
Limited-length Suffix-array-based Method for Variable-length Motif Discovery in Time Series 1841

Limited-length Suffix-array-based Method for

Variable-length Motif Discovery in Time Series

Le Sun1, Jinyuan He2, Jiangang Ma2, Hai Dong3, Yanchun Zhang2*

1 School of Computer and Software, Nanjing University of Information Science and Technology, China
2 Institute for Sustainable Industries and Livable Cities, Victoria University, Australia

3 School of Science, RMIT University, Australia

sunle2009@gmail.com, jinyuan.he@live.vu.edu.au, Jiangang.Ma@vu.edu.au, hai.dong@rmit.edu.au,

Yanchun.Zhang@vu.edu.au

*Corresponding Author: Le Sun; E-mail: sunle2009@gmail.com

DOI: 10.3966/160792642018111906020

Abstract

In this paper, we explore two key problems in time

series motif discovery: releasing the constraints of trivial

matching between subsequences with different lengths

and improving the time and space efficiency. The purpose

of avoiding trivial matching is to avoid too much

repetition between subsequences in calculating their

similarities. We describe a limited-length enhanced suffix

array based framework (LiSAM) to resolve the two

problems. Experimental results on Electrocardiogram

signals indicate the accuracy of LiSAM on finding motifs

with different lengths.

Keywords: Time series, Motif discovery, Enhanced

suffix array, ECG

1 Introduction

Motifs of a time series are the frequently-occurred
and approximately similar subsequences that can
summarize the features of the time series [1]. Motifs
have been applied in a variety of areas of time series
processing, such as the anomaly detection in moving
objects trajectories [2-3], the semantic analysis for the
surgical sensor data streams [4], repeating pattern
mining in audio streams [5-6], and human activity
discovery [7-8]. Especially, it has been applied to the
medical signals [9], like Electrocardiography (ECG)
[10] and biological signals [11-13] for normal
condition recognition and disease detection.

Discovering motifs for time series is an important
and tough task. It has been proved that the subsequence
clustering is meaningless in unsupervised data stream
mining area, and the motif grouping in the discrete data
stream mining has been applied as a replacement of the
subsequence-clustering in the real-time series [14]. In
this paper, we focus on two primary issues in the time
series motif discovery: reducing the computational
complexity and avoiding unexpected repetitions among

different motifs and among instances of one motif. In
an unsupervised context with little knowledge about
the time series, it might be intractable to find all the
motifs with different lengths by using exact and brute-
force methods. There has been a series of work
focusing on improving the time efficiency. One
significant improvement is the method proposed by
Minnen et al. [15], which has sub-quadratic time
complexity in the time series length.

The subsequence trivial matching [16] and the
overlapping among different motifs [1] are two types
of motif repetition issues in the literature. To avoid
trivial matching, some methods assumed that the
instances of a motif do not overlap with each other at
all [15]. We believe that, however, a more flexible and
user-manageable mechanism is necessary to control the
numbers and styles of the discovered patterns.

Enhancing the time and space complexity, and at the
same time, guaranteeing an expected accuracy is
always one of the top topics in data processing. Some
motif discovery researchers used approximate solutions
to get an acceptable computational complexity [17]. In
this work, we propose an unsupervised Limited-length
suffix array based Motif Discovery algorithm (LiSAM)
for continuous time series, which is time and space
efficient, and supports approximately discovering
motifs in different lengths. We first convert the
continuous time series to the discrete time series by
using the Symbolic Aggregate approXimation
procedure (SAX) [18], and then identify the different-
length motifs based on the discrete time series. Our
illustration of discrete motif discovery is on the basis
of an exact substring matching procedure, however, we
can easily embed the existing approximate substring
matching methods, such as [19] and [20], in LiSAM.
That is, we use the exact subsequence grouping of
discrete time series to discover the approximate
patterns of continuous time series. The distinctive
contribution of LiSAM is as below:

(1) LiSAM can discover motifs in different lengths

1842 Journal of Internet Technology Volume 19 (2018) No.6

(e.g., maxLength to minLength provided by users),
avoid the unexpected trivial-matching by allowing
user-defined overlapping degree (represented as α)
between the instances of motifs, and support
discovering motifs that overlap with each other in a
specified degree (β). It can either be an automatic or
semi-automatic algorithm by either manually setting all
the parameters or by using default parameters (e.g., set
maxLength = 0.5 * |T| (T is a time series), minLength =
2, α = 0 and β = 0).

(2) LiSAM is both space and time efficient. It has
linear space complexity O(N). We use a limited-length
enhanced suffix array with linear space consumption to
improve the space efficiency. In addition, in an
extreme case that S has maximum LCP intervals,
O(LiSAM) = O(N+n), while in the case an interval has
maximum child intervals, O(LiSAM) = O(N+n2), where
N is the length of the raw time series T, and n is the
length of the discrete time series S. If N>>n, the
performance can be improved dramatically.

(3) We conduct extensive experiments based on both
synthetic time series datasets to evaluate the
performance of LiSAM. Experimental results show the
high accuracy of LiSAM and its applicability in the
pattern recognition of data streams such as ECG.

2 Background Knowledge

We briefly introduce the frequently used symbols
(Table 1) and the basic concept of the enhanced suffix
array in this section. Readers can refer to [21] for more
details.

Table 1. Symboles and definitions

Concepts Definitions

T a continuous time series

Σ a finite ordered alphabet

Σ* strings over Σ

Σ+ Σ* without null

S
a discrete time series over Σ with

length |S| = n

~ ~∈Σ, ~ >σ, ∀ σ∈Σ

S[i, j] substring of S between positions i and j

suftab[suf] suffix array table of S

presuf [pre]
the suffix index of the previous position

of the current suffix in suftab

nextsuf [next]
the suffix index of the next position of

the current suffix in suftab

Ssuftab[i] the ith suffix of S, i∈[0, n]

lcptab[i]
Longest common prefix (LCP) of

Ssuf[i-1] and Ssuf[i]

bwttab[i]

(bwt)

S[suftab[i]-1], if suf[i] > 0;

null, if suf [i]=0

lℓ-interval

lℓ-[i, j]

an LCP interval from index i to index j

With length ℓ

l-[l, l] singleton interval (SI): Ssuf[l]

NSI non singleton interval

mℓ-[i, j] m-interval: instances of lℓ interval

A suffix array of S is an integer array (suftab) having
values k∈[0, n]. An enhanced suffix array (ESA) is a
suffix array with a number of additional supporting
arrays, where two of them (lcptab and bwttab) will be
used in this paper. We use an example of Sexamp =
aceaceacece to describe the ESA that is shown in
Table 2. The suftab keeps the starting positions of
suffixes of S in ascending lexicographic order. The
definition of lcptab is in Table 2. From Table 2,
lcptab[0] = 0 and lcptab[n] = 0. To group the suffixes
that have the longest common prefixes, the concept of
LCP interval is proposed. We describe the definition of
an LCP interval in Definition 1.

