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Abstract 

The development of intelligent shipping route planning 

systems is important for maritime traffic networks, and 

has attracted considerable attention in the field of marine 

traffic engineering. In practical applications, the 

traditional experience-based planning scheme has been 

widely used due to its simplicity and easy implementations. 

However, the traditional manual procedure is experience-

dependent and time-consuming, which may easily lead to 

unstable shipping route planning in different waters. The 

purpose of this study automatically and robustly 

determines that the optimal shipping route is based on 

artificial intelligence approaches. It is general that 

Genetic Algorithm (GA) and Particle Swarm Optimization 

(PSO) are almost the most popular methods in route 

planning. These two heuristic-based optimization 

techniques benefit from their specific advantages when 

solving different optimization problems. In this paper, we 

proposed a hybrid heuristic scheme by integrating GA 

and PSO to improve the accuracy and robustness of 

shipping route planning in restricted waters. The 

experimental results about both synthetic and real-world 

problems have demonstrated that our proposed hybrid 

approach outperforms the existing schemes in terms of 

both accuracy and robustness, and the approach is helpful 

for optimizing maritime traffic network for the links of 

terminals. 

Keywords: Intelligent systems engineering, Maritime 

traffic network, Shipping route planning, 

Restricted waters, Artificial intelligence 

algorithm 

1 Introduction 

With the rapid development of economy and society, 

the maritime traffic network is becoming more and 

more complex in restricted waters. Meanwhile, with 

the development and the application of wireless mesh 

networks [1-2], sensor networks [3-4], information 

storage [5-6], big data technology [7-8], cloud 

computing [9-10] and intelligence computation [11-14], 

the navigation information storage and transmission is 

have made great progress. And, they laid a solid 

foundation for the maritime traffic network. 

It is very important to optimize the structure of 

maritime traffic network for promoting water 

transportation efficiency. The shipping route 

optimization is an important foundation of optimizing 

maritime traffic network, to improve the intelligence of 

marine traffic. Furthermore, the research work of 

shipping route planning could be implemented in 

support of ship collision avoidance decisions, to 

enhance the safety of marine traffic [15]. The 

traditional experience-based planning scheme has been 

widely used due to its simplicity and easy 

implementation. However, the traditional manual 

method may easily lead to unstable shipping route 

planning for different people in different waters since it 

is essentially experience-dependent and time-

consuming [16-17]. To overcome these limitations, 

there is a great potential to use the artificial intelligence 

techniques to solve the problem of shipping route 

planning in restricted waters. 

In current literature, a large number of artificial 

intelligence methods have attracted increasing attention 

due to their great potential for solving complex 

networks and real-world problems, such as genetic 

algorithm (GA) [18], particle swarm optimization 

(PSO) [19], ant colony optimization (ACO) [20], 

artificial neural network (ANN) [21], artificial fish 

swarm algorithm (AFSA) [22], artificial bee colony 

algorithms (ABCA) [23], and so on. These artificial 

intelligence methods have obtained successful 

applications on solving route planning of different 

networks, and they are also well applied to solve the 
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road traffic and tail traffic by combining with entropy, 

fuzzy mathematics or other theories [24-25]. The GA 

and PSO are compared to study real-time unmanned 

aerial vehicle path planning [26]. In this work, we 

mainly focus our attention on the first two methods 

(i.e., GA and PSO) due to their essential features of 

robustness and easy implementation. 

In order to reduce the shipping costs and ship 

collision risks in restricted waters [27], it is necessary 

to optimize shipping route for improving the maritime 

traffic network. For instance, Braekers et al. [28] 

proposed a decision support model to determine the 

optimal shipping route along a single waterway. A 

multi-input fuzzy inference system was introduced to 

optimize the transoceanic route [29]. Zhang et al. [30] 

handled the path control problem for a ship steering in 

restricted waters using sliding model technique. The 

evolutionary algorithm-based decision support systems 

have also been used to help the operator to choose 

safer ship trajectories [15, 31-32]. Due to the great 

success of GA in solving complex optimization 

problems, GA-based methods have gained increasing 

attention in optimal shipping route planning [33-34]. 

