
Mobile App Recommendation with Sequential App Usage Behavior Tracking 827

Mobile App Recommendation with

Sequential App Usage Behavior Tracking

Yongkeun Hwang, Donghyeon Lee, Kyomin Jung**

Department of Electrical and Computer Engineering, Seoul National University, Korea

{wangcho2k, donghyeon, kjung}@snu.ac.kr

*Corresponding Author: Kyomin Jung; E-mail: kjung@snu.ac.kr

DOI: 10.3966/160792642019052003016

Abstract

The recent evolution of mobile devices and services

have resulted in such plethora of mobile applications

(apps) that users have difficulty finding the ones they

wish to use in a given moment. We design an app

recommendation system which predicts the app to be

executed with high accuracy so that users are able to

access their next app conveniently and quickly. We

introduce the App-Usage Tracking Feature (ATF), a

simple but powerful feature for predicting next app

launches, which characterizes each app use from the

sequence of previously used apps. In addition, our

method can be implemented without compromising the

user privacy since it is solely trained on the target user’s

mobile usage data and it can be conveniently

implemented in the individual mobile device because of

its less computation-intensive behavior. We provide a

comprehensive empirical analysis of the performance and

characteristics of our proposed method on real-world

mobile usage data. We also demonstrate that our system

can accurately predict the next app launches and

outperforms the baseline methods such as the most

frequently used apps (MFU) and the most recently used

apps (MRU).

Keywords: Mobile App, Recommendation system,

Usage prediction, Feature extraction,

Distance learning

1 Introduction

Mobile devices such as smartphones and tablets

have become popular to the point of ubiquity in

everyday life. For example, mobile devices have

become the primary method to access Internet for more

than half of global mobile users [1]. Consequently, the

use of mobile applications (apps) is also growing

rapidly. In the United States, Android and iPhone users

spend about 30 hours per a month using apps, and they

used 26.8 apps a month on average recently [2].

One approach to mitigate the inconvenience is to

predict the next apps that are most likely to be used,

and to recommend them to users using some user

interfaces such as a widget. Users can easily select

what they want on the recommended app list, greatly

improving user experience. Furthermore, pre-fetching

predicted apps into the memory works as a viable

method to improve the user experience as well by

reducing delays in app launches. If the prediction can

be made accurately, the user can access the desired

apps more conveniently and quickly. Thus, the

accurate prediction of next apps becomes a critical

problem in recommending or pre-launching apps to

enhance the user experience.

Naive and intuitive methods for this prediction

problem are to recommend the most frequently used

apps (MFU) or the most recently used apps (MRU).

Generally, the MRU method is implemented in

practical mobile operating systems such as Android

and iOS. Although those methods give users some

convenience, they do not exploit prior app usage

patterns or other information such as sensor readings,

limiting their prediction accuracies.

There are a number of previous researches on more

sophisticated method to recommend the next app. The

common idea is to learn patterns of previous app usage

data and make a prediction by finding the appropriate

apps from the learned patterns that are most similar to

the given circumstance. Although most of them have

shown higher prediction accuracies than the MRU or

MFU method, there are a number of limitations such as

the lack of flexibility of the proposed models, a naive

feature construction. Some methods need to be trained

from all user’s data so the collection of user’s mobile

usage data on a centralized system should be available.

However, this can induce user privacy concerns from

the collective use of user’s mobile usage data [3], thus

these methods would be less favorable to the users.

In this paper, we propose a new method of mobile

app recommendation that aims to provide more precise

app usage prediction and not to induce a concern about

providing privacy sensitive usage information to the

centralized system. Our recommendation system

utilizes a variety of accessible information as features

by logging corresponding circumstances when an app

is used. In particular, we focus on the sequence of

previous app usage patterns, thus we introduce App-

828 Journal of Internet Technology Volume 20 (2019) No.3

Usage Tracking Feature (ATF), an intuitive and

efficient method to represent implicit sequence

information. After a feature extraction, those features

will be combined and expressed in the

multidimensional space to apply a k-Nearest Neighbor

(k-NN) algorithm, and we apply a metric learning on

the gathered data before the k-NN classification task to

ensure that the distance metric is effective among all

features. We aim that our method can be implemented

on each user’s mobile device easily and ensure that our

system does not need to collect or be trained from

other user’s data so that our system can be deployed

without user privacy concerns. In experiment, we

evaluate the performance of the proposed

recommendation system by conducting comprehensive

empirical experiments on real world mobile usage data

from 121 volunteers. We show that our method

outperforms the previous works including the baseline

methods such as MFU and MRU. We also present the

characteristics of our method on a variety of parameter

settings and feature combinations and app categories.

The remaining parts of our paper are organized as

follows. In Section 1.1, we briefly review the

literatures on mobile app usage prediction and app

recommendation. Then we define the problem formally

and give an overview of our method in Section 2. Our

methodology of feature construction and

recommendation algorithm are presented in Section 3

and 4, respectively. In section 5, we show a series of

experimental results and analyses on our method.

Finally, we draw a conclusion on Section 6.

1.1 Related Work

A number of studies have addressed the problem of

predicting the user’s app usage [4] as a mean of

improving user experience. The list of predicted apps

can be recommended to a user by creating their

shortcuts on user interfaces such as a launcher or a

widget. For example, Zhang et al. [5] and Keshet et al.

[6] developed an adaptive launcher which displays

predicted next app candidates, and Parate et al. [7]

created a widget that consisted of adaptive shortcuts of

predicted apps. These adaptive user interfaces allow

users to find desired apps easily. In addition, the

predicted app can be pre-loaded into the device’s

memory to reduce the time of app execution. Yan et al.

[8] showed that prefetching predicted apps effectively

reduced the overall app startup time and Parate et al. [7]

also applied the next app prediction to app prefetching,

in addition to the adaptive shortcuts. These works are

closely related with ours, as our method can also be

applied in these scenarios as well.