Table 2. An enhanced suffix array

index suf lcptab bwt Ssuf[i]

0 0 0 null aceaceacece~

1 3 6 e aceacece~

2 6 3 e acece~

3 1 0 a ceaceacece~

4 4 5 a ceacece~

5 7 2 a cece~

6 9 2 e ce~

7 2 0 c eaceacece~

8 5 4 c eacece~

9 8 0 c cece~

10 10 0 c e~

11 11 0 e ~

Definition 1. Given S and its enhanced suffix array, an
interval [i, j] of index (e.g., see Table 2), where i, j∈[0,
n] and i < j, is an LCP interval with LCP length ℓ if the
following conditions are satisfied: (1) lcptab[i] < ℓ; (2)
lcptab[k] ≥ ℓ, ∀ k ∈ [i+1, j]; (3) lcptab[k] = ℓ, if
∃k∈[i+1, j]; (4) lcptab[j+1] < ℓ. The LCP interval [i, j]
with LCP length ℓ can be represented as lℓ-[i, j].

An LCP interval tree indicates the embedding and
enclosing relations between LCP intervals. We
describe an example of LCP tree of Sexamp in Figure .
We can see that the root of the LCP tree covers all the
suffixes of Sexamp. The child intervals are the intervals
embedded in their father intervals. The leaf intervals do
not enclose any NSI. A fast traversing procedure for
LCP trees is defined in [22]. Note that in this paper we
use lℓ to represent an l-interval with LCP length ℓ,
while use mℓ to represent a motif interval (Def. 6})
with LCP length ℓ. In addition, we refer the normal
LCP intervals to non-singleton intervals (NSIs).

Figure 1. LCP tree of Sexamp

Limited-length Suffix-array-based Method for Variable-length Motif Discovery in Time Series 1843

3 Problem Formulation

A continuous time series T is a sequence of real
values that have temporal properties. To identify the
motifs of a time series, previous work has given
different forms of motif definitions [23]. We
summarize these definitions and present a
comprehensive motif concept in Definition 2.
Definition 2. A motif M of a time series T is a set of
similar subsequences SQ = sq0, ..., sqn-1 such that n ≥2,

and ∀ i, j ∈ [0, n-1], the length of |sqi| ≥2, |sqi ∩ sqj| ≤o,

and Dis (sqi, sqj) ≤d, where o is an overlapping
threshold to constraint the overlapping length between
two subsequences of M, Dis is a distance measure, and
d ≥0 is a small value to guarantee a certain similarity
among subsequences. We call a subsequence of M as
an instance of this motif.
Definition 3. Given two l-intervals lℓ-[i1, j1] and lℓ-[i2,
j2], sk1 (k1∈[i1, j1]) is an instance of lℓ1, sk2 (k2∈[i2, j2])
is an instance of lℓ2, sz1 = |j1-i1+1|: (1) instance sk1 is α-
covered by sk2 if ℓ1 < ℓ2, sk1 overlaps with sk2 at sub-
string s″ where s″ ⊆ sk2 and s″ ⊆ sk1, and s″ > α, sk1 ≥

α ≥ (1/2)* |sk1|. Or else, sk1 is α-uncovered by sk2; (2)

interval lℓ1 is β-covered by lℓ2, if h instances of lℓ1 are
covered by the instances of lℓ2, where sz1–β < h ≤ sz1,
and h is a pre-defined threshold. Or else, lℓ1 is β-

uncovered (or uncovered) by lℓ2.
A pattern of S is defined in Definition 4.

Definition 4. Given an alphabet set Σ and an
approximate time series S∈Σ*, a pattern of S is a time
series pt that 1 ≤ |pt| << |S|, pt ⊆ S, and occurs k (k ≥ 2)

times in S at positions {p1, ..., pk}, p1 ≠ ... ≠ pk, where a
position is the start point of an occurrence of pt in S.

In the above definition, we define that a pattern
should occur at least twice in a time series. From the
definition of l-interval, an lℓ-interval is composed of at
least two suffixes that have the LCP of length ℓ.
Therefore, an l-interval can be seen as a pattern of S,
and the LCPs of the l-interval correspond to the
occurrences of the pattern. However, the requirement
on the minimum occurrence times of a pattern varies in
different situations. For example, in a very long S (e.g.,
≥10 thousands), the element that repeats a small
number of times (e.g., <10 times) is meaningless for
the time series analysis. Therefore, we define a general
concept of an approximate motif of discrete time series
in Definition 5.
Definition 5. Assume u = S [a, b] (a ≤ b) is an instance
of an l-interval lℓ-[i, j] of S. Given a lower bound minT

(minT ≥ 2) of the pattern occurrences, if ɛ = j-i+1 ≥

minT, and lℓ is uncovered by any other l-intervals of S,
it is an approximate motif of S, represented as mf = (ℓ;

P = p1, …, p
ɛ

}), where ℓ = b - a + l (l ≥ 1) is the length

of mf, pi is the start index of the occurrences of u in S,

and ɛ is the size of the motif mf.

In the following description, a motif of S refers to an
approximate motif. The relation between an l-interval

and a motif of S is defined as an m-interval.
Definition 6. For an l-interval lℓ-[i1, j1] of S, if the
instances of lℓ is one-to-one matched to the occurrences
of a motif mf = (ℓ; {suftab[i], …, suftab[j]})$, then lℓ is
an m-interval, represented as mℓ-[i, j].

Based on Definition 6, motifs and m-intervals have
the following relation.
Lemma 1. A motif of S corresponds to and only
corresponds to one m-interval of S.

