
A Recommendation System for Repetitively Purchasing Items in E-commerce Based on Collaborative Filtering and Association Rules 1691

A Recommendation System for Repetitively Purchasing Items in

E-commerce Based on Collaborative Filtering and

Association Rules

Yoon Kyoung Choi, Sung Kwon Kim*

School of Computer Science and Engineering, Chung-Ang University, Republic of Korea

ykchoi@baewha.ac.kr, skkim@cau.ac.kr

*Corresponding Author: Sung Kwon Kim; E-mail: skkim@cau.ac.kr

DOI: 10.3966/160792642018111906006

Abstract

In this paper, we are to address the problem of item

recommendations to users in shopping malls selling

several different kinds of items, e.g., daily necessities

such as cosmetics, detergent, and food ingredients. Most

of current recommendation algorithms are developed for

sites selling only one kind of items, e.g., music or movies.

To devise efficient recommendation algorithms suitable

for repetitively purchasing items, we give a method to

implicitly assign ratings for these items by making use of

repetitive purchase counts, and then use these ratings for

the purpose of recommendation prediction with the help

of user-based collaborative filtering and item-based

collaborative filtering algorithms. We also propose

associate item-based recommendation algorithm. Items

are called associate items if they are frequently bought by

users at the same time. If a user is to buy some item, it is

reasonable to recommend some of its associate items. We

implement user-based (item-based) collaborative filtering

algorithm and associate item-based algorithm, and

compare these three algorithms in view of the

recommendation hit ratio, prediction performance, and

recommendation coverage, along with computation time.

Keywords: Recommendation system, Collaborative

filtering, e-commerce, Association rules

1 Introduction

With the growing purchase through online shopping

malls, recommendation systems based on purchasing

preferences of users have been widely used [1-5].

Recommendation systems predict the preferences of a

user and recommend items that the user might like

based on the predictions. One of the most widely used

algorithms in recommendation systems is collaborative

filtering [6-8]. Collaborative filtering recommendation

systems produce a list of recommended items for a user

based on similar decisions made by other users. These

algorithms are devised usually for “homogeneous”

shopping malls in the sense that they sell only one kind

of items, e.g., music or movies.

Nowadays, as mobile devices are widely used and

delivery services have been expanded, online

purchases to buy daily necessities such as cosmetics,

detergent, and food ingredient have increased. Since

they are consumables, those purchases tend to be

repetitive periodically and users usually buy several

different items at the same time. For shopping malls

selling daily necessities, it is difficult to directly apply

collaborative filtering recommendation as they are

“heterogeneous,” i.e., they are selling several different

kinds of items and as they usually record purchasing

frequency and purchasing time of items by users but

not their ratings for items.

In collaborative filtering algorithms, recommendations

are usually made by the process of predicting target

users’ preferences based on the ratings of items that

existing users gave in the past. For repetitively

purchasing items, the ratings by users for items, needed

by collaborative filtering algorithms, can be implicitly

assigned by using the repetitive purchase counts or

purchase frequency. With these implicitly assigned

ratings, traditional collaborative filtering recommendation

algorithms can be used to recommend items to users.

Since a set of items are purchased together at a same

shopping basket, we can also consider the associate

items as recommended items, where associate items of

an item i are the items which are frequently bought at

the same time in a same basket with item i by users. To

find associate items we can use association rule mining

algorithms [9-10].

Choi and Kim [11] present a user-based collaborative

filtering algorithm by using purchase frequency as

rating criteria for each repetitively purchasing item,

where purchase frequency represents how often a user

buys it repeatedly. Since for general e-commerce

shopping malls this recommendation algorithm for

repetitive items can be used as an auxiliary in addition

to ordinary recommendation engines, our recommendation

algorithm must be simpler and more efficient. Choi and

Kim [12] simplify [11] by using repetitive purchase

counts as rating criteria, instead of using purchase

1692 Journal of Internet Technology Volume 19 (2018) No.6

frequency which needs many efforts to calculate.