 The mobile context information represents

situations or activities of the user. It is crucial for

providing users with personalized services on mobile

[9-10] and it can also be used to collect characteristics

of app usage [11]. Thus, finding the effective mobile

context information for the app prediction is a key

question in this field. There are two types of the

context information; explicit and implicit information

[4]. Explicit information such as the time and the

geographical location is readily available on most

mobile devices, so it has been widely exploited from

the early studies [8, 12]. In following works, implicit

information which is obtained from user’s app usage

pattern, has been studied. Combined with explicit one,

implicit information enables the model to forecast the

user’s app usage more accurately. One example of the

implicit information is the history of app launches.

Bohmer et al. [13], Shin et al. [14], and Xiang et al. [15]

found that the last used app was effective on app

prediction. Similarly, several researchers including

Parate et al. [7], Kim and Mielikäinen [16], and Keshet

et al. [6] confirmed that the sequence of recent app

launches was also useful. These findings led

researchers to model the user’s behavior more

precisely by using the sequence of app use. For

instance, Liao et al. [17] used transitions between apps

to construct an implicit feature for modeling app use

pattern into a vector space. Baeza-Yates el al. [18]

suggested the app actions which describes the events

such as the change of sensor readings (e.g. location

updates recorded by GPS), in addition to the recent app

launches. Importance of implicit information shown in

these works motivated us to design ATF using history

of app usage.

The prediction model plays an important role to

accurately predict the user’s preference of the next app

as well. Several types of prediction model have been

suggested in previous works. For example, Kamisaka

et al. [19] and Shin et al. [14] adopted a Naïve Bayes

model with hand-crafted features from all available

mobile log data. Zhang et al. [5] constructed a

Bayesian Network with an assumption that each app

use depends on time, date, location, and the previous

app. Zhu et al. [10] suggested that two major types of

user preference models by assuming that each type of

context feature is conditionally independent or not.

Near neighbor (NN) methods such as k-NN are also

used in a number of previous works, including [17] and

[20]. There have been comparisons on performance

between models as well. Kim and Mielikäinen [16]

compared the conditional log-linear (CLL) model and

the k-NN based model on their experiments. Baeza-

Yates el al. [18] presented a comparative result

between several prediction methods including Tree

Augmented Naïve Bayes (TAN) and decision tree

based on C4.5 algorithm.

2 Setup and Process Overview

In this section, we present the setup and

characteristics of the mobile app recommendation

systems, and then describe a brief overview of our

recommendation process. The objective of an app

recommendation system is to predict a few specific

Mobile App Recommendation with Sequential App Usage Behavior Tracking 829

mobile apps that are most likely to be launched next.

The mobile app recommendation system records every

instance of app usage and corresponding context

information at that moment. Those aggregated data are

used as the training data in the learning phase, and the

system recommends a few apps that are most likely to

be launched from the learned patterns.

2.1 Setup

First, we define a terminology, the context

information, which represents the certain

circumstances data in which a mobile app is used.

Upon the execution of a mobile app, the app

recommendation system gathers all the accessible

information that represents the environment at that

moment. Explicit information like the time, location,

and battery status and implicit information on app

usage are such examples of the context information

and each item of context information can be

represented as a feature. We later introduce how to

obtain the features in detail.

We define a d-dimensional vector d
x∈� as a

feature vector that concatenates all context information

for a single instance of app usage. For example, if we

use time, location, and the headset usage as a binary

value as the context information, then the feature

vector is expressed as
Time Location HeadsetOn

[, ,],=x x x x

which concatenates each piece of context information.

Then the corresponding used app is expressed as its

app ID number y∈� , which will serve as a label of

the feature vector. Thus, each instance of app usage

(;)x y is treated as a data point (feature values) with a

label (app ID number) in a d-dimensional space.

The app recommendation system is provided with

such app usage data to learn the user’s app usage

pattern and then recommends a list of R∈� candidate

apps that are the most likely to be used next. If the user

launches an app in the recommended list, we say that

the recommendation is hit, and otherwise missed. The

goal of the app recommendation system is to increase

the hitting probability so that users can easily choose

the app that they want to execute at that time.

Now, we clarify the characteristics of our app

recommendation system. First, the recommendation

only targets installed and used apps since our app

recommendation system aims to provide suggestions

for users to easily launch the next app which they want

to use. This differs from the app recommendations

such as [21] and [22], which aims to recommend the

new apps to the users who might have never used

before. Second, we do not recommend previously

unused apps on the user’s mobile device since we aim

the prediction of the frequently and repeatedly used

apps. Third, to preserve user privacy, we design the

recommendation system to use either explicit or

implicit context information from the device itself only

and not to use information from other devices or

centralized system. We also note that the user-based

recommendation methods including the Collaborative

Filtering (CF) which utilizes collective user patterns,

are inadequate in our recommendation objective since

recommendation systems that collects user’s data can

pose serious user’s privacy concerns about using the

system [3]. Particularly, it is known that many mobile

users have concerns about collecting their privacy-

sensitive data in the mobile apps and sharing the data

with service providers [23]. Moreover, some users

even try to restrict the app to use their mobile context

information such as location [24]. To avoid such

misgivings on deployment of our method, we design

our recommendation system not to use the context

information from the other users with centralized

system. We note that the number of available trainable

personal data would be minimal as we limit the volume

of training data, thus it can induce lack of

generalization and local recommendation problem.

However, we suggest that this can be disregarded in

our environment as we aim the recommendation of

repeated app use as mentioned earlier. We show that

our proposed method can more accurately predict the

repeatedly used apps than compared methods in

Section 5.

2.2 Process Overview

Data cleaning. Prior to any recommendation process,

the app recommendation system removes unnecessary

app usages, as explained previous section. Examples of

unnecessary apps include (i) System Services; The

system service manages the core functions of devices

(e.g. cellular, Wi-Fi, hardware sensors). For example,

the package ‘com.android.nfc’ provides access to near

field communication (NFC) functionality of the device.

(ii) Launcher; The launcher app manages the default

home screen in Android smartphone. Many of real

Android users have installed customized launcher apps,

so the app recommendation system should pay

attention to such launcher apps. (iii) System Applets;

System applets such as the settings menu and Wi-Fi

connection manager are executed in the same way as

the user apps.

