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Abstract 

In this paper, we are to address the problem of item 

recommendations to users in shopping malls selling 

several different kinds of items, e.g., daily necessities 

such as cosmetics, detergent, and food ingredients. Most 

of current recommendation algorithms are developed for 

sites selling only one kind of items, e.g., music or movies. 

To devise efficient recommendation algorithms suitable 

for repetitively purchasing items, we give a method to 

implicitly assign ratings for these items by making use of 

repetitive purchase counts, and then use these ratings for 

the purpose of recommendation prediction with the help 

of user-based collaborative filtering and item-based 

collaborative filtering algorithms. We also propose 

associate item-based recommendation algorithm. Items 

are called associate items if they are frequently bought by 

users at the same time. If a user is to buy some item, it is 

reasonable to recommend some of its associate items. We 

implement user-based (item-based) collaborative filtering 

algorithm and associate item-based algorithm, and 

compare these three algorithms in view of the 

recommendation hit ratio, prediction performance, and 

recommendation coverage, along with computation time. 

Keywords: Recommendation system, Collaborative 

filtering, e-commerce, Association rules 

1 Introduction 

With the growing purchase through online shopping 

malls, recommendation systems based on purchasing 

preferences of users have been widely used [1-5]. 

Recommendation systems predict the preferences of a 

user and recommend items that the user might like 

based on the predictions. One of the most widely used 

algorithms in recommendation systems is collaborative 

filtering [6-8]. Collaborative filtering recommendation 

systems produce a list of recommended items for a user 

based on similar decisions made by other users. These 

algorithms are devised usually for “homogeneous” 

shopping malls in the sense that they sell only one kind 

of items, e.g., music or movies.  

Nowadays, as mobile devices are widely used and 

delivery services have been expanded, online 

purchases to buy daily necessities such as cosmetics, 

detergent, and food ingredient have increased. Since 

they are consumables, those purchases tend to be 

repetitive periodically and users usually buy several 

different items at the same time. For shopping malls 

selling daily necessities, it is difficult to directly apply 

collaborative filtering recommendation as they are 

“heterogeneous,” i.e., they are selling several different 

kinds of items and as they usually record purchasing 

frequency and purchasing time of items by users but 

not their ratings for items. 

In collaborative filtering algorithms, recommendations 

are usually made by the process of predicting target 

users’ preferences based on the ratings of items that 

existing users gave in the past. For repetitively 

purchasing items, the ratings by users for items, needed 

by collaborative filtering algorithms, can be implicitly 

assigned by using the repetitive purchase counts or 

purchase frequency. With these implicitly assigned 

ratings, traditional collaborative filtering recommendation 

algorithms can be used to recommend items to users.  

Since a set of items are purchased together at a same 

shopping basket, we can also consider the associate 

items as recommended items, where associate items of 

an item i are the items which are frequently bought at 

the same time in a same basket with item i by users. To 

find associate items we can use association rule mining 

algorithms [9-10]. 

Choi and Kim [11] present a user-based collaborative 

filtering algorithm by using purchase frequency as 

rating criteria for each repetitively purchasing item, 

where purchase frequency represents how often a user 

buys it repeatedly. Since for general e-commerce 

shopping malls this recommendation algorithm for 

repetitive items can be used as an auxiliary in addition 

to ordinary recommendation engines, our recommendation 

algorithm must be simpler and more efficient. Choi and 

Kim [12] simplify [11] by using repetitive purchase 

counts as rating criteria, instead of using purchase 
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frequency which needs many efforts to calculate. 

However, the repetitive purchase counts used in [12] 

have a large variation in each item and in each user, it 

is necessary to correct these deviations when 

calculating the similarity or recommendation prediction.  

In this paper, we use normalized repetitive purchase 

counts as rating criteria, which is normalized by 

considering the size and distribution of the dataset. 

And we implement user-based and item-based 

collaborative filtering algorithms, and analyze the 

performance of these recommendation algorithms. We 

also propose associate item-based recommendation 

algorithm, and compare its performance with the two 

collaborative filtering algorithms. As experiment data, 

we use e-commerce sales data from Happycoop Co., 

one of Korean consumer cooperative companies [13]. 

