
QRED: A Q-Learning-based Active Queue Management Scheme 1169

QRED: A Q-Learning-based Active Queue Management Scheme

Yuhan Su1, Lianfen Huang1, Chenwei Feng2*

1 Department of Communication Engineering, Xiamen University, China
2 Department of Communication Engineering, Xiamen University of Technology, China

suyuhan066@foxmail.com, lfhuang@xmu.edu.cn, cwfeng@xmut.edu.cn

*Corresponding Author: Chenwei Feng; E-mail: cwfeng@xmut.edu.cn

DOI: 10.3966/160792642018081904019

Abstract

The Active Queue Management (AQM) algorithm is

one of most important research fields in network

congestion control. To adjust the maximum dropping

probability (maxp) according to the network situation the

maxp calculation based on the RED algorithm is

improved using the Q-learning algorithm, and a new

algorithm, known as QRED (Q-learning RED), is

proposed. The self-adaptive adjustment for the maxp is

achieved using the QRED algorithm and the queue length

stability in a dynamic network environment is realized. In

addition, the QRED algorithm not only avoids the

sensitivity of the RED algorithm parameters, but also

adapts the packet loss rate according to the specific

network service type. Results based on the NS2

simulation show that the QRED algorithm has better

stability in complex network environments, and hence,

are superior to the RED active queue management

algorithm.

Keywords: Network congestion control, Active queue

management, Q-learning, RED algorithm,

5G

1 Introduction

The increasing number of Internet users brings

growing congestion to the Internet. In order to solve

the network congestion problem [1-5], it is not enough

to rely solely on the TCP congestion control

mechanism [6] provided by the source node, so that the

network itself is also involved in congestion control.

Congestion control based on the intermediate node

includes two parts: queue scheduling and queue

management [7]. The former is used to solve the data

network bandwidth distribution problem, focusing on

network fairness. The latter aims at maintaining

routing squadron stability by choosing a certain packet

drop probability based on the route circumstance.

Queue management algorithms can be divided into two

categories: passive queue management (PQM) and

active queue management (AQM). The traditional

Drop-Tail algorithm is based on the PQM algorithm

mechanism, in which the packet drop probability is

controlled by setting a maximum value for the queue.

The Drop-Tail, however, may cause several problems,

such as network deadlock, full queue, global

synchronization and delay due to a continuously full

queue. In 1993 Floyd proposed the famous RED [8]

congestion control mechanism which effectively

improved the Drop-Tail. The RED algorithm evaluates

the changes in network congestion by calculating the

average queue. When the average queue length

increases rapidly, it will increase the labeled packet

drop probability to inform the sender to appropriately

reduce the transmission rate, to ease network

congestion. However, for the reason that RED is

sensitive to the parameter settings, a sudden increase in

the packet drop probability up to 1 may occur when the

average queue length is greater than the queue length

upper limit. Subsequently, the Floyd and Feng groups

proposed the GentleRED [9] and ARED [10], [11]

algorithms, respectively. The former improves the

RED algorithm design patterns for packet drop

probability calculation. When the average queue length

is greater than the upper queue threshold, the packet

drop probability linearly increases to 1 with the

increase in queue length. The latter introduces

increasing and decreasing coefficients, to adaptively

adjust the packet drop probability according to the

degree of congestion. Although GentleRED improves

RED algorithm performance in some ways, the

sensitivity to parameters defect still exists in

GentleRED, and consequently the stability and

robustness is poor when encountering sudden flow.

With more complex parameter settings the ARED is

more sensitive to the parameters.