Feature extraction. The app recommendation system

uses context information to characterize app usage,

either explicit or implicit one. Each piece of context

information is extracted at every instance of app usage

and is considered as a feature. To comprise multiple

different context information about app usage, all

context information is concatenated to construct a

feature vector that lies in multi-dimensional space with

a label.

In addition to the explicit information like sensor

readings, we focus on the historical sequence of app

usage as implicit information. On the mobile device,

the user activity is recorded as a series of context data

in order of time. Thus, these contexts are found to be

sequential and dependent to the adjacent one in many

830 Journal of Internet Technology Volume 20 (2019) No.3

cases [9]. Similarly, the sequential behavior of app

usage can be easily observed since users often use

multiple apps to finish a specific task [8]. For example,

suppose that there exists an Instagram user who loves

taking and sharing photos. Then, we can easily infer

that they often take several pictures with the camera

app, then they open the Instagram app to share those

pictures. Moreover, since the user would take and

share pictures on a regular basis, the pattern of using

sets of mobile apps such as the camera and Instagram

would appear multiple times a day [16]. We introduce

an App-Usage Tracking Feature (ATF) in the feature

construction to represent such sequential trace of app

usage. The formal definition and detail of each feature

including ATF will be given in Section 3.

Learning. The main idea of our app recommendation

system is that if the constructed feature vectors are

similar, then their labels are probably the same. For

example, suppose the existence of a person who checks

his e-mail at his office every day at 10 o’clock. Then, it

is natural to recommend his e-mail app around that

time and location, so it should be reasonable to assume

that the same app is executed in similar circumstances.

We assess the similarity between two instances of

app usage by the 2
1 -norm distance. Therefore, distance

becomes the most critical measure in our app

recommendation scheme. However, since each feature

may have a different influence in app execution, the

distance measure can be ineffective in the raw feature

space. Thus, metric learning should be performed

before evaluating distances, in order that the distance

measure should reflect the importance of each feature

in such a way to scale each dimension properly.

To that end, we apply a Large Margin Nearest

Neighbor (LMNN) [25] algorithm to learn a global

linear transformation of multi-dimensional input space

in a supervised way. It can be viewed as learning a

Mahalanobis distance metric from the labeled

examples. LMNN algorithm places feature vectors

with the same label as close together as possible, and

with different labels as far apart as possible to create a

large margin between disparate labels.

Recommendation. We predict R apps, which are the

most likely to be used next and recommend them to the

user. As explained before, our main idea is that if the

constructed feature vectors are similar, then their labels

are probably the same. In other words, the current

context information often influences the execution of

apps.

Considering this idea, we use a k-Nearest Neighbor

(k-NN) classification on app prediction, which is

generally used for various classification and

recommendation tasks and also successfully used in a

number of previous works [16-17, 20]. We choose the

k-NN as our app prediction method with following

considerations: (i) k-NN does not requires assumptions

about the user’s app preference model and (ii) k-NN

requires minimal number of parameters such as k and

the number of features. Modification of them and

interpretation of their effects are also trivial. These

enables the personalization of our recommendation

system with ease. (iii) The computational cost of

learning process on k-NN is also minimal. Therefore,

the resulting recommendation system can be trained on

the mobile devices without central systems. We also

compared some other classifiers such as Naïve Bayes

and Decision Tree, but the k-NN showed the best

prediction accuracies on our pre-experiments. Thus, we

use the k-NN as a classification algorithm.

The recommendation is made by extracting features

from the current context information first and linear-

transforming the feature vector into the learned metric

to apply the k-NN algorithm. Since we make weighted

majority voting on classification, similarity as a weight

is also measured by the Mahalanobis distance between

feature vectors with the distance metric obtained from

the learning phase. We select R candidates with the

highest score on the recommendation.

We will explicate a detailed description of the

learning and recommendation algorithm on Section 4.

3 Feature Construction

Now we describe the types of context information

that are used in the feature construction process. Any

explicit information like sensor readings or

environmental variables can be the context information

with an influence on app execution. Additionally, we

introduce ATF to represent the implicit information of

app usage history in multi-dimensional data.

3.1 Explicit Information

We exploit explicit information in smartphones that

can be digitalized by a logger program. This can be

extracted either from the hardware sensors (e.g. GPS,

temperature) or the internal status of the mobile phone

(e.g. current time, Wi-Fi connection). Some examples

of explicit information used in our work are described

in Table 1.

Table 1. Descriptions on explicit user context

information selected as the main features

Feature Description e.g.

Time The hour of time on app launch 18

Location Latitude and longitude from GPS (50.6, 3.4)

Weekend The app is launched on weekend 1

AM The app is launched in the morning 0

BTHset A Bluetooth headset is connected 1

Headset A non-BT headset is connected 1

PlugOn The device is charging the battery 0

WIFI Wi-Fi connection is established 0

Battery The current battery level in decimal 57

In our system, each feature is normalized to a value

in [0, 1] and vectorized appropriately if necessary. For

example, the time feature has a scalar value in [0, 24).

Mobile App Recommendation with Sequential App Usage Behavior Tracking 831

Considering the periodicity of time, we embed it into a

circle in a 2-dimensional space to connect the time

before and after midnight as follows

time

[0.5 0.5 sin(2 (/ 24)),

0.5 0.5 cos(2 (/ 24))].

hour

hour

π

π

= +

+

x

 (1)

For every app usage, we concatenate these features

into a feature vector.

3.2 App-Usage Tracking Feature (ATF)

In this section, we introduce the App-Usage

Tracking Feature (ATF), which captures implicit

sequence patterns about previous app launches. As

described in Section 2.2, list of recently used apps are

useful for predicting the next app, since recently used

apps would be highly related to the current app. We

exploit such patterns in our prediction by capturing the

sequence information as a feature.