In Section 2, we review related work on 

recommendation algorithms. Section 3 describes our 

recommendation algorithms for repetitively purchasing 

items composed of off-line preparation process and on-

line recommendation process. In Section 4, we 

evaluate the performance of our recommendation 

algorithms, and we conclude in Section 5. 

2 Related Work 

Collaborative filtering (CF) is one of the most 

widely used techniques for building recommender 

systems [14]. For each user, user-based CF 

recommendation algorithm uses historical information 

to identify a neighborhood of people that in the past 

have exhibited similar behavior, and then analyze this 

neighborhood to identify new pieces of information 

that will be liked by the user [6]. 

The input data in the collaborative filtering 

algorithm is a collection of past purchase histories of m 

users and n items, and normally represented by m × n 

user- item matrix R.  

An important step in the user-based CF algorithm is 

to compute the similarity between users. The most 

commonly used measures of user similarity are 

Pearson similarity, cosine similarity, and Jaccard 

similarity [3, 15]. 

The next step of the CF recommendation algorithm 

is to recommend the top-N items with the highest 

prediction value among the items purchased or rated 

by k similar users of the user u. 

Item-based CF recommendation algorithm calculates 

the similarity between the various items, rather than 

between users, and then uses them to identify the set of 

items to be recommended [16-19]. In item-based CF 

algorithms, cosine similarity is commonly used as a 

standard metric. The cosine similary between two 

items a and b, viewed as the corresponding rating 

vectors a

�

 and b
�

 in user space, that is, as the 

corresponding column vectors in user- item matrix R, 

is defined as follows [8]: 
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The frequent item-sets problem is that of finding sets 

of items that appear in many of the same shopping 

baskets. This problem is often viewed as the discovery 

of “association rules” [10]. Finding association rules 

between a set of co-purchased items is one of the most 

commonly used data mining techniques for e-

commerce [3].  

The form of an association rule is I → j, where I is a 

set of items and j is an item. The implication of this 

association rule is that if all of the items in I appear in 

some basket, then j is “likely” to appear in that basket 

as well.  

The support for a set of items I is defined as a ratio 

of the number of baskets that contains I to the number 

of baskets. The notion of “likely” is formalized by 

defining the confidence of the rule I → j to be the ratio 

of the support for I ∪{j} to the support for I. That is, 

the confidence c states that c% of baskets that contain I 

also contains j [10].  

If we have found all item-sets that meet a support 

threshold s, then we can find within them all the 

association rules that have both high support and high 

confidence. To find frequent item-sets, an algorithm 

known as “A-Priori” is often used. Apriori is proposed 

by [9] and it is the most classic and widely used 

algorithm from which many variants have been 

developed [20-23]. For each item in frequent item-sets, 

we call each other an associate item. 

Recommendation algorithms for periodically 

repetitive purchasing shopping malls were first 

implemented by Choi and Kim [11]. Once a new 

purchase occurs, the recommendation system in [11] 

updates purchase frequency of the corresponding item 

by off-line, which is followed by re-calculating a 

favorite-items set for each user, and re-calculating user 

similarity based on the favorite-items set. The favorite-

items set is defined as the set of frequently purchased 

items for that user. Whenever a user logs in, items in 

favorite-items sets of other users who have similar 

purchase patterns are recommended using a user-based 

collaborative filtering method. They also implemented 

automatic selection system, which selects and 

recommends items that it is time to purchase by 

examining purchase frequency of candidate items. This 

algorithm recommends only items which have been 

purchased several times repeatedly in the past by the 

user. 
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Generally, in e-commerce shopping malls, only 

some items are purchased repeatedly, so the algorithm 

of [11] can be used as an auxiliary to general 

recommendation engine. To do this, the recommendation 

algorithm should be simpler and more efficient. Choi 

and Kim[12] simplified and improved the user-based 

CF recommendation algorithm of [11] by using 

repetitive purchase counts as rating criteria, instead of 

using purchase frequency which needs many efforts to 

calculate. 