PSO is typically able to solve the shortest path routing 

problems [19]. Thus it could be naturally extended to 

assist the operator to determine the safe shipping route 

to avoid ship collision in restricted waters [35]. 

However, the disadvantage of local minima trapping 

has constrained the further practical usage of GA. One 

drawback of PSO is that it often suffers from 

undesirable premature convergence and slow 

convergence rate [36]. In contrast, GA and PSO have a 

similar property in their inherent parallel characteristics, 

whereas several experiments have demonstrated that 

they have their specific advantages when dealing with 

different problems [37]. In order to improve the 

shipping route planning, there is a huge potential to 

combine GA with PSO to maximum the advantages of 

each individual heuristic approach while simultaneously 

overcoming their specific limitations. The basic idea 

behind the hybrid strategy of artificial intelligence 

algorithms is to overcome critical problem such as 

local minima trapping, premature convergence and 

memory loss. 

During the past years, many researchers have tried 

to combine GA with PSO to solve complex network 

and real-world problems. For instance, the hybrid GA-

PSO algorithm was used to improve solution accuracy 

for traveling salesman problems (TSPs) [38-39]. 

Marinakis and Marinaki [40] proposed a hybrid 

algorithmic nature inspired methodology for the 

effective handling of vehicle routing problem in road 

traffic network. This algorithm generated satisfactory 

results in two set of benchmark instances. By taking 

the advantages of both GA and PSO algorithms into 

account, Sheikhalishahi et al. [41] presented a novel 

GA-PSO algorithm for reliability redundancy 

allocation problem in series, series-parallel, and 

complex (bridge) systems. Although these hybrid GA-

PSO algorithms have been widely studied, to the best 

of our knowledge, no research has been conducted on 

optimal planning of shipping route for maritime traffic 

networks thus far. In this paper, a hybrid GA-PSO 

approach will be used to help ship handlers to choose 

the optimal shipping route for realizing maritime traffic 

network optimization in restricted waters. To evaluate 

the proposed approach, numerical experiments will be 

performed on both synthetic and real-world problems. 

The remainder of this paper is organized into several 

sections. Section 2 briefly explains the GA and PSO 

algorithms. The hybrid heuristic approach by 

integrating GA and PSO is also proposed in this 

section. In Section 3, the proposed hybrid GA-PSO 

approach is effectively used for intelligent shipping 

route planning systems. Experimental results on both 

synthetic and real-world problems are illustrated in 

Section 4. Finally we conclude this paper by 

summarizing our contributions and discussing the 

future work in Section 5. 

2 Hybrid Framework for GA and PSO 

Algorithms 

In this section, we will briefly explain the basics of 

GA and PSO heuristic methods. To improve the 

performance of shipping route planning, the hybrid 

heuristic approach is presented by integrating GA and 

PSO. The combined GA and PSO can generate a better 

performance than either GA or PSO alone. 

2.1 Genetic Algorithm 

Originated from the pioneering work of J.H. Holland 

in the 1970s [42], GA has emerged as one of the most 

powerful computational method for solving complex 

real-world problems. Commonly GA contains three 

different stages in the process of global solution 

searching [43]: 

‧Stage 1: generating an initial population. 

‧Stage 2: evaluating a fitness function. 

‧Stage 3: producing a new population. 

For a specific problem, the populations in GA are 

formulated as the chromosomes of potential solutions 

(called individuals). This algorithm is an iterative 

process where new populations are generated based on 

individual adaption and some heuristic operators 

(crossover and mutation). In each generation, the 

fitness function1 of each individual in the population is 

calculated. The individuals with the best fitness values 

have a higher probability of reproducing and 

generating new individuals by crossover and mutation. 

In contrast, the individuals with lower fitness values 

could be eliminated with a higher probability. The 

                                                           

1 The fitness function denotes a measure of the quality of the 

represented solution [44]. 
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crossover operator creates two offsprings (new 

candidate solutions) by recombining the information 

from two randomly selected individuals of the 

population. It is generally thought that a good GA 

performance is closely associated with a high crossover 

probability. The mutation operator generates a new 

individual by introducing a small change in a single 

individual. Since frequent application of this operator 

would lead to non-robust solution, a low mutation 

probability is usually assigned to enhance GA 

performance. 