1.1 Related Work

To our knowledge, relatively few researches have

been conducted on congestion control based on the

learning algorithm. In [12] a new algorithm, known as

DEEP BLUE, is proposed to improve the conventional

BLUE algorithm [13], in which the fuzzy theory and

reinforcement learning theory are applied to the

congestion control algorithm. Using the fuzzy Q-

Learning algorithm to adaptively select the BLUE

1170 Journal of Internet Technology Volume 19 (2018) No.4

algorithm parameters according to the network

circumstances, DEEP BLUE solves the lack of

adaptability problem in the BLUE algorithm. It also

improves the convergence speed and algorithm

precision. Integrating the reinforcement learning idea

and gradient descent method, the AQM algorithm is

proposed in [14]. The AQM uses the link rate matching

and queue length as the optimization objective. It was

shown that through adaptive update step size

adjustment and packet drop probability direction, the

queue length can quickly converge to the target value

with a smaller jitter. [15] combined with reinforcement

learning and neural networks to solve the congestion

problem of Broadband Integrated Services Digital

Networks (BISDN). [16] proposed the AHC (Adaptive

Heuristic Critic) algorithm based on reinforcement

learning, using the idea of Temporal-Difference

learning to learn the original experience for congestion

control, without considering the dynamic model of the

environment. [17] solved the dynamic high-speed

network congestion problem using multi-agent

reinforcement learning methods.

Many scholars have improved the AQM algorithm

in recent years. An active queue management

algorithm based on the fuzzy neural PID (FNPID)

algorithm is presented in [18]. The fuzzy logic part is

used to calculate the learning rate, while the neural

network PID calculates the packet drop probability

using the weighted momentum gradient learning

algorithm. [19] presented an improved algorithm called

FlowRED based on this type of protocol. The

algorithm is based on the original RED algorithm for

increased UDP packet drop probability to improve the

algorithm fairness. In [20] an improved gCHOKe

algorithm, sgCHOKe (Sampling based gCHOKe) is

proposed, through analyzing the non-response flows hit

low responsiveness, which samples several packets

from the queue and compares them with the packet

arrival and employs a new packet-drop mechanism.

The above methods improved the congestion control

algorithms in some respects but did not obviously

improve other network performances, such as

throughput, delay, etc., and cannot adapt to different

network service type transmission. Some algorithms

increased the complexity. There are also some

congestion control algorithms based on learning

algorithms such as [15-17], did not consider the

learning convergence problem.

The present paper proposes a new algorithm, known

as QRED (Q-learning RED), based on the intelligent

processing ability characteristics of the Q-learning

algorithm. The QRED algorithm optimizes the

maximum dropping probability (maxp) calculation

method by designing a learning controller based on the

Q-learning algorithm [21], [22] to adaptively select

maxp, it partly eliminates the parameter sensitivity in

the RED algorithm and improves the overall network

performance. Moreover, the QRED algorithm can

adaptive adjustment parameters according to the

different types of network service transmission, so it

can support the network slicing scene [23-26] in 5G

network.

1.2 Our Contributions

In this paper, the problem of RED algorithm is

deeply studied, especially the parameter sensitive

problem. Aiming at this problem, this paper proposes

A Q-Learning-based Active Queue Management

Scheme: QRED. This algorithm adaptively learn RED

parameter maxp in the current network scene through

the Q-learning algorithm. And the RED algorithm

parameters are selected according to the optimal value

after learning iteration. In addition, we propose an

actions selection strategy based on the RED algorithm:

G-Policy. This policy can speed up the Q-value

convergence and improve learning efficiency. In

general, The QRED algorithm eliminates the parameter

sensitive problem, improves the throughput of the

system, and reduces the end-to-end transmission delay.

The paper is organized as follows. Section 1 covers

the related work. In Section 2, we mainly introduce the

RED Algorithm and analysis its existing problems. In

addition, we propose an active queue management

algorithm based on Q-learning. Performance

evaluation has been conducted in Section 3. Finally,

the paper is concluded in Section 4.

2 QRED Algorithm

2.1 RED Algorithm

The RED algorithm was proposed by Floyd Van and

Jacobson Sally to realize router congestion control. A

router using the RED algorithm will mark the data

packets that arrive at the router. It will send packets

that exceed its buffering zone to the sender so that the

sending end can reduce the transmission window to

avoid congestion. The algorithm marks the data

packets with certain randomness to avoid congestion in

the early stage. This approach is called the random

early detection (RED) algorithm.