We construct ATF,
ATF

h
∈x � as an h-dimensional

feature vector, where h is the number of installed apps

on a user’s smartphone. We then calculate the feature

from the history of previous w∈� app launches,

where w is the size of the window which represents

how many previous apps are considered when updating

ATF. The i-th element of ATF
ATF,i

x

represents a

value assigned to Appi, which is calculated as

1

ATF,

1

,

w
j

i ij

j

r
−

−

=∑x I (2)

where
ij
I is defined by

1 if App is th recetly used app

0 otherwise.

i

ij

j −⎧
= ⎨
⎩

I (3)

Here, (0 1)r r< ≤ is the decay rate over time which

is assigned to each previous app launch. We consider

the decay rate since the older app launches may be less

significant than the newer ones.

The example of calculating ATF is illustrated in

Figure 1. Suppose that a user is now using Instagram

app and recently used Camera and Maps app. When

2w = , the ATF calculation algorithm checks up to the

2nd recently used apps, so the 3rd or older app

launches are not used to calculate the ATF. The

,ATF Camera
x for the latest launched app, Camera, is

calculated as 1 1
1 1r

−

⋅ = and the
,ATF Mapsx for Maps is

2 1
1 0.5r

−

⋅ = when 0.5.r = The other components of

ATF
x including

,ATF Instagram
x are 0.

By the definition of ATF, it stores what apps are

used within w previous app usages from the current

time. For an extreme example, if the two instances of

app usage sequences are the same, then both ATFs

capturing that sequence must be same by the equation.

Similarly, two ATF vectors are to be computed and

… Maps Camera Instagram

���� � … , ����,���	
� , ����,��
���
��, ����,���
, …

� … , 1,0,0.5, … �
 � 2, � � 0.5�

Currently using app

Figure 1. ATF example

embedded closely in the data space if both sequential

app usages are similar in general cases. Such

computation is in accord with our intention since the
2
l -norm distance measure should capture how similar

the app usage sequences are. Another important

characteristic of ATF is that ATF is efficient in term of

space complexity. Suppose that there are total h apps

on the user’s mobile phone. Then the total number of

possible app sequence patterns within w time window

is w

h , which is very large and practically intractable

for computation when 2.w ≥ The essential idea of our

ATF is that we project this high dimensional w

h

patterns into a low dimensional space (h dimension) by

computing the occurrence count of each app with the

decay rate. In addition, the calculation time of ATF is

also computationally cheap. The time complexity of

calculating the ATF is ()O w . In other words, it only

depends on size of the window and the calculation of

ATF can be easily done even on the mobile devices.

Note that ATF is treated as a feature like each

context information, so ATF is also concatenated into

the feature vector. Therefore, the feature vector is

constructed as
Time Location ATF

[, , ...,].=x x x x

4 Recommendation Algorithm

In this section, we present descriptions on

implementing the learning and recommendation phase

in our recommendation algorithm.

4.1 Learning

In the learning phase, we obtain and aggregate the

training data point (;)yx which represents a single

instance of app usage. The data point is calculated in

every execution of app. Then we perform the distance

metric learning to improve the accuracy of

recommendation.

Metric learning. Our raw features have various ranges

of values. For example, the value of Battery feature

varies from 1 to 100 whereas IsAM is a binary feature.

In addition, the significance of each feature differs for

each user; if a user rarely uses Wi-Fi connectivity, the

WIFI feature would have little meaning for prediction.

In this case, using the raw distance measure obtained

from the original feature data may not be effective [26].

Hence, we apply a distance metric learning which can

832 Journal of Internet Technology Volume 20 (2019) No.3

improve the prediction. In our system, we used well-

known Large Margin Near Neighbor (LMNN) [25]

method.

The LMNN maps training data onto a new metric

space where each training data point
i

x are placed

close to the target neighbors
j

x , which have the same

label as
i

x , whereas it is separated from the impostors

l
x that are differently labeled to

i
x . This intuition is

formulated as a loss function as follows:

 N pull N push N() (1) () (),µ µ∈ = − ∈ + ∈L L L (4)

 2

pull N N

,

() || () || ,
i j

i j

∈ = −∑L L x x (5)

push

2 2

, ,

()

(1)[1 || () || || () ||] ,

N

il N i j N i j

i j l

y
+

∈ =

− + − − −∑

L

L x x L x x
 (6)

where µ is a weighting parameter and
ii
y is 1 if and

only if
i l
y y= , or 0. The max(, 0)z z

+
= denotes the

standard hinge loss. In
N ,

(),pull i j∈ ΣL is a summation

over the label pairs (,)i j having the same label. In

N
(),pull∈ L the summation is over the label triples

(, ,)i j l so that differently labeled l data points could

be placed away.

To minimize the loss function, the squared distance

in the above term is substituted by a Mahalanobis

distance metric () ()T

i j i j
− −x x M x x where T

N N
,=M L L

then the loss function is minimized by a semidefinite

programming (SDP), thus we can compute the
N

L in a

polynomial time.

4.1 Recommendation

As stated earlier, our main idea on app

recommendation is that close data points would

probably have the same app label. Thus, we make a

recommendation by searching for the closest data

points from the training data by k-NN classification

[27].

We first compute the feature x based on the current

state of mobile device via the same process as learning.

Then, we find the k neighbors of x ,
i

x from the

training data, which are the closest data points to

current feature x . The distance between data points is

measured as the 2
1 -norm with the distance metric from

LMNN as:

2

N
dist(,) || (,) || .

i i
=x x L x x (7)

If the metric learning is omitted (naive learning), we

set
N
=L I , then it becomes the Euclidean distance

between the two raw feature vectors. After we find the

k nearest
i

x s, we assign the similarity between the x

and each
i

x as follows:

1

sim(,)
dist(,)

i

i
ε

=

+

x x

x x

 (8)

Note that ε (0 < ε < 1) is a small constant which is

added to the denominator to prevent division by zero.

We set ε as 0.1 in our implementation.