Using these search operators (i.e., selection, 

crossover and mutation), the detailed flow chart of the 

algorithm is sketched in Figure 1. This procedure is 

repeated several times until a specified topping 

criterion is satisfied, and the optimal chromosome of 

the last generation is then selected as the final solution.  

 

Figure 1. The detailed flow chart of GA algorithm 

2.2 Particle Swarm Optimization 

It is well known that PSO is an evolutionary 

computation technique which is based on swarm 

intelligence. This artificial intelligence technique is 

developed by Kennedy and Eberhart who was inspired 

by the simulation of social behavior [45]. Analogous to 

GA, PSO is initialized with a population of particles 

(or, individuals) being randomly generated. Each 

particle in PSO represents a potential solution and has 

a position denoted by a position vector 
i
x . The moving 

velocity of each particle can be represented by a 

velocity vector 
i
v . The particles have memory and 

each particle keeps track of its own previous position, 

which is associated with the best fitness in a vector 
i
p . 

Furthermore, the best position among the population of 

particles is kept track of as 
g

p . In conventional PSO 

approach, each particle moves in the problem space 

according to its own experience and other particles’ 

experiences [15]. At each time step k , by using the 

individual best position k

i
p , and the global best 

position k

gp , the i-th particle is manipulated according 

to the following equations 

 1 1 1

1 1, 2 2,
( ) ( )k k k k k k k k k

i i i i i i g iv w v c r p x c r p x
+ + +

= + + − + −  (1) 

 1 1k k k

i i i
x x v

+ +

= +  (2) 

where i = 1, 2, …, N, and N is the size of the 

population; w is the inertia factor; 
1
c  and 

2
c  

respectively denote the cognitive and social parameters; 

1
r  and 

2
r  are random numbers uniformly distributed in 

the range [0, 1]. Figure 2 illustrates the description of 

velocity and position updates for a two-dimensional 

(2D) problem space. 

 

Figure 2. Description of velocity and position updates 

in PSO for a 2D problem space 

To enhance the exploration and exploitation 

capacities of the PSO, a linear evolution with respect to 

the algorithm iteration has been introduced in [46] to 

update the inertia factor, i.e., 

 1

max max min

max

( )k k
w w w w

k

+

= − −  (3) 

where 
max
k  is the maximum iteration number, 

max
w =0.9 and 

min
w =0.4 denote the maximum and 

minimum inertia factor values, respectively. Based on 

Eqs. (1) and (2), the population of particles could 

converge quickly and tens to cluster together from 

different directions. Compared to GA, the advantages 

of PSO are that PSO is much easier to implement and 

there are only a few parameters to tune. Moreover, the 

flexibility of PSO to maintain the trade-offs between 

local and global exploration of the problem space helps 

to suppress the premature convergence of elite strategy 

in GA, and also promotes searching ability [47]. 

Therefore there is a great potential to combine GA with 

PSO to form a hybrid algorithm. In the next section, 
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the hybrid GA-PSO algorithm will be proposed to 

enhance the optimization performance in practice. 

2.3 GA/PSO-Hybrid Algorithm 

Based on the above description, we proposed a 

hybrid GA-PSO algorithm by taking the advantages of 

both GA and PSO. As shown in Figure 3, this proposed 

algorithm is initialized by a population of random 

solutions and searches for the optimal solution through 

an iterative scheme. During this searching process, an 

evolution of the solution is performed by combining 

GA with PSO. In particular, the optimal solution can 

be found by the following steps: 

 

Figure 3. The detailed flow chart of hybrid GA-PSO 

algorithm 

‧ Step 1 (Initialization): Randomly initialize the 

population of individuals according to several 

limitations including individual dimensions, 

searching positions and velocities. These individuals 

are regarded as chromosomes in GA operator and 

particles in PSO operator. 

‧ Step 2 (Evaluation): The evaluation function (or, 

fitness function) should be defined to measure each 

individual’s fitness value. We sort the individuals 

according to the calculated fitness value. The 

individual with the minimum fitness value is 

regarded as the global best individual. 