Proof. Given a motif mfu = (ℓ; Pu = {p1,…, p
ɛ

}) of S,

as ɛ ≥ 2, then the subsequence u occurs at least twice

in S. Based on the definition of LCP intervals and

suffix array, the suffixes sf={S[p1, ~],..., S[p
ɛ

, ~]} are

in one LCP interval lℓ-[i, j], where p1,..., pɛ
∈[i, j], ℓ=|u|

and ~ represents the end of S. Assume (1) ∃k, k∈[i, j]
that s1 = S[suftab[k], suftab[k+ℓ-1]] = u, but s1 is not an
occurrence of mfu, i.e., k ∉Pu, which is contrast to the

given condition that mfu is a motif of S, because a motif
needs to contain all the subsequences fitting one
pattern. Assume (2) ∃ px ∈ Pu but px ∉ [i, j], and

∃ py ∈ Pu and py ∈ [i, j], then (s1 = S[suftab[px],
suftab[px+ℓ-1]]) = u = (s2 = S[suftab[py], suftab[py+ℓ-
1]]), that is, s1 and s2 are similar LCP and need to be in
one LCP interval (suppose in lℓ' - [i', j']). As lℓ and lℓ'
have one LCP u, they are the same l-interval, which is
contrast to assumption (2). Lemma 1 is proved.

In the following sections, we refer an m-interval to a
motif.

4 Limited-length Suffix-Array-Based Motif

Discovery

The Limited-length Suffix-Array-Based Motif
Discovery (LiSAM) Framework identifies motifs of S
by determining the α-covering and β-covering degrees
between instances of one l-interval and between
different l-intervals, which is based on a bottom-up
traversing process of identifying LCP intervals of the
enhanced suffix array. The LiSAM is composed of two
main algorithms: (1) βUncover (Alg. 1) determines
whether or not an LCP interval is β-covered by other
LCP intervals given a constraint minT on the β-
covering degree of a motif. From definition, the
determination of β-covering is based on the α-covering
degree. To identify the α-covering relations between
instances, part (2) αUncovered (Alg. 4) is described,
which determines the nontrivial matching instances of
an LCP interval given a constraint on the α-covering
degree between motifs. If an l-interval is β-uncovered,
the instances of this interval form a motif.

4.1 Identify β-uncovered l-intervals for Discrete

Time Series

In ESA, identifying LCP intervals is a bottom-up
traversing process. When an LCP interval is being
processed, its child intervals have been identified, so

1844 Journal of Internet Technology Volume 19 (2018) No.6

the child intervals can support the determination of β-
covering of the LCP interval. We distinguish the case
of an LCP interval having a single character (the
singleChar interval) with the case that the interval is
comprised of more than one character (the multiChar
interval). We give Lemma 2 to identify the β-
uncovered multiChar intervals.
Lemma 2. Given a multiChar LCP interval lℓ-[i, j], its
child intervals Θ, and the lower bound of the
occurrence times of motifs minT ≥ 2, let λ = j − i + 1, lℓ

is β-uncovered by other l-intervals if any of the
following conditions is satisfied:

(1) |Θ| = 0, λ = minT and bwttab[i, j] are pair-wise
different, i.e., bwttab[i] ≠ ... ≠ bwttab[j];

(2) |Θ| = 0, and ∃σ1 ≠ ... ≠ σγ, σ1, ..., γ ∈ bwttab[i...j],
minT + 1 ≤ γ ≤ λ;

(3) |Θ| > 0, ∃ lℓ1 - [w1, z1], lℓ1 ∈ Θ and λθ = z1 − w1 +1
≥ minT, and ∃ r1...rk ∈ [w1, z1] and h1...hk ∈ [i, j] but ∉

[w1, z1] that bwttab[r1] ≠ bwttab[h1], ..., bwttab[rk] ≠
bwttab[hk], k ≥ minT.

(4) |Θ| > 1, ∃ mℓ1 - [w1, z1], ..., mℓk - [wk, zk] ∈ Θ, k ≥
minT, and mℓ1, ..., mℓk are β-uncovered.

Proof:

(1) |Θ| = 0, so the characters after the LCP
subsequences of lℓ are pair-wise different, i.e.,
S[suftab[i]+ ℓ] ≠ S[suftab[j] + ℓ]. Meanwhile, λ = minT

and bwttab[i] ≠ ... ≠ bwttab[j]. Therefore, the instances
of lℓ are not covered by any longer repeated sequences
in S. Hence, lℓ is β-uncovered.

(2) if γ > minT, then at least minT + 1 characters in
bwttab[i, j] are different (assume bwttab[k1] ≠
bwttab[k2]); and as Θ = 0, the k1 th and k2 th LCP
subsequences are not covered by any longer
subsequences of its child intervals. So lℓ is β-uncovered.

(3) assume lℓ have one child interval cθ, where λθ ≥
minT, i ≤ wθ ≤ zθ ≤ j and λ > minT. (a) Assume λ − λθ =
0, then lℓ = cθ, cθ is not a child interval of lℓ.
Assumption (a) is not true. (b) Assume λ − λθ < minT,
then there are λ − minT instances of lℓ covered by the
instances of cθ, so interval lℓ is covered by interval cθ,
and lℓ is not a motif. Assumption (b) is not true. (c) as λ

− λθ ≥ minT, then there are at least minT instances of lℓ

that are not covered by the instances of cθ. In addition,
∃σ1 ≠ ... ≠ σγ, σ1,...,γ ∈ bwttab[i...j], minT < γ ≤ λ, based
on the proof of (3), lℓ is β-uncovered.

(4) if k = minT, as mℓ1, ..., mℓk are k motifs, the
subsequences in all of the minT intervals are pairwise
different, so the interval lℓ, where ℓ < ℓ1, ..., ℓ minT,
cannot be covered by any of {mℓ1 (as ∀ |mℓt| ≥ minT, t
∈ [1, k], t ≠1), ..., mℓminT }, that is, the interval lℓ cannot
be individually covered by any of its k child motifs. So
lℓ is β-uncovered.