To predict the next app y , our algorithm first

computes the scores of each candidate app y as:

 score(,) sim(,) (,),
i i i

i k NN

y y yδ

∈ −

= ⋅∑x x x (9)

where (,)
i

y yδ is a Kronecker delta function, which is

1 if
i
y is equal to y , and 0 otherwise. Then we predict

y by selecting R apps that have the highest

sorce(,)yx . If the number of apps having nonzero

sorce(,)yx is less than R , we draw a prediction only

with apps having nonzero sorce(,)yx and we do not

make the further prediction.

5 Experiments

We evaluated the proposed method on a real world

dataset collected from mobile phone users. We

analyzed the various characteristics of our method,

including the effectiveness of each feature, and

compared the performance of our algorithm to other

state of the art methods.

5.1 Setup

Dataset. The dataset was obtained from the Android

mobile phones of 121 volunteers. To record each user’s

activities, we developed a special logger program and

we asked all volunteers to install the program and use

their mobile devices normally. The logger program

records each user’s app launches, sensor readings and

other activities. The datasets were recorded for 3

months and we asked the volunteers to submit their

recordings. After we collected all the data, we

converted it as MATLAB format and performed the

data cleaning process as described in Section 2. On the

collected dataset, there were 430,988 activities in total.

After the data cleaning process, we only used 77,698

records, 642 per user on average. The number of

unique apps on the dataset was 795 after we cleaned

the data and each user installed 40 apps on their mobile

device on average.

Method. For each user, we separated the dataset into

two parts by the time when each activity had been

recorded. First 80% of the dataset (older) for each user

was used as the training data, and the remaining 20%

of the dataset (newer) was used as the test data.

As we designed a personalized system, we computed

Mobile App Recommendation with Sequential App Usage Behavior Tracking 833

the number of neighbors, k for each user separately,

which is learned from the training data of that user

only. We performed the distance learning via LMNN

for each user separately as well. We conducted

experiments on a Windows PC and we implemented all

algorithms on this evaluation in MATLAB R2015b.

Metrics We measured two performance metrics to

evaluate the recommendation accuracy; The weighted

average of the recall and the DCG. Detailed

descriptions are given as follows:

‧ Recall. The recall value is the direct performance

metric of the recommendation accuracy in our test,

since users only execute one app on each test. We

followed the definition of recall stated in [28]. In

this case, recall for a single test can assume either

the value 0 (in the case of a miss) or 1 (in the case of

a hit). When we calculate the recall value for each

user u , we use the average value of all test cases on

user u : Re # /#
U u u

call hits tests=

‧ Discounted Cumulative Gain (DCG). DCG is

commonly used in information retrieval and also in

recommendation systems to evaluate the quality of

ranking generated by a prediction algorithm [17, 29-

30]. In DCG, the relevance of the recommended

item is either 0 or 1 in our case, since a user only

picks one app or none of the candidates. It is

discounted by the location at which the hit occurs,

thus the DCG of each test case is calculated as

2
log (1)DCG j= + if the recommendation is hit at j-

th app among the R recommendations, or 0

otherwise. Similar to the recall, we can calculate the

DCG value of each user u as the average of all test

cases: /#
u u

DCG DCG tests= Σ . If 1R = , the DCG

is the same as the recall value.

In each evaluation, the accuracy score is calculated

as the weighted average of the recall or the DCG score,

weighted by the number of each user’s test cases:

#

,
#

u u u

u u

tests Acc
Acc

tests

Σ ⋅
=

Σ
 (10)

where the Acc is either the Recall or the DCG .

‧ Compared methods. We compared our proposed

method using ATF and other features listed in Table

1 with a number of previous methods for an app

prediction:

‧ CLL. Conditional Log Linear (CLL) is a

discriminative model that represents a conditional

probability distribution of app candidates given

context information [16]:

exp{ (,)}

(| ,) ,
exp{ (,)}

T

T

y

y
P y

y

θ
θ

θ
′

=
′Σ

f z
z

f z
 (11)

where θ is a weight vector and (,)f z y is the binary

feature function which has its own target value and its

output represents whether the given context

information z meets the target.

‧KAP. Liao et al. [17] introduced Implicit Feature (IF)

on their k-NN based App Prediction (KAP) as a

representation of app transitions. IF is constructed

from app usage graph (AUG), which models the

probability distribution over app transitions given

previous app usage and transition interval among

apps. IF is combined with features computed from

other context information and used to k-NN

classification to predict the next app.

‧ Most Frequently Used (MFU). MFU method

counts every execution of each application and

suggests applications in decreasing order of usage

count.

‧ Most Recently Used (MRU). MRU method

suggests recently executed applications from the

most recent to the least recent ones. Both MFU and

MRU methods have been used as baselines for app

recommendation systems in previous studies.

5.2 Results

ATF parameters setting. We analyzed the impact of

varying ATF parameters on prediction accuracy. The

ATF has two parameters, the size of the window w

and decay rate r . We tested with {0.5, 0.6, ...,1}r∈

and {1, 2, ...,10}w∈ and 1R = . The results are shown

in Figure 2. The ATF with 2w = showed the best

recall for all r values. This suggests that considering 2

recently used apps on calculating the ATF is the most

effective. It is interesting that treating previous apps

with the same significance (1r =) was the most

effective when 2w = and considering more previously

used apps with higher decay rate r did not exhibit the

improvement of accuracy. Since (,) (2,1)w r = showed

the best results, we used these parameters for further

experiments.

Figure 2. Impact of w and r on ATF on 1R =

Impact of each feature. To analyze the effectiveness

of each feature, we tested our algorithm using all

possible combinations of explicit features listed in

Table 1, and ATF (about 1000 cases). Then we picked

the best performing feature combinations in recall. The

left four results in Table 2 are the highest 4 recall

values from all tested feature combinations.