‧ Step 3 (Partition): The individuals are divided into 

two groups based on a predefined partition strategy. 

In this work, GA is used to update the top half of 

individuals. The bottom half of individuals are fed 

into PSO to update the velocities and positions. 

‧ Step 4 (GA Operator): As shown in Figure 1, GA 

commonly uses three operators (i.e., selection, 

crossover and mutation) to update each individual. 

Let 
GA

G  denote the best position in GA. 

‧ Step 5 (PSO Operator): Particles update their 

velocities and positions according to Eqs. (1) and (2). 

Let 
PSO

G  denote the best position in PSO. 

‧ Step 6 (Comparison and Updating): Comparing 

GA
G  and 

PSO
G , if 

GA PSO
≤G G , the global best 

position becomes 
GA
.Gbest  The 

PSO
Gbest  and 

PSO
G  are respectively replaced by 

GA
Gbest  and 

GA
.G  Otherwise, the global best position becomes 

PSO
.Gbest  The 

GA
Gbest  and 

GA
G  can be replaced 

by 
PSO

Gbest  and 
PSO

G , respectively. 

‧ Step 7 (Recursion): If a specified topping criterion 

is not satisfied, repeat Step 2 to Step 6 until the 

topping criterion is met. 

‧ Step 8 (Output): If a specified topping criterion is 

satisfied, we can obtain the final optimal solution 

accordingly. 

3 GA/PSO-Hybrid Algorithm for Robust 

Optimal Planning of Shipping Route 

In this section, the hybrid GA-PSO algorithm will be 

used to design the optimal shipping route for maritime 

traffic networks in restricted waters. It is well known 

that many constraints limit the optimal route planning, 

such as distance, environmental and maneuverability 

constraints. To combine these different constraints, it is 

important to design a proper fitness function to 

enhance the satisfactory performance of shipping route 

planning. In this paper, our fitness function is 

composed of three parts related to the considered 

constraints. The detailed information is as follows: 

3.1 Distance Constraint 

In current literature, distance constraint has been 

widely used in optimal shipping route planning. This 

constraint is also considered into our fitness function. 

Let x and y denote the horizontal and perpendicular 

directions, the total distance for the shipping route is 

defined as follows 

 2 2

1 1

1

( ) ( )
I

n i i i i

i

f x x y y
− −

=

= − + −∑  (4) 

where I denotes the total number of points in shipping 

route. The shorter route brings lower oil consumption 

to reduce economic cost. 

3.2 Environmental Constraint 

Let N denote the number of dangerous sources, such 

as islands, shoals and submerged rocks et al. The 

closest distance between ship and any dangerous 

source is given by 
n

D . By considering all the 
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dangerous sources, we define the environmental 

constraint in this work as follows 

 
1

1

min
E

n N n

f
D

≤ ≤

=  (5) 

Generally speaking, the small distance 
n

D  could 

bring high risk of stranding. To improve the ship 

navigation safety, it is necessary to keep a proper 

distance between the moving ship and any dangerous 

source. 

3.3 Maneuverability Constraint 

Besides the distance and environmental constraints, 

maneuverability constraint has also become an obstacle 

in optimal shipping route planning. In this work, we 

only consider the limitation of steering angle, which is 

visually illustrated in Figure 4. 

 

Figure 4. Description of steering angle θ  

Let 
AB

D , 
BC

D  and 
AC

D  denote the distances 

between two corresponding points. According to the 

law of cosines, the steering angle in Figure 4 can be 

obtained, i.e., 

 
2 2 2

arccos( )
2

AB BC AC

AB BC

D D D

D D
θ π

+ −

= −  (6) 

In practice, the steering angle θ  should be less than 

or equal to the maximum angle 
max

θ . Therefore, the 

maneuverability constraint is defined by considering 

the following cost function 

1 max
(max / 1)

j J j

M

epx
f

θ θ
≤ ≤

−⎧
= ⎨

+∞⎩

1 max

1 max

max

max

j J j

j J j

θ θ

θ θ

≤ ≤

≤ ≤

<

<

 (7) 

where J denotes the total number of steering angles. 