For singleChar intervals, the problem of determining
their motif property is to avoid finding a shorter
singleChar motif covered by a longer singleChar motif.
Lemma 3 shows how to determine if a singleChar
interval is β-uncovered.
Lemma 3. Given a singleChar interval lℓ - [i, j] that its

LCP subsequence, i.e., S[suftab[i], suftab[i] + ℓ − 1], is
only comprised of one character (assume σ),

(1) if lℓ does not have child intervals, i.e., |Θ| = 0 and
∃σ1 ≠ ... ≠ σγ, σ1,...,γ ∈ bwttab[i...j], minT + 1 ≤ γ ≤ λ,
then lℓ is β-uncovered;

(2) if |Θ| > 0 and θ - [w, z] ∈ Θ, that ∃σ1 ≠ ... ≠ σγ ≠
σ and σ1,...,γ ∈ bwttab[w...z], where γ > 0, and ∃σ’1 ≠ …
σ’λ ≠ σ and σ’1,…, λ ∈ bwttab[w’...z’], where z’ − w’ + 1
≥ 2, λ > 0, [w’...z’]∈[i...j] and [w’...z’] is β-uncovered
by [w...z];

Proof:

(1) As lℓ does not have child intervals, lℓ cannot be
covered by an interval comprising LCP subsequences
of u’ = S[suftab[k1], ..., suftab[k1] + ℓ’ − 1], where k1 ∈
[i, j], ℓ’ > ℓ. In addition, as ∃ σ1 ≠ ... ≠ σγ, σ1,...,γ ∈
bwttab[i...j], minT + 1 ≤ γ ≤ λ, lℓ cannot be covered by
an interval comprising LCP subsequences of u″ =
S[suftab[k2] − 1, ..., suftab[k2] − 1 + ℓ″ − 1], where k2 ∈
[i, j], ℓ″ > ℓ. So lℓ is a β-uncovered.

(2) Assume u = S[suftab[i] ... suftab[j] + θ − 1] is the
prefix of lℓ, and u’ = S[suftab[w] ... suftab[w] + θ − 1]
is the prefix of lθ, and assume ∃σ1 ∈ bwttab[w...z] and
∃σ2 ∈ bwttab[w’, z’] that σ1 ≠ σ and σ2 ≠ σ, then (1)
any child interval lθ cannot cover lℓ, since z’ − w’ + 1 ≥
2; (2) we prove that under condition 2 in Lemma 3, if lℓ

is a singleChar interval with LCPs like u = x1, …, xℓ,
then not ∃ lθ (the strings of its singleChar LCP u’ =
x1, …, xθ, (θ > ℓ)) that cover lℓ. Assume such a lθ exists,
then the strings of the LCP of lθ include all the stings
whose prefixes with length θ are u’, i.e., ∃k (= z − w +
1) subsequences u ∈ S, and there must be η (= k * (θ –
1)) bwttabs that bwttab[r1] = ... = bwttab[rη] = σ, η = z’

– w’ + 1 and k + η = j − i + 1; which means there must
not exist σ’1,...,λ ≠ σ, λ > 0 in bwttab[w’, z’]. This is
contradicting with condition 2 of Lemma 3, so the
second statement (2) is correct. Combining statements
(1) and (2), the singleChar interval lℓ is β-uncovered
given condition 2 of Lemma 3.

Based on Lemma 2 and 3, we design the procedure
of determining an LCP interval being β-uncovered in
Algorithm 1. The procedure sinChar() (line 3)
determines whether lℓ is a singleChar interval: if it is
singleChar, return the character, otherwise, return null.
The singleChar status of l-intervals can be determined
in the construction process of the suffix array.
countUniqChar() (line 4, Alg.2) calculates the number
of different characters in bwttab[i, j]. If lℓ does not have
children (cd); it is a singleChar interval; and it has at
least mt different characters (uc) other than the sc

character, then lℓ is a motif (lines 7-8 in Alg.1, point 1
in Lemma 3). If lℓ is a multiChar interval (sc == null)
with more than mt unique characters, it is a motif (lines
7-8, point 2 in Lemma 2). For a multiChar interval, if it
at least has mt children that are motif intervals
(lℓ.mcd.sz), then it is a motif (lines 10-12, point 4 in
Lemma2). For each interval, we can use an integer
variable to keep the number of motifs of its children,
and this integer value can be determined during the

Limited-length Suffix-array-based Method for Variable-length Motif Discovery in Time Series 1845

suffix array building process. Lines 13-18 are based on
point 3 in Lemma 2, where cu represents the current
child interval; fcd is the first child interval; nt and la

are respectively the next and last child intervals of cu;
and lb and rb are the left and right boundaries of an l-
interval. The procedure difCharPair() (Line 14, Alg.3)
compares a child interval (cu) of lℓ with the other part
of lℓ (l’), where l’ includes the intervals not covered by
any child intervals of lℓ, and also the other child
intervals apart from cu. If there are at least two pair of
different character pairs in bwttab[i, j], that is,
∃ i1,i2,i3,i4 ∈ [i, j] that bwttab[i1] ≠ bwttab[i2] and
bwttab[i3] ≠ bwttab[i4], then cp ← true.

Algorithm 1. Identify β-uncovered l-intervals

1: procedure βUNCOVERED(lℓ - [i,j], mi, ma, bwt,
mt)

2: sz ← j − i + 1
3: sc ← sinChar(lℓ)
4: uc ← countUniqChar(lℓ, singleChar)
5: if sz == mt & bwt[i,j] are pair-wise different then

6: return true
7: else if lℓ.cd == nul & (sc ≠ nul & uc ≥ mt||uc >

mt) then
8: return true
8: else
10: if lℓ.mcd.sz ≥ mt & sc == null then
11: return true
12: end if
13: for all cu ∈ lℓ.cd do
14: cp ← cu.difCharPair(cu, l)
15: if cp || cu == fcd & I < lℓ.fcd.lb & cp ||

lℓ.cu.rb + 1 < lℓ.nt.lb & cp || cu == la &
lℓ.la.rb + 1 < lℓ.rb & cp then

16: return true
17: end if
18: end for
19: end if
20: return false
21:end procedure

Algorithm 2 calculates the number of different

characters in an l-interval given that the interval is
singleChar or multiChar (based on the value of sc). In
line 2, if l does not have children, traverse the index tab
(e.g., i in Table 3) of LCP table from w to z, and count
the index if bwttab[x] is different with the other
characters in bwttab[i, j] and different with the sc
character (see the procedure addCnt(c,cx) in lines 24-
29). The addCnt() indicates that if l is a multiChar
interval (sc = null and c ≠ sc), or if it is a singleChar
interval (without considering the indexes with bwttab[x]
= sc, i.e., c ≠ sc), and the current character has not
happened in l’ (!l .has(c)), then count once and record
the character in l’. Lines 7-20 count the pair-wise
different characters in each child of l and in the indexes
uncovered by any of its child, where la is the child
interval of l’ before cu; nt is the child interval after cu;

and lb and rb are left and right bounds of an interval.
Lines 15 checks which character is in the current child
interval cu. If cu is not a singleChar interval or the
character sc is not counted (c ≠ sc, in line 15), and the
character c occurs in cu but not in l’, then this character
c is counted (line 16), and is marked as happened in the
interval l’ (line 17).