834 Journal of Internet Technology Volume 20 (2019) No.3

Table 2. The highest 4 accuracy scores and their feature selections (left 4 columns) and the highest 2 results

without ATF (right 2 columns)

Features

1R =
ATF

Battery

ATF

BTHset

ATF

Location

Battery

ATF

Time

WIFI

Weekend

Location

AM

PlugOn

Recall 0.4726 0.4693 0.4663 0.4658 0.3147 0.3137

Features
5R =

Location

ATF
ATF

BTHset

ATF

Weekend

ATF

Location

Headset

WIFI

Location

AM

BTHset

Recall 0.7884 0.7880 0.7874 0.7870 0.6875 0.6848

DCG 0.6020 0.5996 0.5986 0.5985 0.4662 0.4702

Results in Table 2 shows that ATF is the most useful

feature to next app prediction. The ATF showed the

most and second highest recall accuracy for 1R = and

5R = without additional features. In this experiment,

ATF is shown to be powerful enough for the

recommendation on our dataset. Note that the

importance of each features or each combination of

features could be different on other mobile app usage

data.

Impact of distance metric learning. In Figure 3, We

present the impact of LMNN distance learning on

prediction accuracy using ATF. As shown in Figure 3,

the LMNN consistently improves the performance. The

recall is improved from 0.472 to 0.462 for 1R = and

0.772 to 0.788 for 5R = . The DCG accuracy is also

improved from from 0.602 to 0.605 for 5R = . Note

that we limited the maximum number of iterations on

optimization process of LMNN to 50, which is much

smaller than the default setting of 1,000. Although the

LMNN objective may remain suboptimal in this case,

we found that the gain of accuracy is almost the same.

We suggest that the practical implementation of

distance learning on mobile device would be possible

by limiting the maximum number of iterations.

(a) and DCG (b) accuracy using ATF

Figure 3. Impact of LMNN metric learning on recall

Comparison with other algorithms. In this section,

we present the comparative results between the various

recommendation algorithms stated earlier. We tested

our algorithm using ATF only (A1) since the ATF,

which is calculated from sequence of previously used

apps, was the most effective single feature for

recommendation on our dataset as shown as the results

in Table II. In the same way, the features on most and

second-most recently used apps (
1 2 7 8
, , ,f f f f) are used

in CLL and IF is used in KAP. For comparison with

A1, we also tested our method without ATF (using

non-ATF context information only) noted as A2. The

k-NN recommendation algorithm with LMNN distance

learning described in Section IV is applied to A1, A2,

and KAP methods.

The results of accuracy scores with respect to the

values of R and boxplots of accuracy scores over all

users at 3R = are listed in Figure 4. A1 showed the

highest accuracy in every R recommendations, yielded

recall accuracy of 0.472 at 1R = , 0.788 in recall and

0.599 in DCG at 5R = . On the other hand, CLL

showed comparable accuracy with A1. Its performance

was consistently inferior compared to our algorithm

though. (recall=0.358 at 1,R = recall=0.692,

DCG=0.531 at 5R =) For KAP with IF, it exhibited a

lower accuracy than both A1 and CLL (recall=0.316 at

1R = , recall=0.583, DCG=0.432 at 5R =). The A2

showed a bit lower accuracy compared to CLL

(recall=0.314 at 1R = , recall=0.687, DCG=0.466 at

5R =); however, it outperformed the baseline methods

(MFU, MRU).

Figure 4. Accuracy scores of compared methods (top)

and boxplots of user accuracy scores at 3R = (bottom)

The comparative experiment showed that our

proposed algorithm with ATF outperforms both CLL

and KAP which use information of previously used

Mobile App Recommendation with Sequential App Usage Behavior Tracking 835

apps. In addition, our method also presented highest

median and first and third quartiles of accuracy scores

over all tested users as shown as boxplots of accuracy

scores. This suggests that the proposed system with

ATF consistently provides superior recommendation

for all users compared to other methods.

Comparing with KAP, it is also worth noting that

our proposed method uses the same k-NN classification,

however our method with ATF (A1) outperformed the

KAP with IF. This shows that the ATF is more suitable

feature for k-NN than IF to achieve higher performance.

The ATF is also more efficient than IF on feature

calculation time since the ATF calculation algorithm

does not iteratively calculate feature vectors as IF

algorithm.

Performance analysis by App categories. We divided

the average recommendation accuracy results of 3

compared algorithms (A1, CLL and KAP) on 1R = by

app categories. We aggregated the recommendation

results of all user’s test sessions first then we selected

apps which have at least 50 launches per each app.

Then we grouped each apps into 5 categories: (i)

Entertainment; The entertainment apps are including

game apps, music/video players, apps for watching

web comics, camera, and photo-editing apps, etc. (ii)

Informative; The informative apps are such as web

browsers, weather and map apps and apps for online

shopping, etc. (iii) Messengers; Text messengers

including mobile messenger apps and short message

service (SMS) apps. (iv) Productivity; The productivity

apps are including e-mail clients, apps for mobile

office, etc. (v) Social Networks; Apps for an access to

social network services (SNS). The recommendation

accuracy for each category is calculated as:

c

c

c

hit
acc

test
= , where

c
hit and

c
test are the number of

hits and app launches corresponding to each app

category. Table 3 summarizes the results. Note that

Table 3 (d) is the distribution of app categories by total

number of app launches.

The accuracy scores vary with app categories. For

all algorithms, messenger and informative apps have

1st and 2nd highest recommendation accuracy,

whereas accuracy of entertainment apps never exceeds

0.3. Increment of accuracy using A1 over other

methods also varies with app categories. For example,

the recall score of A1 on informative and messenger

apps received the highest gain, which are the types of

apps have the 2nd and 1st highest number of

executions, respectively.

These results show that the ATF effectively

predicted more frequently used type of apps such as

messengers and informative apps. This behavior meets

with our intention in overall system and ATF feature

setup. Results from all 3 algorithms also suggest that it

is effective to utilize the information about previously

used app to predict frequently and repeatedly used apps

Table 3. Recommendation accuracies of compared

algorithms by app categories (1R =)

(a) A1

Categories accc

Entertainment

Informative

Messengers

Productivity

Social Networks

0.279

0.665

0.814

0.414

0.360

(b) CLL

Categories %

Entertainment

Informative

Messengers

Productivity

Social Networks

0.240

0.465

0.632

0.314

0.315

(c) KAP

Categories accc

Entertainment

Informative

Messengers

Productivity

Social Networks

0.166

0.451

0.567

0.316

0.289

(d) Distribution of app

categories

Categories %

Entertainment

Informative

Messengers

Productivity

Social Networks

 9.2

24.7

38.2

16.6

11.3

since all of them showed better performance on more

frequently used type of apps.