3 Recommendation System for Repetitively 

Purchasing Items 

A diagram of our recommendation system proposed 

is shown in Figure 1, consisted of two parts: online and 

offline processes. When a new purchase occurs, since 

the user-item matrix is changed, the user-similarity etc. 

must also be changed. Therefore, such data processing 

needs to be performed periodically, as a pre-computing 

task. This process is described in the offline box in 

Figure 1. 

 

Figure 1. Proposed recommendation system 

Each time a user logs-in, our system recommends 

items in real time using three recommendation 

algorithms. This process is described in the online box. 

In this section, we first describe how to implicitly 

score a rating on items that are purchased repeatedly. 

We then describe the offline process and online 

process. 

3.1 Rating Scores for Repetitively PurChasing 

Items 

In our recommendation, we consider only items that 

were purchased more than C times in the past by users 

(C=5, for example). For each item i, we calculate the 

score(u i) for each user u: 

 
( , )

( , )
( , )

repetitivePurchaseCounts u i
score u i

duration u i
=  (2) 

where repetitivePurchaseCounts(u,i) is the number of 

purchases of item i by user u, and duration(u,i) is the 

time interval between the first and the last purchasing 

time of item i by user u. In our experiments, we set the 

basic unit of duration as three months, so that score(u,i) 

is the number of repetitive purchases of item i during 

three months, averagely, by user u. 

We normalize the scores so that they range from 1 to 

5, and assign the normalized score, scoreN, as the 

rating for item i by user u. These are the implicitly 

assigned ratings mentioned in section 1, which will be 

used in collaborative filtering algorithms later. To 

convert the scores to the normalized scores between 1 

and 5, we need to consider the distribution of score(u, i) 

values in the dataset and the overall maximum and 

minimum values of the score(u, i). 

In our dataset, the maximum of the scores is 22.7 

and the minimum is 1. Figure 2 depicts the distribution 

of the score values for all users and items in our dataset, 

and we can observe the percentage of scores greater 

than 10 is very low (less than 3 %). Therefore, we set 

the score values of 10 or larger as 10. So, we are to 

convert the scores between 1 and 10 to the normalized 

scores between 1 and 5. Considering the distribution of 

the scores shown in Figure 2, we choose a quadratic 

function instead of a linear function for the 

normalization: 

 2( , ) ( , ) ( , )scoreN u i a score u i b score u i c= × + × +  (3) 

where a, b and c are constants. 

 

Figure 2. Percentage of score values for users and 

items overall in our dataset 

To select the three constants by regression analysis 

to properly assign values while considering the 

proportion of the original score values, we determine to 

convert the score of 1 to the normalized score of 1, the 

score of 2 to the normalized score of 2, and the score of 

10 to the normalized score of 5. After fixing three 

points at (1, 1), (2, 2), and (10, 5), we can calculate the 

three constants to obtain a = -5/72, b = 87/72, and c = -

10/72 of the quadratic function of Eq. 3. Our 

normalized scoreN function is as followings: 

25 ( , ) 87 ( , ) 10
( , )

72

score u i score u i
scoreN u i

− × + × −
= (4) 
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3.2 Computing the Similarity 

A critical step in a user-based (or item-based) 

collaborative filtering algorithm is to compute the 

similarity between users (or items) and then to select 

the most similar users (or similar items). 

Of the many different ways to compute similarity, in 

our experiment, we use Jaccard similarity measure 

between two users or between two items, and we 

compare its result with the baseline algorithm using the 

cosine similarity. 

Jaccard similarity between two sets s1 and s2 is 

defined by the number of elements in the intersection 

of the two sets divided by the number of elements in 

the union of them. 

 
s1 s2

sim(s1,s2)=
s1 s2

∩

∪

 (5) 

Favorite-items set and favorite-users set. We define 

favorite-items set, Fi(u), as the set of frequently 

purchased items for each user u, which is the set of 

repetitively purchased items, purchased more than C 

times by user u (C=5 or 10, for example)[12]. We also 

define favorite-users set, Fu(i), as the set of users who 

purchased item i many times, i.e., more than C times. 