Algorithm 2. Count the number of different
characters in an l-interval

1:procedure COUNTUNIQCHAR(l’ - [w, z], sc)
2: if lℓ’.children == null then
3: for all x ∈ [w,z] do
4: addCnt(bwt[x],x)
5: end for

6: else

7: for all cu ∈ lℓ’.cd do

8: for all c ∈ bwttab[la.rb + 1... lℓ’.rb] do

9: addCnt(c,cx)
10: end for

11: for all c ∈ bwttab[cu.rb + 1...nt.lb − 1] do

12: addCnt(c,cx)
13: end for

14: for all c ∈ Sigma do

15: if c ≠ sc & ! lℓ’.has(c) & cu.has(c) then

16: lℓ’.cnt + +

17: lℓ’.has(bwt[cx]) = true

18: end if

19: end for

20: end for

21: end if

22: return cnt

23:end procedure

24:procedure ADDCNT(c,cx)
25: if c ≠ sc & ! lℓ’.has(c) then

26: lℓ’.cnt + +

27: lℓ’.has(bwt[cx]) = true

28: end if

29:end procedure

Table 3. Pre and nextsuf

i pre next suf sel.

0 -1 0 3 aceace

1 6 3 4 aceace

2 7 6 5 ace∼

3 0 1 6 ceacea

4 1 4 7 ceace∼

5 2 7 8 ce∼

6 3 2 1 eaceac

7 4 5 2 eace∼

8 5 8 9 e∼

9 8 9 10 ∼

Algorithm 3 calculates the different character pairs

between one child interval and the other part of lℓ. The
inputs are two intervals (child intervals or lℓ’s sub-
intervals that are not covered by any child intervals of

1846 Journal of Internet Technology Volume 19 (2018) No.6

lℓ). lℓ is a motif if at least mt different character pairs
(cd) are identified (line 8, point 4 in Lemma2);
otherwise, count the next pair of characters in lℓ1 and lℓ2.
In addition, if the current interval l` is a singleChar
interval (sc ≠ nul), and its two child intervals lℓ1 and lℓ2

both have at least 1 character that is different with the
sc character, then lℓ is a motif (line 15-16, point 2 in
Lemma3).

Algorithm 3. Count different character pairs between
two intervals

1:procedure DIFCHARPAIR(lℓ1, lℓ2)
2: cd = 0
3: for all c1 ∈ Sigma do
4: for all c2 ∈ Sigma & lℓ1.has(c1) & c ≠ sc do
5: if c2 ≠ sc & lℓ2.has(c2) & c1 ≠ c2 then
6: cd + +
7: end if

8: if cd ≥ mt then

9: return true

10: else

11: break the inner for-loop

12: end if

13: end for

14: end for

15: if sc ≠ nul & countUniqChar(lℓ1, sc) > 0 &
countUniqChar(lℓ2, sc) > 0 then

16: return true

17: end if

18: return false

19:end procedure

4.2 Identify α-uncovered Instances for

Discrete Time Series

In section 3, we defined the concept of α-covering
between instances of one interval. For example, in a
time series s = aceaceace, if we expect a motif of
length 6, we may get a motif with two instances:

where instance2 3-covers instance1. To control the α-
covering degree, we introduce two tabs: presuf and
nextsuf that respectively record the indexes of the
previous suffix and the next suffix for the current
suffix. An example of the two tabs is shown in Table 3.

The values of pre and next can be determined during
the process of building suffix arrays, so it does not take
extra time. The pre of the 0th suffix is −1 and the next

of the last suffix is length(s).
Algorithm 4 shows how to identify the α-uncovered

instances of an m-motif. In Algorithm 4, ∩ represents

the overlapping part of two suffixes; s[r..] represents
the suffix starting from position r. If the index of the
suffix (ntS) after the current suffix (suf) is in interval

[a,b], and the overlapping length between suffix
s[suftab[p]..] and suffix s[suftab[ntS[p]]..] is less than
the threshold value α, then the position suf[p] is
recorded as a start position of an αuncovered instance
(lines 10-11). If the overlapping length between suffix
s[suf[p]..] and suffix s[suf[ntS[p]]..] is over α, then
continue checking the suffix after ntS[p], until the
checking step is over the maD (lines 8 to 15). As the
LCP length of the current interval is ℓ, if an instance is
maD far from the current instance, it is impossible that
the two instances can α-cover each other. For each
suffix, Algorithm 4 checks its α-covering instances by
only iterating the suffixes from start positions
afterwards. We temporally create an array (’visited’ in
lines 5, 6, 9) for the m-interval to record the visited
status of each instance.

Algorithm 4. Identify αUncovered l-intervals

1:procedure αUNCOVERED(ϵ, mℓ - [a, b])
2: maD = ℓ − α + 1
3: for all p ∈ [a,b] do
4: if mℓ.visited then
5: P.add(p)
6: mℓ.visited = true
7: end if
8: while q ≤ maD do

9: if ntS[p] ∈ [a,b] & |s[suf[p]..] ∩

s[suf[ntS[p]]..]| < α then
10: P.add(p)
11: mℓ[p].visited = true

12: else if |s[suf[p]..] ∩ s[suf[ntS[p]]..]| ≥ α then

13: mℓ[p].visited = true
14: end if
15: end while
16: end for
17: return P
18:end procedure

Algorithm 4 identifies α-uncovered instances given

that the input interval is β-uncovered in terms of α = 1.
We can also interactively perform the algorithms
βUncover and αUncover to determine the β-uncovered
motifs in terms of different values of α by using the tab
pre: in the process of βUncover, for each instance of an
l-interval, we check both its pre- (i.e. suffixes with
prior starting positions) and afterwards-suffixes
simultaneously by using the chain-procedure of
Algorithm 4 (for pre-suffixes, next can be simply
replaced by pre). Specifically, we check each line in [i,
j] when bwttab[i…j] is traversed in line 5 of Alg. 1, and
determine whether this instance is overlapping with its
previous instances pre. Remove it if it is overlapped
with pre. In addition, in Alg. 2, we can check each
position in [i, j] in lines 3, 8 and 11, and remove this
position if it is overlapped with its previous instance.
At last, only the instances that are not overlapping with
each other are used to decide if the current l-interval is

Limited-length Suffix-array-based Method for Variable-length Motif Discovery in Time Series 1847

βUncovered.