The RED scheme drops packets with a certain

probability by computing the average queue length

(avg) to notify traffic sources about the early stages of

network congestion. The average queue length is

calculated as the result of the exponentially weighted

moving average (EWMA) [27], which really acts as a

low-pass filter that smoothes out the burstiness of the

instantaneous queue length [28] to provide a more

stable measure. The degree of smoothing is determined

by weighting factor wq. In addition, the average queue

length is expressed as：

1

(1) , 0
,

(1) ,

q q

q

w avg w q q if q
avg

w avg otherwies

− × + × × <⎧⎪
= ⎨

− ×⎪⎩
 (1)

QRED: A Q-Learning-based Active Queue Management Scheme 1171

where q is the current queue length, wq ∈[0,1] is the

weight equivalent to the low pass filter time constant,

m is the number estimated by some function which is

dependent on idle time of the router. The value of wq is

very important. If it is set too large temporary

congestion cannot be filtered out. On the contrary, if it

is set too small the avg response to changes in the

actual queue length will be too slow for the router to

detect the initial congestion stages.

In addition to EWMA weight wq, RED has three

more parameters, i.e., minimum threshold minth,

maximum threshold maxth, and the maximum dropping

probability maxp at maxth. If the average queue length

is below minth, RED drops no packets. However, if the

average queue length increases above minth but is

below maxth, RED drops incoming packets with a

probability proportional to the average queue length

linearly. When the average queue length exceeds maxth,

all the arriving packets are dropped. The dropping

probability pb

can be calculated using the algorithm’s

internal data variables and the average queue obtained

by reading the buffer, i.e.,

0,

()
,

1,

p th

b

th th

max avg min
p

max min

⎧
⎪ −⎪

= ⎨
−⎪

⎪⎩

| [0,]

| [,)

| [,]

th

th th

th

avg min

avg min max

avg max

∈

∈

∈ +∞

. (2)

The packet number between the first and second

packet drop probability settings should not be too large

so that the packet drop probability should vary with the

number of packets between the two packet drop

probability settings,

 ,
1

b

a

b

p
p

count p
=

− ×

 (3)

where count is the number of unmarked packets

between the two packet drop probability settings and pa

is the packet drop probability. The packet drop

probability should be a function of avg, since avg can

reflect the degree of congestion. Based on the above

analysis one can plot the curve of pb varying with avg

as Figure 1.

1

maxthminth

maxp

0 avg

pb

Figure 1. RED’s packet dropping probability curve

The RED algorithm solved the global synchronization

problem in the Drop-Tail algorithm, but there were still

several problems remaining which include:

(1) Parameter sensitivity [29]: In order to achieve

good packet loss rate, time delay and throughput

performances under various network loads it is

necessary to configure appropriate parameters.

(2) Fairness issue [30]: The RED algorithm did not

effectively solve the fair competition problem for the

network resources between the TCP and UDP flows in

the transport layer.

2.2 Q-Learning Algorithm

As one of the main reinforcement learning

algorithms [34], Q-learning is a model-free learning

method which provides the intelligent system with the

ability to select the optimal action according to the

action sequences from experience in the Markov

environment [32]. A key assumption of Q-learning is

that the interaction between the agents and the

environment can be treated as a Markov decision

process (MDP), i.e., the current state and action of the

agent will determine the state transfer probability

distribution and the next state with an immediate

reward. The goal of Q-learning is to find a policy that

can maximize the reward.

The Q-value is an important parameter in Q-learning.