However, the repetitive purchase counts used in [12]

have a large variation in each item and in each user, it

is necessary to correct these deviations when

calculating the similarity or recommendation prediction.

In this paper, we use normalized repetitive purchase

counts as rating criteria, which is normalized by

considering the size and distribution of the dataset.

And we implement user-based and item-based

collaborative filtering algorithms, and analyze the

performance of these recommendation algorithms. We

also propose associate item-based recommendation

algorithm, and compare its performance with the two

collaborative filtering algorithms. As experiment data,

we use e-commerce sales data from Happycoop Co.,

one of Korean consumer cooperative companies [13].

In Section 2, we review related work on

recommendation algorithms. Section 3 describes our

recommendation algorithms for repetitively purchasing

items composed of off-line preparation process and on-

line recommendation process. In Section 4, we

evaluate the performance of our recommendation

algorithms, and we conclude in Section 5.

2 Related Work

Collaborative filtering (CF) is one of the most

widely used techniques for building recommender

systems [14]. For each user, user-based CF

recommendation algorithm uses historical information

to identify a neighborhood of people that in the past

have exhibited similar behavior, and then analyze this

neighborhood to identify new pieces of information

that will be liked by the user [6].

The input data in the collaborative filtering

algorithm is a collection of past purchase histories of m

users and n items, and normally represented by m × n

user- item matrix R.

An important step in the user-based CF algorithm is

to compute the similarity between users. The most

commonly used measures of user similarity are

Pearson similarity, cosine similarity, and Jaccard

similarity [3, 15].

The next step of the CF recommendation algorithm

is to recommend the top-N items with the highest

prediction value among the items purchased or rated

by k similar users of the user u.

Item-based CF recommendation algorithm calculates

the similarity between the various items, rather than

between users, and then uses them to identify the set of

items to be recommended [16-19]. In item-based CF

algorithms, cosine similarity is commonly used as a

standard metric. The cosine similary between two

items a and b, viewed as the corresponding rating

vectors a

�

 and b
�

 in user space, that is, as the

corresponding column vectors in user- item matrix R,

is defined as follows [8]:

 (,)
| | | |

a b
sim a b

a b

⋅

=

×

�

�

�

�

�

�

 (1)

Where a b⋅
�

�

 means the dot product of the two

vectors, and | |a
�

 means the length of each vector. That

is, a b⋅
�

�

 is calculated as
1

(),
m

ka kb

k

r r

=

×∑ and | |a
�

 is

calculated as 2

1

.

m

ka

k

r

=

∑

The frequent item-sets problem is that of finding sets

of items that appear in many of the same shopping

baskets. This problem is often viewed as the discovery

of “association rules” [10]. Finding association rules

between a set of co-purchased items is one of the most

commonly used data mining techniques for e-

commerce [3].

The form of an association rule is I → j, where I is a

set of items and j is an item. The implication of this

association rule is that if all of the items in I appear in

some basket, then j is “likely” to appear in that basket

as well.

The support for a set of items I is defined as a ratio

of the number of baskets that contains I to the number

of baskets. The notion of “likely” is formalized by

defining the confidence of the rule I → j to be the ratio

of the support for I ∪{j} to the support for I. That is,

the confidence c states that c% of baskets that contain I

also contains j [10].

If we have found all item-sets that meet a support

threshold s, then we can find within them all the

association rules that have both high support and high

confidence. To find frequent item-sets, an algorithm

known as “A-Priori” is often used. Apriori is proposed

by [9] and it is the most classic and widely used

algorithm from which many variants have been

developed [20-23]. For each item in frequent item-sets,

we call each other an associate item.