5 Performance Evaluation and Complexity

Analysis

In this section, we present the experimental results
to show the efficiency of LiSAM. We insert patterns to
random time series generated by gaussian white noise,
and quantitatively measure the algorithm performance
on the simulated data sets, in terms of the overlapping
degree between the planted pattern and the discovered
pattern of a time series (represented as old). In addition,
time and space complexities of the proposed algorithm
are analyzed. Our experiments are conducted on a
windows 64-bit system with 3.2GHz CPU and 4 GB
RAM, and is implemented by Java.

5.1 Accuracy and Inner Quality of Motifs

We extract patterns from six different ECG data
streams [24], repeat each pattern 30 times and insert
the repeated patterns to Gaussian white noise data
streams separately. The information of the extracted
patterns and the parameter settings is shown in the top
part of Table 4. The first three datasets are from the
UCR Time Series Classification Archive [24], and the
other three are from the Physionet [25]. Particularly,
the nL is the length of a piece of noise subsequence
between two pieces of a pattern. We use the fixed-
length intervals (i.e., length of noise subsequences)
between two pattern subsequences to make the
annotation of the pattern instances easy. Column sL

sets the parameters of the SAX-based symbol
conversion, representing the length of a subsequence
that corresponds to a symbol. Columns maxM set the
upper bounds of the lengths of the discovered patterns.
The lower bounds of the lengths of the discovered
patterns for all datasets are set as 10.

Table 4. Dataset settings & old and InDis performance

Datasets nL sL maxM old inDis

ECG200 50 2 100 0.9892 0.0076

ECGfivedays 50 2 140 0.9924 0.0076

ECGtorse 100 10 1640 0.9947 0.0068

ECGtwa01 150 3 300 0.9933 0.0086

ECGsvdb800 150 2 170 0.9939 0.0112

ECGmitdb100 150 2 150 0.9966 0.006

LTDB14134 - 2 150 - -

SVDB800 - 2 150 - -

AHADB0001 - 2 120 - -

CARTI01 - 2 100 - -

We use old to measure the accuracy of the

discovered motifs, which represents the overlapping
degree between the inserted pattern (pi) and the

discovered pattern (dj):

(,)

()

i j
i joverlap p d

old
length plantedPattern

=

∑ ∑
 (1.1)

The old values for each of the simulated ECG time
series are shown in Table 4. We can see that the
proposed motif discovery algorithm can identify the
inserted patterns with very high accuracy (all over 0.9).
We compare the shapes of the planted patterns and the
discovered motifs in each of the six time series in
Figure 2. In addition, we use the average pair-wise
distances among instances (represented as inDis) of a
motif to measure the dissimilarity degree of the
instances of one discovered motif (e.g., motif m),
which is calculated as:

, (,)

()
. * .

i j
i jdis m m

inDis m
m len m size

=

∑
 (1.2)

where mi and mj represent the ith and jth instances of m;
and m.len is the length of this motif; m.size is the
number of its instances, and dis is the Euclidean
distance function. The average inDis value of each
time series is shown in Table 4, and the distance
distribution of each instance pair of the most frequent
motif for each dataset is shown in Figure 3. We can see
that the instances of one motif for each datasets are
very close to each other, all of which have less than 0.1
average instance dis-similarities.

5.2 Pattern Discovery on Real Datasets

We use the proposed SAMOF algorithm to identify
the most frequent patterns in four real ECG datasets:
the MITBIH Long Term Database (LTDB), the
Supraventricular Arrhythmia Database (SVDB), the
American Heart Association Database (AHADB), and
the St. Petersburg INCART Arrhythmia Database
(CART) 0. Their information is listed in the bottom
part of Table 4. For each dataset, we conduct pattern
recognition in the first 30,000 samples (1:30000). We
discover the most frequent motifs for each datasets,
and present the motifs in Figure 4.

5.3 Time Complexity Analysis

The LiSAM mainly contains three steps: (1) discrete
the time series based on SAX; (2) establish suffix array
for the discrete time series and traverse the suffix array
to find the LCP intervals; (3) determine the β-
uncovered l-intervals.

If the length of a time series is N, the first step of
time series discretion takes ON time. After discretion,
if there are n symbols, the maximum time taken to
build and traverse the suffix array (step 2) is n + n = 2n.
The main part of Step 3 is the process of Algorithm 1.

1848 Journal of Internet Technology Volume 19 (2018) No.6

Figure 2. Planted patterns and discovered motifs

Figure 3. Distance distribution of instance pairs of the most frequent motif for six datasets

Figure 4. Discovered most frequent motifs of four real datasets

Limited-length Suffix-array-based Method for Variable-length Motif Discovery in Time Series 1849

For an LCP interval lℓ − [i, j], the hasSingleChar

function can be implemented during the suffix array
construction process (line 3 in Alg.1). countUniqChar()
function (line 7 in Alg.1, and Alg.2) takes maximum
time z × r, where sz = |w − z| is the size of a child
interval of lℓ, and r is the number of symbols in Σ. The
three ’for-loop’s in lines 6-8 in Alg.2 are actually a
traverse of the index tab in [w, z]. As r is a constant
normally less than 10, the O(Alg.2)) = O(sz). The time
complexity of function compInterv() depends on the
interval size sz and the complexity of countUniqChar(),
so it is O(sz). Then the worst time complexity of
LiSAM is: O(LiSAM) = O(N + m0 × sz0 + m1 × sz1

+ ··· + mK × szK).
We may intuitively believe that the worst time

complexity of LiSAM is O(N+n3). However, the values
of K, m, and sz are interrelated with each other to
influence the O(LiSAM). Lemma 4 gives their relations.
We always exclude singleton intervals SI whenever we
mention the l-intervals and their child intervals.
Lemma 4. Given a discrete time series S with length n,
and an LCP tree LT of S.

(1) S has maximum n − 1 l-intervals, i.e., max(K) =
n − 1, each LCP interval has at most 2 child non-
singleton intervals (abbr. NSI), i.e., m ≤ 2, and the
max(sz) = n − 1.

(2) S has minimum 1 l-interval (i.e., the root interval
l[0…n-1]) that has 0 child NSI. Other than this case,
the number of l-intervals of an LCP tree is a decreasing
function of the child number of each LCP interval.
That is, K = f(1/ck), where ck is the child number of the
kth interval.

(3) given an lℓ - [i, j], the number of its child
intervals m is a decreasing function for the sizes of its
child intervals: m = f(1/sz).