3.4 Fitness Function 

As discussed aforementioned, the fitness function 

defined in our hybrid GA-PSO algorithm is composed 

of three terms. By combining the distance, 

environmental and maneuverability constraints, the 

final fitness function is defined as follow 

 
cos t D E M
f f f fα β λ= + +  (8) 

where , , 0α β λ >  denote weight parameters, which 

play important roles in intelligent shipping route 

planning systems for maritime traffic networks. In 

practical applications, these parameters are preselected 

according to the operator preference. If distance 

constraint is more important in route planning, α  

should be larger in the hybrid GA-PSO algorithm. In 

contrast, we should pay more attention on β  and λ , if 

these two parameters play more important roles. 

4 Experimental Results and Discussion 

In this section, the hybrid GA-PSO algorithm for 

optimal shipping route planning was evaluated on both 

synthetic and real-world problems. For both synthetic 

and real-world problems, the parameter values in the 

fitness function (8) were set as 2α = ×10-2, β = 5×10-1 

and λ = 5×10-1. The iterative scheme in Figure 3 was 

stopped when the maximum number of iterations 

(K=200) was reached. All experiments mentioned in 

this paper were implemented using Matlab R2014a 

(The MathWorks, Natick, Inc., MA) on a machine with 

3.10 GHz Intel Core i5-2500 CPU and 4GB RAM.  

4.1 Validation on Synthetic Data 

In synthetic data experiment, a 20 20×  searching 

region was used as the restricted waters shown in 

Figure 5. In addition, four different kinds of dangerous 

sources were considered, such as two circles, one 

square and one trapezoid. These dangerous sources 

were located in different waters and resulted in 

increased risk of shipping. Before implementation of 

shipping route planning, the searching region could be 

discretized with multiple scales of grids. As shown in 

Figure 5, A and B denote the starting and end points, 

respectively. The searching regions near dangerous 

sources were discretized with small scale of grids to 

enhance searching accuracy; whereas the other 

homogeneous regions were discretized with large scale 

of grids to reduce computational cost. Thus, this 

adaptive scheme of discretization setting for the hybrid 

GA-PSO algorithm could maintain a good balance 

between computational cost and accuracy. 

 

Figure 5. From left to right: searching region in 

synthetic restricted waters and its corresponding 

discretization setting 
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The simulation results of shipping route planning in 

maritime traffic network are summarized in Table 1. 

To reduce randomness, GA, PSO and GA-PSO 

algorithms ran 10 times to obtain the average results. 

As illustrated in Table 1, PSO yielded the best 

searching performance if we only considered the 

distance constraint as fitness function in this paper. 

However, this simple assumption could significantly 

increase the risk of shipping due to complex 

environmental conditions in restricted waters. By 

taking distance, environmental and maneuverability 

constraints into consideration, the proposed hybrid 

GA-PSO algorithm generated the best shipping route 

planning with the highest level of robustness. In Figure 

6, we considered a general case of shipping route 

planning in restricted waters. Its discretization setting 

for optimal route searching could be found in Figure 5. 

It can be observed that GA resulted in the longest 

shipping route and PSO generated the shortest version. 

However, the shipping route generated by PSO was 

very close to the dangerous source, which brought high 

risk of stranding in practice. In contrast, the hybrid 

GA-PSO algorithm could keep a proper distance 

between the moving ship and dangerous sources. Thus 

this proposed algorithm is capable of maintaining a 

good trade-off between optimizing shipping route 

length and reducing shipping risk. 

Table 1. The optimal route lengths and fitness vales 

(Mean±Std) of different methods for one synthetic data 

Methods GA PSO GA-PSO 

Lengths 33.602±4.625 29.998±3.628 30.318±3.267

Fitness 

Values 
1.822±0.285 1.701±0.278 1.406±0.239 

 

Figure 6. Optimal shipping routes generated by GA, 

PSO and GA-PSO, respectively 

4.2 Validation on Real-World Data 

In order to verify the consistency of hybrid GA-PSO 

algorithm on real-world data, the experiment was 

carried out on the maritime traffic network between 

Penglai City and Nanchangshan Island. As shown in 

Figure 7, A and B respectively denote the starting and 

end points. A to B is one route of the maritime traffic 

network, the ship should sailing through the restricted 

waters between Penglai City and Nanchangshan Island. 