Recommendation algorithms for periodically

repetitive purchasing shopping malls were first

implemented by Choi and Kim [11]. Once a new

purchase occurs, the recommendation system in [11]

updates purchase frequency of the corresponding item

by off-line, which is followed by re-calculating a

favorite-items set for each user, and re-calculating user

similarity based on the favorite-items set. The favorite-

items set is defined as the set of frequently purchased

items for that user. Whenever a user logs in, items in

favorite-items sets of other users who have similar

purchase patterns are recommended using a user-based

collaborative filtering method. They also implemented

automatic selection system, which selects and

recommends items that it is time to purchase by

examining purchase frequency of candidate items. This

algorithm recommends only items which have been

purchased several times repeatedly in the past by the

user.

A Recommendation System for Repetitively Purchasing Items in E-commerce Based on Collaborative Filtering and Association Rules 1693

Generally, in e-commerce shopping malls, only

some items are purchased repeatedly, so the algorithm

of [11] can be used as an auxiliary to general

recommendation engine. To do this, the recommendation

algorithm should be simpler and more efficient. Choi

and Kim[12] simplified and improved the user-based

CF recommendation algorithm of [11] by using

repetitive purchase counts as rating criteria, instead of

using purchase frequency which needs many efforts to

calculate.

3 Recommendation System for Repetitively

Purchasing Items

A diagram of our recommendation system proposed

is shown in Figure 1, consisted of two parts: online and

offline processes. When a new purchase occurs, since

the user-item matrix is changed, the user-similarity etc.

must also be changed. Therefore, such data processing

needs to be performed periodically, as a pre-computing

task. This process is described in the offline box in

Figure 1.

Figure 1. Proposed recommendation system

Each time a user logs-in, our system recommends

items in real time using three recommendation

algorithms. This process is described in the online box.

In this section, we first describe how to implicitly

score a rating on items that are purchased repeatedly.

We then describe the offline process and online

process.

3.1 Rating Scores for Repetitively PurChasing

Items

In our recommendation, we consider only items that

were purchased more than C times in the past by users

(C=5, for example). For each item i, we calculate the

score(u i) for each user u:

(,)

(,)
(,)

repetitivePurchaseCounts u i
score u i

duration u i
= (2)

where repetitivePurchaseCounts(u,i) is the number of

purchases of item i by user u, and duration(u,i) is the

time interval between the first and the last purchasing

time of item i by user u. In our experiments, we set the

basic unit of duration as three months, so that score(u,i)

is the number of repetitive purchases of item i during

three months, averagely, by user u.

We normalize the scores so that they range from 1 to

5, and assign the normalized score, scoreN, as the

rating for item i by user u. These are the implicitly

assigned ratings mentioned in section 1, which will be

used in collaborative filtering algorithms later. To

convert the scores to the normalized scores between 1

and 5, we need to consider the distribution of score(u, i)

values in the dataset and the overall maximum and

minimum values of the score(u, i).

In our dataset, the maximum of the scores is 22.7

and the minimum is 1. Figure 2 depicts the distribution

of the score values for all users and items in our dataset,

and we can observe the percentage of scores greater

than 10 is very low (less than 3 %). Therefore, we set

the score values of 10 or larger as 10. So, we are to

convert the scores between 1 and 10 to the normalized

scores between 1 and 5. Considering the distribution of

the scores shown in Figure 2, we choose a quadratic

function instead of a linear function for the

normalization:

 2(,) (,) (,)scoreN u i a score u i b score u i c= × + × + (3)

where a, b and c are constants.

Figure 2. Percentage of score values for users and

items overall in our dataset

To select the three constants by regression analysis

to properly assign values while considering the

proportion of the original score values, we determine to

convert the score of 1 to the normalized score of 1, the

score of 2 to the normalized score of 2, and the score of

10 to the normalized score of 5. After fixing three

points at (1, 1), (2, 2), and (10, 5), we can calculate the

three constants to obtain a = -5/72, b = 87/72, and c = -

10/72 of the quadratic function of Eq. 3. Our

normalized scoreN function is as followings:

25 (,) 87 (,) 10
(,)

72

score u i score u i
scoreN u i

− × + × −
= (4)

1694 Journal of Internet Technology Volume 19 (2018) No.6

3.2 Computing the Similarity

A critical step in a user-based (or item-based)

collaborative filtering algorithm is to compute the

similarity between users (or items) and then to select

the most similar users (or similar items).