Proof: We describe the problem of counting the
LCP intervals as a problem of picking up elements
from a set (see Figure 5). There are n sequential
elements in S. Each time we remove any two adjacent
elements (e.g., ei, ei+1 in Sn) from S and combine these
two elements as one new elements (ei..i+1), and put this
new elements back to S. For example, Sn−1 in Figure 5
represents the S after the first time combination, and
the number of elements in Sn−1 is n − 1. We continue
this process until there is only one element in S1: e1..n.
In this process, we need to conduct the combination
n−1 times in total. And each time we can combine both
SIs and NSIs. We can see that each combination forms
a new NSI, and this NSI has at most two NSI children.
For the gth combination, there are n−g elements in the
set Sn−g, g = 1,..., n−1. A child interval l`0-[w,z] of any
l-intervals in LT has size n − 1 when it is after the (n −
2)th combination: lℓ’ - [1, n − 1], which is the
maximum size of a child interval.

We then prove that n − 1 is the maximum number of
NSI in LT. If we remove k (k > 2) elements from
Sn−1, ..., Sn−w, where w ≥ 1 and 1, ..., w are not
necessarily adjacent, and we remove 2 elements from

Figure 5. Number of LCP intervals

Sn−v, ∀ v ∈ [1, n − 1], and v ≠ 1, ..., w, then after w

times combinations, it remains n − w × k elements in
Sn−(w), and requires n − w × k − 1 times combination. So
the overall combination times is t = n−1− k(w − 1), as k

> 2 and w > 1, so t < n − 1 = max(K).
We call the behavior of combining more than one

elements at one time as multi-combination (statement
1). This proof also indicates that as long as multi-
combination happens (once or more than once and at
any positions), the total number of LCP intervals will
be decreased. Hence, the number of LCP interval is a
decreasing function of the child number of each
interval (statement 2).

Statement 3 is definite. When [i, j] is fixed, as the
child intervals of lℓ cannot be overlap with each other,
the increase of m will result in the decrease of z.

Based on Lemma 4, it is impossible that O(LiSAM)

reaches O(N + n3). We consider two extreme cases:

‧ Assume S has maximum number of LCP intervals

n−1, the root interval ln−1 has sz0 = n − 1, and each
interval (ln−1,··· ,l1) has max(m) = 2, then the time
complexity of LiSAM is O(LiSAM) = O(N + (n − 1)
× 2 + ··· + 2 × 2) = O(N + n);

‧ Assume C is a child interval of an l-interval in LT,

has sz = n − 2, and has m = floor((n-1)/2) NSI
children, then C is the only child of the root interval
[0, n−1], K = 2 + m, and each child of C has sz = 2
and has 0 children, then the time complexity is O(N

+ 1 × m × (n − 1) + m × 2) = O(N + n2).
If S is highly compressed compared with T (i.e.,

N n�), the time complexity of LiSAM can be

improved dramatically.

6 Conclusion and Future Work

In this paper, we proposed an algorithm LiSAM to
resolve two important problems in discovering
approximate time series motif: releasing the constraints
of trivial matching between sub-sequences with
different lengths and improving the time and space
efficiency. We proposed two covering relations: α-
covering between instances of l-intervals and β-
covering between l-intervals to support the motif
discovery. Experimental results showed the high
accuracy of LiSAM on finding different-length motifs.
In this paper, we focused on the exact discrete
subsequence matching to identify clusters of sub-
sequences with different lengths. In the future, we are

1850 Journal of Internet Technology Volume 19 (2018) No.6

going to explore the exact motif discovery based on the
approximate motif grouping to further improve the
motif identification accuracy and computational
efficiency.

Acknowledgements

This paper is supported by the National Natural
Science Foundation of China (Grants No 61702274)
and the Natural Science Foundation of Jiangsu
Province (Grants No BK20170958).

References

[1] J. Grabocka, N. Schilling, L. Schmidt-Thieme, Latent Time-

Series Motifs, Acm Transactions on Knowledge Discovery

from Data, Vol. 11, No. 1, pp. 1-20, August,2016.

[2] J. Mao, T. Wang, C. Jin, A. Zhou, Feature Grouping-based

Outlier Detection Upon Streaming Trajectories, IEEE

Transactions on Knowledge and Data Engineering, Vol. 29,

No. 12, pp. 2696-2709, December, 2017.

[3] H. J. Jeong, M. J. Lee, C. E. Lee, S. H. Kim, Y. G. Ha,

Machine Learning-Based Real-Time Anomaly Detection for

Unmanned Aerial Vehicles with a Cloud Server, Journal of

Internet Technology, Vol. 18, No. 4, pp. 823-832, July, 2017.

[4] J. Andreu-Perez, D. R. Leff, H. M. D. Ip, G. Z. Yang, From

Wearable Sensors to Smart Implants-Toward Pervasive and

Personalized Healthcare, IEEE Transactions on Biomedical

Engineering, Vol. 62, No. 12, pp. 2750-2762, December,

2015.

[5] C. X. Mavromoustakis, G. Mastorakis, A. Bourdena, E. Pallis,

Energy Efficient Resource Sharing Using a Traffic-oriented

Routing Scheme for Cognitive Radio Networks, IET

Networks, Vol. 3, No. 1, pp. 54-63, March, 2014.

[6] H. Xu, Z. Ou, Scalable Discovery of Audio Fingerprint

Motifs in Broadcast Streams with Determinantal Point

Process Based Motif Clustering, IEEE/ACM Transactions on

Audio Speech & Language Processing, Vol. 24, No. 5, pp.

978-989, May, 2016.

[7] S. Wang, H. Yi, L. Wu, F. Zhou, N. N. Xiong, Mining

Probabilistic Representative Gathering Patterns for Mobile

Sensor Data, Journal of Internet Technology, Vol. 18, No. 2,

pp. 321-332, March, 2017.

[8] P. Rashidi, D. J. Cook, Com: A Method for Mining and

Monitoring Human Activity Patterns in Home-based Health

Monitoring Systems, ACM Transactions on Intelligent

Systems and Technology, Vol. 4, No. 4, pp. 1-20, September,

2013.

[9] J. Ma, L. Sun, H. Wang, Y. Zhang, U. Aickelin, Supervised

Anomaly Detection in Uncertain Pseudo-periodic Data

Streams, ACM Transactions on Internet Technology, Vol. 16,

No. 1, Article No. 4, February, 2016.

[10] Y. J. Chang, W. T. Huang, A Novel Design of Data-driven

Architecture for Remote Monitoring and Remote Control of

Sensors over a Wireless Sensor Network and the Internet,

Journal of Internet Technology, Vol. 12, No. 1, pp. 129-137,

January, 2011.