After computing the favorite-items set from the 

dataset, we can compute the favorite-users sets in the 

following way: 

for each user u 

for each item i in Fi(u) 

add u into Fu(i) 

We limit the number of elements in Fi(u) to K 

(K=30, in our experiment) in the order of scoreN(u,i) 

values, in other words, Fi(u) contains top-K items in 

terms of scoreN(u,i). Since we treat repetitively 

purchasing items only, it is reasonable to maintain and 

use favorite items only at the recommendation process. 

User similarity and item similarity. We calculate 

user similarity UserSim(u1, u2) for all pairs of users u1 

and u2 by Eq. 6, with Jaccard similarity measure: 

 
( 1) ( 2)

( 1, 2)
( 1) ( 2)

Fi u Fi u
UserSim u u

Fi u Fi u
=

∩

∪
 (6) 

where Fi(u) is favorite-items set for user u. 

Jaccard similarity considers primarily the number of 

common items in Fi(u1) and Fi(u2), regardless of the 

scores of those items. Since we limit the number of 

elements to be contained in Fi(u) to K, and since we 

consider only the items that were purchased in the past 

more than C times repetitively, this similarity has a 

significant meaning. In the aspect of running time, it 

takes shorter time than computing cosine similarity or 

Pearson’s similarity. 

We calculate item similarity ItemSim(i1, i2) for all 

pairs of items i1 and i2, by Eq. 7, with Jaccard 

similarity measure: 

 
( 1) ( 2)

( 1, 2)
( 1) ( 2)

Fu i Fu i
ItemSim i i

Fu i Fu i
=

∩

∪
 (7) 

where Fu(i) is favorite-users set for item i. 

3.3 Computing Associate Items 

Associate items of an item i are the items which are 

frequently bought at the same time with item i by users, 

and an associate items list for each item i contains top-l 

most frequent associate items (l to be explained later). 

To find associate items we employ Apriori algorithm, 

which is one of the association rule mining algorithms 

[10]. 

The Apriori algorithm progresses in multiple stages 

until all of those concurrently purchased frequent item-

sets are obtained. Considering the execution time, 

however, we only carry out two stages and find the 

frequent item-pairs, that is, associate item-pairs. 

In the first stage, every shopping basket is examined 

and the purchase count is increased by one for each of 

the items in the basket (see Figure 3). A one-

dimensional array is used to store the purchase counts. 

In the second stage, the shopping baskets are re-

examined, and the items having the purchase counts 

greater than s, a support threshold value, are found out. 

For each pair of those items obtained, we increment 

freqCount of the pair by one in the item-item matrix 

freqCount. The value of freqCount is the number of 

times the item pair appeared in a same basket in the 

past. 

 

first stage 

for each basket 

for each item in the basket 

add 1 to its purchase_count
 

(into an array to store counts) 

 

second stage 

for each basket 

find frequent items, such that purchase_count > s  

for each frequent item-pairs 

add 1 to its freqCount (into a matrix to store counts) 

Figure 3. Two-pass Apriori algorithm 

The value of s should be set relatively large in order 

to reduce the execution time, and in general, s is set to 

1% of the number of baskets [10]. 

For each item i, its associate items list is obtained by 

finding top-l frequently bought associate items of i, 

that is, top-l items in order of freqCount value of item-

pair. 

3.4 Off-line Preparation Process 

Once a new purchase occurs, since the score of 

corresponding user-item is changed, favorite-items set 

for each user and favorite-users set and associate items 

list for each item are all updated off-line at a regular 

basis (see the lower bottom in Figure 1). Then, we 

recalculate user similarity for all pairs of users, and 
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recalculate item similarity for all pairs of items. Also, 

for each user u, we update l-nearest neighboring users 

set, NeighborU(u), which contains l similar users in 

order of user similarity value with u, UserSim(u, v), v 

∈  U. Similarly, we update l-nearest neighboring items 

set, NeighborI(i) for each item i, which contains l 

similar items with i in order of item similarity value, 

ItemSim(i, j), j ∈  I. U is the set of all users, and I is the 

set of all items. 