Of the many different ways to compute similarity, in

our experiment, we use Jaccard similarity measure

between two users or between two items, and we

compare its result with the baseline algorithm using the

cosine similarity.

Jaccard similarity between two sets s1 and s2 is

defined by the number of elements in the intersection

of the two sets divided by the number of elements in

the union of them.

s1 s2

sim(s1,s2)=
s1 s2

∩

∪

 (5)

Favorite-items set and favorite-users set. We define

favorite-items set, Fi(u), as the set of frequently

purchased items for each user u, which is the set of

repetitively purchased items, purchased more than C

times by user u (C=5 or 10, for example)[12]. We also

define favorite-users set, Fu(i), as the set of users who

purchased item i many times, i.e., more than C times.

After computing the favorite-items set from the

dataset, we can compute the favorite-users sets in the

following way:

for each user u

for each item i in Fi(u)

add u into Fu(i)

We limit the number of elements in Fi(u) to K

(K=30, in our experiment) in the order of scoreN(u,i)

values, in other words, Fi(u) contains top-K items in

terms of scoreN(u,i). Since we treat repetitively

purchasing items only, it is reasonable to maintain and

use favorite items only at the recommendation process.

User similarity and item similarity. We calculate

user similarity UserSim(u1, u2) for all pairs of users u1

and u2 by Eq. 6, with Jaccard similarity measure:

(1) (2)

(1, 2)
(1) (2)

Fi u Fi u
UserSim u u

Fi u Fi u
=

∩

∪
 (6)

where Fi(u) is favorite-items set for user u.

Jaccard similarity considers primarily the number of

common items in Fi(u1) and Fi(u2), regardless of the

scores of those items. Since we limit the number of

elements to be contained in Fi(u) to K, and since we

consider only the items that were purchased in the past

more than C times repetitively, this similarity has a

significant meaning. In the aspect of running time, it

takes shorter time than computing cosine similarity or

Pearson’s similarity.

We calculate item similarity ItemSim(i1, i2) for all

pairs of items i1 and i2, by Eq. 7, with Jaccard

similarity measure:

(1) (2)

(1, 2)
(1) (2)

Fu i Fu i
ItemSim i i

Fu i Fu i
=

∩

∪
 (7)

where Fu(i) is favorite-users set for item i.

3.3 Computing Associate Items

Associate items of an item i are the items which are

frequently bought at the same time with item i by users,

and an associate items list for each item i contains top-l

most frequent associate items (l to be explained later).

To find associate items we employ Apriori algorithm,

which is one of the association rule mining algorithms

[10].

The Apriori algorithm progresses in multiple stages

until all of those concurrently purchased frequent item-

sets are obtained. Considering the execution time,

however, we only carry out two stages and find the

frequent item-pairs, that is, associate item-pairs.

In the first stage, every shopping basket is examined

and the purchase count is increased by one for each of

the items in the basket (see Figure 3). A one-

dimensional array is used to store the purchase counts.

In the second stage, the shopping baskets are re-

examined, and the items having the purchase counts

greater than s, a support threshold value, are found out.

For each pair of those items obtained, we increment

freqCount of the pair by one in the item-item matrix

freqCount. The value of freqCount is the number of

times the item pair appeared in a same basket in the

past.

first stage

for each basket

for each item in the basket

add 1 to its purchase_count

(into an array to store counts)

second stage

for each basket

find frequent items, such that purchase_count > s

for each frequent item-pairs

add 1 to its freqCount (into a matrix to store counts)

Figure 3. Two-pass Apriori algorithm

The value of s should be set relatively large in order

to reduce the execution time, and in general, s is set to

1% of the number of baskets [10].

For each item i, its associate items list is obtained by

finding top-l frequently bought associate items of i,

that is, top-l items in order of freqCount value of item-

pair.