[11] L. Deng, J. Zeng, X. Wang, An Improved Certificateless

Encryption Scheme for Telecare Medicine Information

Systems, Journal of Internet Technology, Vol. 18, No. 2, pp.

223-227, March, 2017.

[12] K. M. Al-Aubidy, A. M. Derbas, A. W. Al-Mutairi, Real-time

Healthcare Monitoring System Using Wireless Sensor

Network, International Journal of Digital Signals and Smart

Systems, Vol. 1, No. 1, pp. 26-42, 2017.

[13] M. Dimkovski, A. An, A Bayesian Model for Canonical

Circuits in the Neocortex for Parallelized and Incremental

Learning of Symbol Representations, Neurocomputing, Vol.

149, No. 4, pp. 1270-1279, February, 2015.

[14] S. Aghabozorgi, A. S. Shirkhorshidi, T. Y. Wah, Time-series

Clustering– A Decade Review, Information Systems, Vol. 53,

No. 1, pp. 16-38, October-November, 2015.

[15] D. Minnen, C. L. Isbell, I. Essa, T. Starner, Discovering

Multivariate Motifs using Subsequence Density Estimation

and Greedy Mixture Learning, Proceedings of the 22nd

National Conference on Artificial Intelligence, Menlo Park,

Canada, 2007, pp. 615-620.

[16] R. Anirudh, P. Turaga, Geometry-based Symbolic

Approximation for Fast Sequence Matching on Manifolds,

International Journal of Computer Vision, Vol. 116, No. 2,

pp. 161-173, January, 2016.

[17] T. Sun, H. Liu, H. Yu, C. P. Chen, Degree-pruning Dynamic

Programming Approaches to Central Time Series Minimizing

Dynamic Time Warping Distance, IEEE Transactions on

Cybernetics, Vol. 47, No. 7, pp. 1719-1729, July, 2017.

[18] P. Nickerson, R. Baharloo, A. A. Wanigatunga, T. D. Manini,

P. J. Tighe, P. Rashidi, Transition Icons for Time Series

Visualization and Exploratory Analysis, IEEE Journal of

Biomedical and Health Informatics, Vol. 22, No. 2, pp. 623-

630, March, 2018.

[19] M. G. Baydogan, G. Runger, Time Series Representation and

Similarity Based on Local Autopatterns, Data Mining and

Knowledge Discovery, Vol. 30, No. 2, pp. 476-509, March,

2016.

[20] A. Bottrighi, G. Leonardi, S. Montani, L. Portinale, P.

Terenziani, A Time Series Retrieval Tool for Sub-series

Matching, Applied Intelligence, Vol. 43, No. 1, pp. 132-149,

July, 2015.

[21] T. D. Wu, Bitpacking Techniques for Indexing Genomes: II.

Enhanced Suffix Arrays, Algorithms for Molecular Biology,

Vol. 11, No. 1, p. 9, April, 2016.

[22] M. I. Abouelhoda, S. Kurtz, E. Ohlebusch, Replacing Suffix

Trees with Enhanced Suffix Arrays, Journal of Discrete

Algorithms, Vol. 2, No. 1, pp. 53-86, March, 2014.

[23] A. Mueen, E. Keogh, Q. Zhu, S. S. Cash, M. B. Westover, N.

Bigdely-Shamlo, A Disk-aware Algorithm for Time Series

Motif Discovery, Data Mining and Knowledge Discovery,

Vol. 22, No. 1, pp. 73-105, January, 2011.

[24] A. L. Goldberger, L. A. Amaral, L. Glass, J. M. Hausdorff, P.

C. Ivanov, R. G. Mark, J. E. Mietus, G. B. Moody, C.-K.

Peng, H. E. Stanley, Physiobank, Physiotoolkit, and

Physionet: Components of a New Research Resource for

Limited-length Suffix-array-based Method for Variable-length Motif Discovery in Time Series 1851

Complex Physiologic Signals, Circulation, Vol. 101, No. 23,

pp. e215-e220, June, 2000.

Biographies

Le Sun is a Lecturer in School of
Computer and Software, Nanjing
University of Information Science and
Technology, China. She got her Ph.D.
(2016) from Center for Applied

Informatics, Victoria University, Australia. Her
research interests are: anomaly detection in data
streams, cloud computing, and smart decision making.

Jinyuan He is a second-year Ph.D.
student in Centre for Applied
Informatics, Victoria University,
Australia. He got his master degree
(2015) in School of Software

Engineering, Sun Yat-sen University, China. His
research interests are: anomaly detection in data
streams, cardiac disease detection in ECG, deep
learning in bioinformatics.

Jiangang Ma received the Ph.D.
degree from Victoria University. He is
a research fellow at the Centre for
Applied Informatics (CAI), Victoria
University. His research interests
include Data mining and Web services.

Hai Dong is a Lecturer at School of
Science in RMIT University,
Australia. He received a Ph.D. from
Curtin University and a Bachelor
degree from Northeastern University.
He published over 70 research
publications in international journals

and conferences. His primary research interests include
Services Computing, Cloud Computing, and IoT.

Yanchun Zhang is the Director of the
Centre for Applied Informatics,
Victoria University, Australia. He is
an international research leader in
databases, data mining, health
informatics, web information systems,
and web services. He has published

over 220 research papers in international journals and
conferences proceedings, and authored/edited 12 books.

1852 Journal of Internet Technology Volume 19 (2018) No.6

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (Japan Color 2001 Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJDFFile false
 /CreateJobTicket true
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHT <FEFF005B683964DA300C005000440046002800310032003000300064007000690029300D005D0020>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
 <<
 /AddBleedMarks true
 /AddColorBars false
 /AddCropMarks true
 /AddPageInfo true
 /AddRegMarks false
 /BleedOffset [
 8.503940
 8.503940
 8.503940
 8.503940
]
 /ConvertColors /NoConversion
 /DestinationProfileName (sRGB IEC61966-2.1)
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /ClipComplexRegions true
 /ConvertStrokesToOutlines false
 /ConvertTextToOutlines false
 /GradientResolution 400
 /LineArtTextResolution 1200
 /PresetName <FEFF005B9AD889E367905EA6005D>
 /PresetSelector /HighResolution
 /RasterVectorBalance 1
 >>
 /FormElements true
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MarksOffset 0
 /MarksWeight 0.283460
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PageMarksFile /JapaneseWithCircle
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [1200 1200]
 /PageSize [612.000 792.000]
>> setpagedevice