6 Conclusion

In this paper, we proposed a mobile app

recommendation system that predicts the next app to

be used. We designed a novel feature, ATF, to

incorporate the individual user’s app usage behavior

into the recommendation with a variety of context

features, so that the user’s behavior can be predicted

more precisely. Based on these features, we adopt k-

NN classification and LMNN metric learning to predict

the next app accurately. We aimed to collect and learn

only the target user’s mobile data to ensure that the

user privacy would not be compromised by our

recommendation system. Our analysis on real world

mobile data demonstrated that ATF has decent

explanatory power on mobile app usage behavior and

validated that our proposed method outperforms the

other approaches, including the baseline methods such

as MFU and MRU. We conducted further experiments

to study the impact of various parameter settings and

the behavior of recommendation methods among app

categories.

The future work would be dealing with the situation

when the training data has accumulated over a long

time such as several months. As user behavior on app

usage changes over time, the old learning data points

would be less meaningful on the recommendations,

thus we may need to consider the time when the

training data is computed in the recommendation phase.

The cold-start problem also need to be addressed in the

future as our current method cannot provide

recommendation when the training data has not been

accumulated.

836 Journal of Internet Technology Volume 20 (2019) No.3

Acknowledgements

K. Jung is with Automation and System Research

Institute (ASRI), Seoul National University. This work

was supported by the National Research Foundation of

Korea (NRF) grant funded by the Korea government

(*MSIT) (No. 2016R1A2B2009759). This work was

also supported by the Brain Korea 21 Plus Project from

2016 to 2018. We thank the anonymous reviewers for

their thoughtful and constructive comments

References

[1] Supermonitoring, State of Mobile 2013 (info-graphic),

http://www.supermonitoring.com/blog/state-of-mobile-2013-

infographic, 2013 [Online; accessed 16-Jul-2018].

[2] Nielsen, Smartphone: So Many Apps, So Much Time,

http://www.nielsen.com/us/en/insights/news/2014/smartphon

es-so-many-apps--so-much-time.html, 2014 [Online; accessed

16-Jul-2018]

[3] B. Zhang, N. Wang, H. Jin, Privacy Concerns in Online

Recommender Systems: Influences of Control and User Data

Input, Symposium on Usable Privacy and Security (SOUPS),

Menlo Park, United States, 2014, pp. 159-173.

[4] H. Cao, M. Lin, Mining Smartphone Data for App Usage

Prediction and Recommendations: A Survey, Pervasive and

Mobile Computing, Vol. 37, pp. 1-22, January, 2017.

[5] C. Zhang, X. Ding, G. Chen, K. Huang, X. Ma, B. Yan,

Nihao: A Predictive Smartphone Application Launcher,

International Conference on Mobile Computing, Applications

and Services (MobiCASE), Seattle, WA, 2012, pp. 294-313.

[6] J. Keshet, A. Kariv, A. Dagan, D. Volk, J. Simhon, Context-

Based Prediction of App Usage, arXiv:1512.07851,

December, 2015.

[7] A. Parate, M. Böhmer, D. Chu, D. Ganesan, B. M. Marlin,

Practical Prediction and Prefetch for Faster access to

Applications on Mobile Phones, ACM International Joint

Conference on Pervasive and Ubiquitous Computing

(UbiComp), Zurich, Switzerland, 2013, pp. 275-284.

[8] T. X. Yan, D. Chu, D. Ganesan, A. Kansal, J. Liu, Fast App

Launching for Mobile Devices Using Predictive User Context.

ACM International Conference on Mobile Systems,

Applications, and Services (MobiSys), Low Wood Bay, UK,

2012, pp. 113-126.

[9] B.Huai, E. Chen, H. Zhu, H. Xiong, T. Bao, Q. Liu, J. Tian,

Toward Personalized Context Recognition for Mobile Users:

A Semisupervised Bayesian HMM Approach, ACM

Transactions on Knowledge Discovery from Data, Vol. 9, No.

2, pp. 10:1--10:29, November, 2014.

[10] H. Zhu, E. Chen, H. Xiong, K. Yu, H. Cao, J. Tian, Mining

Mobile User Preferences for Personalized Context-Aware

Recommendation, ACM Transactions on Intelligent Systems

and Technology, Vol. 5, No. 4, pp. 58: 1-58: 27, January,

2015.

[11] S. Liu, X. Meng, Context-Aware Mobile Proactive

Recommendation, Journal of Internet Technology, Vol. 16,

No. 4, pp. 685-693, July, 2015.

[12] H. Verkasalo, Contextual Patterns in Mobile Service Usage,

Personal and Ubiquitous Computing, Vol. 13, No. 5, pp. 331-

342, June, 2009.

[13] M. Bohmer, B. Hecht, J. Schoning, A. Kruger, G. Bauer,

Falling Asleep with Angry Birds, Facebook and Kindle: A

Large Scale Study on Mobile Application Usage,

International Conference on Human- Computer Interaction

with Mobile Devices and Services (MobileHCI), Stockholm,

Sweden, 2011, pp. 47-56.

[14] C. Shin, J. Hong, A. K. Dey, Understanding and Prediction of

Mobile Application Usage for Smart Phones, ACM

International Joint Conference on Pervasive and Ubiquitous

Computing (UbiComp), Pittsburgh, PA, 2012, pp. 173-182.

[15] C. Xiang, D. Liu, S. Li, X. Zhu, Y. Li, J. Ren, L. Liang,

HiNextApp: A Context-Aware and Adaptive Framework for

App Prediction in Mobile Systems. IEEE Trustcom/BigDataSE/

ICESS, Sydney, Australia, 2017, pp. 776-783.