3.5 On-line Recommendation Process 

As shown in the upper side of Figure 1, we 

implement recommendation algorithms in three ways: 

user-based collaborative filtering recommendation, 

item-based collaborative filtering recommendation, and 

associate items recommendation. 

User-based collaborative filtering recommendation. 

Whenever a user u logs in, a specific number (= t) of 

items are recommended in order of prediction value, 

predict(u, i), i ∈  I, by the collaborative filtering 

algorithm. For each user u2 contained in the l-nearest 

neighboring users set, NeighborU(u) (= set N), we 

compute predict(u, i) for each item i contained in the 

favorite-items set of u2, Fi(u2), as in Eq. 8. Then, out 

of the items that user u have never purchased, we 

recommend the top-t items in the order of prediction 

values. 

2

2

( ( , 2) ( 2, ))

( , )
( , 2)

u N

u N

UserSim u u scoreN u i

predict u i
UserSim u u

∈

∈

×

=

∑

∑
 (8) 

Since we calculate prediction values for the items only 

in the favorite-items set of l-neighboring users, our 

algorithm runs faster than general collaborative 

filtering methods. 

Item-based collaborative filtering recommendation. 

To seek another top-t recommending items for each 

user u, we examine items in l-nearest neighboring 

items set, NeighborI(j), for each item j which is 

contained in the favorite-items set of u, Fi(u). For each 

i of these items, we compute predict(u, i) as in Eq. 9. 

Then, out of the items that user u have never purchased, 

we recommend the top-t items in the order of 

prediction values. 

( )

( )

( ( , ) ( , ))

( , )
( , )

j Fi u

j Fi u

ItemSim i j scoreN u j

predict u i
ItemSim i j

∈

∈

×

=

∑

∑
 (9) 

Associate items recommendation. For each item i, we 

maintain top-l items in the associate items list (e.g. l = 

10), as explained in section 3.3. For each item in the 

favorite-items set of u, Fi(u), we examine all of their 

top-l associate items. In a similar way to item-based 

collaborative filtering, for each item i of all these, we 

compute predict(u, i) as in Eq. 10, where we use 

freqCount(i, j) value, instead of ItemSim(i, j). Out of 

the items that user u have never purchased, we 

recommend the top-t items in the order of prediction 

values. 

( )

( )

( ( , ) ( , ))

( , )
( , )

j Fi u

j Fi u

freqCount i j scoreN u j

predict u i
freqCount i j

∈

∈

×

=

∑

∑
 (10) 

4 Experimental Evaluation 

4.1 Data sets and Evaluation Metrics 

As experiment data, actual sales data for 15 months 

by Happycoop Co., one of Korean consumers’ 

cooperative companies (http://shop.happycoop.or.kr) is 

employed. The number of items is about 4,000 and the 

number of users is about 5,000, while the number of 

orders is about 988,000. We use the data after grouping 

by users and items, with the condition that the number 

of purchasings is greater than or equal to 5 (C=5). 

To evaluate the quality of the top-t recommendation 

algorithms, we split the dataset into a training set and a 

test set, by randomly selecting one of the non-zero 

entries of each row (i.e., of each user) to be part of the 

test set, and use the other entries for the training set. In 

order to raise accuracy, for each of the experiments we 

perform five different runs, each time using a different 

random partitioning into training and test set. The 

results reported in the next section are the averages 

over these five trials. In all of experiments we set l = 

10 as the number of neighboring users, neighboring 

items, or the size of associate items list, and set t = 30 

as the number of items be recommended by the top-t 

recommendation algorithms. 