3.4 Off-line Preparation Process

Once a new purchase occurs, since the score of

corresponding user-item is changed, favorite-items set

for each user and favorite-users set and associate items

list for each item are all updated off-line at a regular

basis (see the lower bottom in Figure 1). Then, we

recalculate user similarity for all pairs of users, and

A Recommendation System for Repetitively Purchasing Items in E-commerce Based on Collaborative Filtering and Association Rules 1695

recalculate item similarity for all pairs of items. Also,

for each user u, we update l-nearest neighboring users

set, NeighborU(u), which contains l similar users in

order of user similarity value with u, UserSim(u, v), v

∈ U. Similarly, we update l-nearest neighboring items

set, NeighborI(i) for each item i, which contains l

similar items with i in order of item similarity value,

ItemSim(i, j), j ∈ I. U is the set of all users, and I is the

set of all items.

3.5 On-line Recommendation Process

As shown in the upper side of Figure 1, we

implement recommendation algorithms in three ways:

user-based collaborative filtering recommendation,

item-based collaborative filtering recommendation, and

associate items recommendation.

User-based collaborative filtering recommendation.

Whenever a user u logs in, a specific number (= t) of

items are recommended in order of prediction value,

predict(u, i), i ∈ I, by the collaborative filtering

algorithm. For each user u2 contained in the l-nearest

neighboring users set, NeighborU(u) (= set N), we

compute predict(u, i) for each item i contained in the

favorite-items set of u2, Fi(u2), as in Eq. 8. Then, out

of the items that user u have never purchased, we

recommend the top-t items in the order of prediction

values.

2

2

((, 2) (2,))

(,)
(, 2)

u N

u N

UserSim u u scoreN u i

predict u i
UserSim u u

∈

∈

×

=

∑

∑
 (8)

Since we calculate prediction values for the items only

in the favorite-items set of l-neighboring users, our

algorithm runs faster than general collaborative

filtering methods.

Item-based collaborative filtering recommendation.

To seek another top-t recommending items for each

user u, we examine items in l-nearest neighboring

items set, NeighborI(j), for each item j which is

contained in the favorite-items set of u, Fi(u). For each

i of these items, we compute predict(u, i) as in Eq. 9.

Then, out of the items that user u have never purchased,

we recommend the top-t items in the order of

prediction values.

()

()

((,) (,))

(,)
(,)

j Fi u

j Fi u

ItemSim i j scoreN u j

predict u i
ItemSim i j

∈

∈

×

=

∑

∑
 (9)

Associate items recommendation. For each item i, we

maintain top-l items in the associate items list (e.g. l =

10), as explained in section 3.3. For each item in the

favorite-items set of u, Fi(u), we examine all of their

top-l associate items. In a similar way to item-based

collaborative filtering, for each item i of all these, we

compute predict(u, i) as in Eq. 10, where we use

freqCount(i, j) value, instead of ItemSim(i, j). Out of

the items that user u have never purchased, we

recommend the top-t items in the order of prediction

values.

()

()

((,) (,))

(,)
(,)

j Fi u

j Fi u

freqCount i j scoreN u j

predict u i
freqCount i j

∈

∈

×

=

∑

∑
 (10)

4 Experimental Evaluation

4.1 Data sets and Evaluation Metrics

As experiment data, actual sales data for 15 months

by Happycoop Co., one of Korean consumers’

cooperative companies (http://shop.happycoop.or.kr) is

employed. The number of items is about 4,000 and the

number of users is about 5,000, while the number of

orders is about 988,000. We use the data after grouping

by users and items, with the condition that the number

of purchasings is greater than or equal to 5 (C=5).

To evaluate the quality of the top-t recommendation

algorithms, we split the dataset into a training set and a

test set, by randomly selecting one of the non-zero

entries of each row (i.e., of each user) to be part of the

test set, and use the other entries for the training set. In

order to raise accuracy, for each of the experiments we

perform five different runs, each time using a different

random partitioning into training and test set. The

results reported in the next section are the averages

over these five trials. In all of experiments we set l =

10 as the number of neighboring users, neighboring

items, or the size of associate items list, and set t = 30

as the number of items be recommended by the top-t

recommendation algorithms.