Much attention has been paid to the optimal planning 

of shipping route in these important waters. The 

traditional method was implemented according to the 

operators’ experience and subjective judgments. 

However, the time-consuming and operator- dependent 

operations in manual methods would lead to decision 

error and reduce the shipping route planning 

reproducibility. In particular, the decision error could 

bring a negative effect on the shipping cost. Therefore, 

developing an automatic method to optimize the 

shipping route is an interesting and demanding 

research topic in practice. In this paper, the hybrid GA-

PSO algorithm will be used to deal with the problem of 

optimal shipping route planning. 

 

Figure 7. Searching region in real-world restricted 

waters and its discretization setting (shown by red 

grids) 

The planning performance of our automatic GA-

PSO algorithm was verified by the comparison with 

traditional operator-dependent method. The final 

optimal results of shipping route planning could be 

found in Figure 8. It can be observed that the shipping 

route generated by GA-PSO (labeled in blue) is 

roughly similar to the manual result (labeled in red). 

This optimization result illustrates that the proposed 

GA-PSO algorithm could play an important role in the 

practical traffic network optimization. Compared with 

traditional manual method, GA-PSO could improve the 

work efficiency and reduce the economic cost. 

Moreover this automatic algorithm could be easily 

extended to different restricted waters only if we could 

collect the corresponding environment parameters. In 

Figure 8, our shipping route looks smoother because 

the depth of water was not considered in this work. 

This limitation may result in increased risk of stranding 

in restricted waters. To further enhance the safety of 

maritime navigation, in our future work the depth of 

water will be taken into consideration during optimal 

shipping route planning. 
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Figure 8. The final optimal results of shipping route 

planning generated by operator’s experience and 

hybrid GA-PSO algorithm, respectively 

5 Conclusions and Future Research 

In this paper, a hybrid GA-PSO algorithm is 

proposed to deal with the problem of shipping route 

planning for maritime traffic networks. Numerical 

experiments performed on both synthetic and real-

world problems are presented to indicate how the 

proposed hybrid algorithm may be used in practical 

applications. The proposed robust GA/PSO-hybrid 

algorithm could significantly outperform other 

competing shipping route planning methods (e.g., GA 

and PSO) in terms of both qualitative and quantitative 

evaluations. Furthermore, the proposed method is 

capable of generating planning results with higher 

accuracy and robustness. However, the proposed 

method has several potential limitations in its current 

version. To further improve the performance of 

intelligent shipping route planning for maritime traffic 

networks, our work will be extended in the following 

directions: 

‧ The optimal shipping route planning proposed in 

this work was implemented by considering only 

static constraints, such as distance, environmental 

and maneuverability constraints. In practice, both 

water velocity and wind speed can be changed 

dynamically in real-time. These dynamic constraints 

could cause more difficulties and constrain the 

further practical usage of hybrid GA-PSO algorithm 

in accurate and robust route planning. It is 

specifically expected that further work will 

incorporate the dynamic constraints into our fitness 

function (8) to ensure more satisfactory performance 

of shipping route planning in restricted waters. 

‧ In this work we only considered the two-

dimensional (2D) searching region in restricted 

waters for shipping route planning in maritime 

traffic network. The 3D information, e.g., depth of 

water, is ignored in the proposed hybrid GA-PSO 

algorithm. It is well known that the depth of water 

also plays an important role in guaranteeing high-

level safety of maritime navigation. Therefore it is 

also important to study the depth of water to make 

route planning more available in practical 

applications. 

Although there remain limitations in our proposed 

method for intelligent shipping route planning, we still 

believe there is a great potential to use the hybrid GA-

PSO algorithm to optimize shipping route for maritime 

traffic networks in practical applications. In the future, 

the hybrid GA-PSO algorithm can be used to optimize 

the whole maritime traffic network by optimizing 

shipping route of terminals. 
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