vol. 19, No. 2, pp.

489-498, March, 2018.

[18] J. Zhao, K. S. Trivedi, M. Grottke, J. Alonso, Y. B. Wang,

Ensuring the Performance of Apache HTTP Server Affected

by Aging, IEEE Transaction on Dependable and Secure

Computing, Vol. 11, No. 2, pp. 130-141, September, 2013.

[19] K. Kourai, S. Chiba, Fast Software Rejuvenation of Virtual

Machine Monitors, IEEE Transactions on Dependable and

Secure Computing, Vol. 8, No. 6, pp. 839-851, May, 2011.

[20] P. Key, L. Massoulié, J. K. Shapiro, Service Differentiation

for Delay-sensitive Applications: An Optimisation-based

Approach, Performance Evaluation, Vol. 49, No. 1, pp. 471-

489, January, 2002.

[21] Y. Abdelmalek, A. Abdelal, T. Saadawi, Media-Aware

Caching Mechanism in DiffServ Networks, Proceedings of

the 6th IEEE Consumer Communications and Networking

1522 Journal of Internet Technology Volume 20 (2019) No.5

Conference, Las Vegas, Nevada, 2009, pp. 1-6.

[22] M. Grottke, L. Li, K. Vaidyanathan, K. S. Trivedi, Analysis

of Software Aging in a Web Server, IEEE Transaction on

Reliability, Vol. 55, No. 3, pp. 411-420, September, 2006.

[23] Y.-F. Jia, L. Zhao, K.-Y. Cai, A Nonlinear Approach to

Modeling of Software Aging, Proceedings of the 15th Asia-

Pacific Software Engineering Conference, Beijing, China,

2008, pp. 77-84.

[24] D. Mosberger, T. Jin, httperf: A Tool for Measuring Web

Server Performance, Proceedings of the First Workshop on

Internet Server Performance, Madison, Wisconsin, USA.,

1998, pp. 59-67.

[25] The Linux Kernel Documentation, https://www.kernel.org/

doc/html/latest/.

[26] K. J. Åstrom, B. Wittenmark, Computer Controlled System–

Theory and Design, Englewood, Cliffs, 1984.

[27] P. Zhu, Y. M. Guo, F. Lombardi, J. Han, Approximate

Reliability of Multi-state Two-terminal Networks by

Stochastic Analysis, IET Networks, Vol. 6, No. 5, pp. 116-

124, September, 2017.

Biographies

Yun-Fei Jia is currently an associate

professor at Civil Aviation University

of China. He received a B.E. (2001)

and a M.S. (2004) degrees from

HeBei University of Technology,

and completed a Ph.D. in software

testing at BeiHang University in

2010. His research interests include software testing

and software reliability modelling.

Zhi Quan Zhou received the B.S.c

degree in computer science from

Peking University, China, and the

Ph.D. degree in software engineering

from The University of Hong Kong.

He is currently an associate professor

at the University of Wollongong,

Australia. His current research interests include

software testing and analysis.

Ren-Biao Wu was born in Wuhan,

China, in 1966. He received a M.S.

(1991) from Northwestern

Polytechnical University and

completed Ph.D. in signal processing

at Xidian University. Currently, he is

a professor at Civil Aviation

University of China. His interests are signal processing

and image processing.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (Adobe RGB \0501998\051)
 /CalCMYKProfile (Japan Color 2001 Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHT <FEFF005b683964da300c9ad86a94002851fa8840002b89d27dda0029300d005d0020005b683964da300c8f3851fa0033003000300064002851fa88400029300d005d00204f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks true
 /AddPageInfo false
 /AddRegMarks false
 /BleedOffset [
 8.503940
 8.503940
 8.503940
 8.503940
]
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MarksOffset 9.354330
 /MarksWeight 0.141730
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed true
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