Firstly, we measure the quality of our recommendations 

by looking at the number of hits, i.e., the number of 

items in the test set that also present in the top-t 

recommended items returned for each user [17]. If m is 

the total number of users, we compute the recall of the 

algorithm as: 

 
Number of hits

recall
m

=   

A recall value of 1 indicates that the 

recommendation algorithm is able to always 

recommend the hidden item, whereas a recall value of 

0 indicates that the algorithm is not able to recommend 

any of the hidden items. 

Secondly, we compute the mean absolute error 

(MAE) between the ratings (= scores) and the 

predictions [24], 
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m
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where m is the number of predictions made, ri is the 

real rating and pi is the prediction value. The smaller 

the MAE is, the more accurately the recommendation 

algorithm predicts the users ratings. 

Finally, to measure the percentage of users to whom 

at least one item is recommended, we compute the 

recommendation coverage. Even if the recommendation 

algorithm has good MAE performance, if the coverage 

is low, the recommendation is meaningless. We 

compute the coverage as the ratio of the number of 

items in the test set provided non-zero prediction, over 

the total number of users. 

 
( 0)

i
Number of items p

Coverage
m

>

=   

4.2 Experimental Results 

To evaluate our three recommendation algorithms 

for repetitively purchasing items, firstly we measure 

the recall value, which represents the ratio of 

recommendation hits. We label the three algorithms 

user-CF, item-CF and assoc-item. Since existing 

recommendation methods do not consider periodic and 

repetitive purchasing environments, it is difficult to 

directly compare other existing results. Therefore, in 

order to compare with existing similar results, we use 

the commonly used cosine similarity measure to 

implement the user-CF algorithm and label this 

algorithm as baseline. 

Figure 4 shows that although the performance recall 

of all three algorithms are not very high, there are some 

improvements compared with the baseline algorithm. 

Figure 5 and Figure 6 depict prediction performance 

MAE and recommendation coverage, as we define in 

the previous section. For item-based CF algorithm, 

both MAE and coverage have good performance of all, 

and associate-items recommendation algorithm has the 

next good performance.  

 

Figure 4. Recommendation hit ratio: recall 

 

Figure 5. Prediction performance: MAE 

 

Figure 6. Recommendation coverage 

Figure 7 shows the computation time for computing 

each similarity or finding associate-items. This is the 

most time-consuming job for each recommendation 

algorithm. 

 

Figure 7. Computation time for computing similarity 

or finding associate-items 

Our experimental results suggest that we will use an 

item-CF algorithm based on item similarity rather than 

a user-CF algorithm based on user similarity when 

using our system in e-commerce.  

Also, when calculating user similarity or item 

similarity, these results show that it is more efficient to 

use Jaccard similarity than the commonly used cosine 

similarity because of the nature of our system of 

dealing with items that are purchased repetitively. 

The assoc-item algorithm, unlike the item-CF 
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algorithm, analyzes all the baskets in the purchase 

history and calculates the associate items, so it is 

possible to recommend more diverse items to the user. 

Therefore, it is also suggested to use the assoc-item 

algorithm, although the computation time is longer and 

the performance is slightly lower than the item-CF 

algorithm.  

And it is also suggested to combine the item-CF 

algorithm and the assoc-item algorithm to recommend 

the top-N items. 

5 Conclusion 

For regular customers purchasing items repetitively 

in large shopping malls, our recommendation system 

can be used to recommend other items showing a 

periodical and repetitive purchase pattern. By 

analyzing the items’ sales pattern exclusively, we can 

improve the performance of the recommendation for 

repetitively purchasing items. We implicitly assign 

ratings for these items by using the normalized 

repetitive purchase counts, considering overall 

purchasing intervals, and use these rating values as the 

scores for the recommendation prediction. We 

implement user-based and item-based collaborative 

filtering algorithms for recommending these items. 

According to the fact that a set of items are purchased 

together at the same shopping basket for these items, 

we also implement an algorithm to recommend top-t 

associate items using the association rule mining 

algorithm. In our experiments, we compare these three 

algorithms in view of the recommendation hit ratio, 

prediction performance, and recommendation coverage, 

along with computation time for these algorithms. 
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