[16] J. Kim, T. Mielikinen, Conditional Log-linear Models for

Mobile Application Usage Prediction, European Conference

on Machine Learning and Principles and Practice of

Knowledge Discovery (ECML PKDD), Nancy, France, 2014,

pp. 672-687.

[17] Z. X. Liao, S. C. Li, W. C. Peng, P. S. Yu, T. C. Liu, On the

Feature Discovery for App Usage Prediction in Smartphones,

IEEE International Conference on Data Mining (ICDM),

Dallas, United States, 2013, pp. 1127-1132, 2013.

[18] R. Baeza-Yates, D. Jiang, F. Silvestri, B. Harrison, Predicting

The Next App that You Are Going to Use, ACM International

Conference on Web Search and Data Mining (WSDM),

Shanghai, China, 2015, pp. 285-294.

[19] D. Kamisaka, S. Muramatsu, H. Yokoyama, T. Iwamoto,

Operation Prediction for Context-aware User Interfaces of

Mobile Phones, The Annual International Symposium on

Applications and the Internet (SAINT), Seattle, WA, 2009, pp.

16-22.

[20] Y. Xu, M. Lin, H. Lu, G. Cardone, N. Lane, Z. Chen, A.

Campbell, T. Choudhury, Preference, Context and

Communities: A Multi-faceted Approach to Predicting

Smartphone App Usage Patterns, International Semantic Web

Conference (ISWC), Sydney, Australia, 2013, pp. 69-76.

[21] P. Yin, P. Luo, W. C. Lee, M. Wang, App Recommendation:

A Contest between Satisfaction and Temptation, ACM

International Conference on Web Search and Data Mining

(WSDM), New York, NY, 2013, pp. 395-404.

[22] H. Zhu, H. Xiong, Y. Ge, E. Chen, Mobile App

Recommendations with Security and Privacy Awareness,

ACM SIGKDD International Conference on Knowledge

Discovery and Data Mining (KDD), New York, NY, 2014, pp.

951-960.

[23] I. Shklovski, S. D. Mainwaring, H. H. Skúladóttir, H.

Borgthorsson, Leakiness and Creepiness in App Space:

Perceptions of Privacy and Mobile App Use, ACM

Conference on Human Factors in Computing Systems (CHI),

Toronto, Canada, 2014, pp. 2347-2356.

[24] H. Almuhimedi, F. Schaub, N. Sadeh, I. Adjerid, A. Acquisti,

Mobile App Recommendation with Sequential App Usage Behavior Tracking 837

J. Gluck, L. Cranor, Yuvraj Agarwal, Your Location Has

been Shared 5,398 Times! A Field Study on Mobile App

Privacy Nudging, ACM Conference on Human Factors in

Computing Systems (CHI), Seoul, Korea, 2015, pp. 787-796.

[25] K. Q. Weinberger, L. K. Saul, Distance Metric Learning for

Large Margin Nearest Neighbor Classification, Journal of

Machine Learning Research, Vol. 10, pp. 207-244, February,

2009.

[26] N. Shental, T. Hertz, D. Weinshall, M. Pavel, Adjustment

Learning and Relevant Component Analysis, European

Conference on Computer Vision (ECCV), Antibes, France,

2002, pp. 776-792.

[27] T. Cover, P. Hart, Nearest Neighbor Pattern Classification,

IEEE Transactions on Information Theory, Vol. 13, No. 1, pp.

21-27, January, 1967.

[28] P. Cremonesi, Y. Koren, R. Turrin, Performance of

Recommender Algorithms on Top-n Recommendation Tasks,

ACM Conference on Recommender Systems (RecSys),

Barcelona, Spain, 2010, pp. 39-46.

[29] K. Jarvelin, J. Kekalainen, Cumulated Gain-based Evaluation

of IR Techniques, ACM Transactions on Information Systems,

Vol. 20, No. 4, pp. 422-446, October, 2002.

[30] B. Liu, Y. Wu, N. Z. Gong, J. Wu, H. Xiong, M. Ester,

Structural Analysis of User Choices for Mobile App

Recommendation, arXiv:1605.07980, May, 2016.

Biographies

Yongkeun Hwang is a Ph.D.

candidate in the ECE Dept. at Seoul

National University. He received

Bachelor of Science in Electronic

Information Systems Engineering

from Hanyang University in February

2014. His research interests are in the

field of recommendation systems, and natural language

processing.

Donghyeon Lee is a Ph.D. candidate

in the ECE Dept. at Seoul National

University. He received Bachelor of

Science in Electrical and Electronic

Engineering from Yonsei University

in February 2012. His research

interests are in the field of computer

vision, and crowdsourcing.

Kyomin Jung is an associate

professor in the ECE Dept. at Seoul

National University. He received his

PhD at MIT in 2009, and BSc at

Seoul National Univ. in 2003

respectively. His main research areas

include machine learning and natural

language processing.

838 Journal of Internet Technology Volume 20 (2019) No.3

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (Japan Color 2001 Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJDFFile false
 /CreateJobTicket true
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHT <FEFF005B683964DA300C005000440046002800310032003000300064007000690029300D005D0020>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
 <<
 /AddBleedMarks true
 /AddColorBars false
 /AddCropMarks true
 /AddPageInfo true
 /AddRegMarks false
 /BleedOffset [
 8.503940
 8.503940
 8.503940
 8.503940
]
 /ConvertColors /NoConversion
 /DestinationProfileName (sRGB IEC61966-2.1)
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /ClipComplexRegions true
 /ConvertStrokesToOutlines false
 /ConvertTextToOutlines false
 /GradientResolution 400
 /LineArtTextResolution 1200
 /PresetName <FEFF005B9AD889E367905EA6005D>
 /PresetSelector /HighResolution
 /RasterVectorBalance 1
 >>
 /FormElements true
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MarksOffset 0
 /MarksWeight 0.283460
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PageMarksFile /JapaneseWithCircle
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [1200 1200]
 /PageSize [612.000 792.000]
>> setpagedevice