Firstly, we measure the quality of our recommendations

by looking at the number of hits, i.e., the number of

items in the test set that also present in the top-t

recommended items returned for each user [17]. If m is

the total number of users, we compute the recall of the

algorithm as:

Number of hits

recall
m

=

A recall value of 1 indicates that the

recommendation algorithm is able to always

recommend the hidden item, whereas a recall value of

0 indicates that the algorithm is not able to recommend

any of the hidden items.

Secondly, we compute the mean absolute error

(MAE) between the ratings (= scores) and the

predictions [24],

1696 Journal of Internet Technology Volume 19 (2018) No.6

 1

m

i i

i

r p

MAE
m

=

−

=

∑

where m is the number of predictions made, ri is the

real rating and pi is the prediction value. The smaller

the MAE is, the more accurately the recommendation

algorithm predicts the users ratings.

Finally, to measure the percentage of users to whom

at least one item is recommended, we compute the

recommendation coverage. Even if the recommendation

algorithm has good MAE performance, if the coverage

is low, the recommendation is meaningless. We

compute the coverage as the ratio of the number of

items in the test set provided non-zero prediction, over

the total number of users.

(0)

i
Number of items p

Coverage
m

>

=

4.2 Experimental Results

To evaluate our three recommendation algorithms

for repetitively purchasing items, firstly we measure

the recall value, which represents the ratio of

recommendation hits. We label the three algorithms

user-CF, item-CF and assoc-item. Since existing

recommendation methods do not consider periodic and

repetitive purchasing environments, it is difficult to

directly compare other existing results. Therefore, in

order to compare with existing similar results, we use

the commonly used cosine similarity measure to

implement the user-CF algorithm and label this

algorithm as baseline.

Figure 4 shows that although the performance recall

of all three algorithms are not very high, there are some

improvements compared with the baseline algorithm.

Figure 5 and Figure 6 depict prediction performance

MAE and recommendation coverage, as we define in

the previous section. For item-based CF algorithm,

both MAE and coverage have good performance of all,

and associate-items recommendation algorithm has the

next good performance.

Figure 4. Recommendation hit ratio: recall

Figure 5. Prediction performance: MAE

Figure 6. Recommendation coverage

Figure 7 shows the computation time for computing

each similarity or finding associate-items. This is the

most time-consuming job for each recommendation

algorithm.

Figure 7. Computation time for computing similarity

or finding associate-items

Our experimental results suggest that we will use an

item-CF algorithm based on item similarity rather than

a user-CF algorithm based on user similarity when

using our system in e-commerce.

Also, when calculating user similarity or item

similarity, these results show that it is more efficient to

use Jaccard similarity than the commonly used cosine

similarity because of the nature of our system of

dealing with items that are purchased repetitively.

The assoc-item algorithm, unlike the item-CF

A Recommendation System for Repetitively Purchasing Items in E-commerce Based on Collaborative Filtering and Association Rules 1697

algorithm, analyzes all the baskets in the purchase

history and calculates the associate items, so it is

possible to recommend more diverse items to the user.

Therefore, it is also suggested to use the assoc-item

algorithm, although the computation time is longer and

the performance is slightly lower than the item-CF

algorithm.

And it is also suggested to combine the item-CF

algorithm and the assoc-item algorithm to recommend

the top-N items.

5 Conclusion

For regular customers purchasing items repetitively

in large shopping malls, our recommendation system

can be used to recommend other items showing a

periodical and repetitive purchase pattern. By

analyzing the items’ sales pattern exclusively, we can

improve the performance of the recommendation for

repetitively purchasing items. We implicitly assign

ratings for these items by using the normalized

repetitive purchase counts, considering overall

purchasing intervals, and use these rating values as the

scores for the recommendation prediction. We

implement user-based and item-based collaborative

filtering algorithms for recommending these items.

According to the fact that a set of items are purchased

together at the same shopping basket for these items,

we also implement an algorithm to recommend top-t

associate items using the association rule mining

algorithm. In our experiments, we compare these three

algorithms in view of the recommendation hit ratio,

prediction performance, and recommendation coverage,

along with computation time for these algorithms.

Acknowledgments

This research was supported by Basic Science

Research Program through the National Research

Foundation of Korea (NRF) funded by the Ministry of

Education (NRF-2015R1D1A1A01059937).

References

[1] G. Adomavicius, A. Tuzhilin, Towards the Next Generation

of Recommender Systems: A Survey of the State-of-the-art

and Possible Extensions, IEEE Transactions on Knowledge

and Data Engineering, Vol. 17, No. 6, pp. 734-749, June,

2005.

[2] F. Ricci, L. Rokach, B. Shapira, P. B. Kantor, Recommendation

Systems Handbook, Springer, 2011.

[3] B. Sarwar, G. Karypis, J. Konstan, J. Riedl, Analysis of

Recommendation Algorithms for E-Commerce, Proc. of the

2nd ACM Conference on Electronic Commerce (EC ’00),

Minneapolis, MN, 2000, pp. 158-167.

[4] J. Wang, B. Sarwar, N. Sundaresan, Utilizing Related

Products for Post-purchase Recommendation in E-commerce,

Proc. of the fifth ACM Conference on Recommender Systems

(RecSys ’11), Chicago, IL, 2011, pp. 329-332.

[5] Y. Yu, C. Wang, Item Attribute-Aware Probabilistic Matrix

Factorization for Item Recommendation, Journal of Internet

Technology, Vol. 15, No. 6 , pp. 975-984, November, 2014.

[6] J. L. Herlocker, J. A. Konstan, A. Borchers, J. Riedl, An

Algorithmic Framework for Performing Collaborative

Filtering, Proc. of the 22nd Annual International ACM SIGIR

Conference on Research and Development in Information

Retrieval, Berkeley, CA, 1999, pp. 230-237.

[7] P. Resnick, H. R. Varian, Recommender Systems,

Communications of the ACM, Vol. 40, No. 3, pp. 56-58,

March, 1997.

[8] D. Jannach, M. Zanker, A. Felfernig, G. Friedrich,

Recommender Systems: An Introduction, Cambridge University

Press, 2010.

[9] R. Agrawal, R. Srikant, Fast Algorithms for Mining

Association Rules in Large Databases, Proc. of the 20th

International Conference on Very Large Data Bases,

Santiago de Chile, Chile, 1994, pp. 487-499.

[10] A. Rajaraman, J. Leskovec, J. D. Ullman, Frequent Itemsets

in: Mining of Massive Datasets, http://infolab.stanford.edu/

~ullman/mmds/book.pdf

[11] Y. K. Choi, S. K. Kim, Recommendation Algorithms for

Online Shopping Malls with Periodically Purchasing Users,

Journal of KIISE: Software and Applications, Vol. 40, No. 8,

pp. 453-462, August, 2013.

[12] Y. K. Choi, S. K. Kim, An Auxiliary Recommendation

System for Repetitively Purchasing Items in E-Commerce,

International Conference On Big Data and Smart Computing,

Bangkok, Thailand, 2014, pp. 96-98.

[13] Happycoop Co., One of Korean Consumer Cooperative

Companies, http://shop.happycoop.or.kr

[14] J. Konstan, B. Miller, D. Maltz, J. Herlocker, L. Gordon, J.

Riedl, GroupLens: Applying Collaborative Filtering to

Usenet News, Communications of the ACM, Vol. 40, No. 3,

pp. 77-87, March, 1997.

[15] H. Marmanis, D. Babenko, Algorithms of the Intelligent Web,

Manning, 2009.

[16] M. Deshpande, G. Karypis, Item-based Top-N Recommendation

Algorithms, ACM Transactions on Information Systems, Vol.

22, No. 1, pp. 143-177, January, 2004.

[17] G. Karypis, Evaluation of Item-based Top-N Recommendation

Algorithms, Proc. of the Tenth International Conference on

Information and Knowledge Management (CIKM ’01), Atlanta,

GA, 2001, pp. 247-254.

[18] G. Linden, B. Smith, J. York, Amazon.com Recommendations:

Item-to-Item Collaborative Filtering, IEEE Internet Computing,

Vol. 7, No. 1, pp. 76-80, January/February, 2003.

[19] B. Sarwar, G. Karypis, J. Konstan, J. Riedl, Item-based

Collaborative Filtering Recommendation Algorithms, Proc.

of the 10th International Conference on World Wide Web

(WWW ’01), Hong Kong, China, 2001, pp. 285-295.

[20] M. Fang, N. Shivakumar, H. Garcia-Molina, R. Motwani, J.

D. Ullman, Computing Iceberg Queries Efficiently, the 24rd

1698 Journal of Internet Technology Volume 19 (2018) No.6

International Conference on Very Large Databases, New

York, NY, 1998, pp. 299-310.

[21] J. S. Park, M.-S. Chen, P. S. Yu, An Effective Hash-based

Algorithm for Mining Association Rules, Proc. ACM

SIGMOD International Conference on Management of Data,

San Jose, CA, 1995, pp. 175-186.

[22] A. Savasere, E. Omiecinski, S. B. Navathe, An Efficient

Algorithm for Mining Association Rules in Large Databases,

the 21th International Conference on Very Large Databases,

Zurich, Switzerland, 1995, pp. 432-444.

[23] H. Toivonen, Sampling Large Databases for Association

Rules, the 22th International Conference on Very Large

Databases, Mumbai (Bombay), India, 1996, pp. 134-145.

[24] S.-C. Kim, K.-J. Sung, C.-S. Park, S. K. Kim, Improvement

of Collaborative Filtering Using Rating Normalization,

Multimedia Tools and Applications, Vol. 75, No. 9, pp. 4957-

4968, May, 2016.

Biographies

Yoon Kyoung Choi received her

bachelor’s degree from Seoul National

University, Korea, her master’s degree

from Korea Advanced Institute of

Science and Technology (KAIST),

and her Ph.D. degree from Chung-

Ang University, Seoul, Korea. She is

currently a professor at Baewha Women’s University,

Korea. Her areas of research interest are algorithms

and recommendation system.

Sung Kwon Kim received his

bachelor’s degree from Seoul National

University, Seoul, Korea, his master’s

degree from Korea Advanced Institute

of Science and Technology (KAIST),

Korea, and his Ph.D. degree from

University of Washington, Seattle,

U.S.A. He is currently a professor at Division of

Computer Science and Engineering, Chung-Ang

University, Seoul, Korea.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (Japan Color 2001 Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJDFFile false
 /CreateJobTicket true
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHT <FEFF005B683964DA300C005000440046002800310032003000300064007000690029300D005D0020>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
 <<
 /AddBleedMarks true
 /AddColorBars false
 /AddCropMarks true
 /AddPageInfo true
 /AddRegMarks false
 /BleedOffset [
 8.503940
 8.503940
 8.503940
 8.503940
]
 /ConvertColors /NoConversion
 /DestinationProfileName (sRGB IEC61966-2.1)
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /ClipComplexRegions true
 /ConvertStrokesToOutlines false
 /ConvertTextToOutlines false
 /GradientResolution 400
 /LineArtTextResolution 1200
 /PresetName <FEFF005B9AD889E367905EA6005D>
 /PresetSelector /HighResolution
 /RasterVectorBalance 1
 >>
 /FormElements true
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MarksOffset 0
 /MarksWeight 0.283460
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PageMarksFile /JapaneseWithCircle
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [1200 1200]
 /PageSize [612.000 792.000]
>> setpagedevice