It is defined as the sum of rewards for executing the

current related actions and those to be performed

subsequently in accordance with a certain strategy. A

given state s and action a correspond to a given Q-

value Q(s,a). Q-value is used in the learning process to

select the action. If the subsequent actions are

performed according to the optimal polices the

corresponding Q-value is referred to as the optimal Q

value Q*,

* *(,) (,) (, ,) (,),Q s a r s a T s a s maxQ s aγ ′ ′ ′= + ∑ (4)

where T(s, a, s') represents the transfer probability

from state s to state s' via action a, r(s,a) represents the

reward for executing action a from state s, γ∈(0,1) is

the discount factor, which indicates the degree of

farsightedness. If the γ value is small, the system pays

attention to only the recent actions. If γ is large the

actions during a relatively long period of time are

involved. An agent learning process can be viewed as

selecting an action from a random state using a strategy.

The value of Q(s,a) is updated according to

1
(,) (1) (,) [(,)],

t t
Q s a a Q s a a max s aγ

+
′ ′= − + + (5)

where α∈(0,1) is the learning factor used to control the

speed of learning: the greater the value of α, the faster

the convergence speed. After performing the selected

action the agent observes the new state and the reward

obtained, and then updates the Q-value of the state and

action based on the maximum Q-value of the new state.

In this way the agent continually updates the action

1172 Journal of Internet Technology Volume 19 (2018) No.4

according to the new state until it arrives at the

terminal state with an optimal Q-value Q*. A block

diagram of the Q-learning algorithm is given in Figure

2.

Internal State

External State

Current

Cognition

Q-value Update

Q-value

Calculation

Action

Selection

Action

Execution

Figure 2. Q-learning process diagram

2.3 QRED Algorithm

In the RED algorithm the relationship between the

packet drop probability and the average queue length is

linear, so that a relatively high packet drop probability

may occur near the minimum threshold when the

network is not in a serious congestion state. However,

when the network is in a serious congestion state near

the maximum threshold and there is a need for higher

packet drop probability to ease network congestion, the

parameter maxp is the maximum drop probability

before the packet dropping probability jumps to 1. In

this stage too large a value for maxp may lead to a

heavy congestion indication, serious grouped packet

dropping, and hence decrease in the network

throughput and buffer occupation. Conversely, too

small a value for maxp will result in a light congestion

indicator and buffer overflow, forming the Drop-Tail

mode. For these reasons it is difficult to find an

appropriate parameter maxp that can adapt to a variety

of network environments and deal with a burst in

traffic, so it is necessary to improve the packet drop

probability function.

In this paper, Q-learning algorithm is used to solve

the parameter sensitivity problem of RED algorithm,

considering that Q-learning has model-independent

characteristics, it can obtain the optimal system

strategy under the condition that the environment

transfer function and the return expectation cannot be

get, conform the actual situation of network congestion.

The basic idea of the QRED algorithm is: by

introducing an offline Q-learning controller into the

RED algorithm, the maxp is adjusted according to the

network congestion, so as to achieve reducing the RED

algorithm parameter sensitivity. The system model

performance goal is to maximize throughput or

minimize the delay. The system model can be

established as follows:

1

,

T

t

t

Max C C

=

=∑ (6)

1

,

T

t

t

Min d D

=

=∑ (7)

where T is the total simulation time of the system. Ct

represents the throughput at t. Dt is the transmission

delay at t.

The learning process of Q-learning algorithm will

affect the system delay, so we choose the offline

learning, it means that the learning block is set out of

the system. The flow chart of the QRED algorithm is

shown in Figure 3.

Sender Policy RED

Q-learning

State

Quantization

Reward

Q-Value

Converge？

Optimal

Q-Value

Replace

Receiver

Y

N Offline learning

Action

Figure 3. QRED algorithm

In the QRED algorithm, the learning process is

defined by the triplet {s, a, R}, where s is the set of

states, the set of average queue lengths (avg), a is the

set of actions, that is, the set of maxp, R is the reward

function. Q-learning controller to perceive the current

network, its corresponding agent, states, actions,

reward function, policy is defined as follows:

Agent. Take the Q-learning controller as an agent, the

agent store a table for the Q-value based on the state-

action pair of the network, as shown in Table 1.

Table 1. Q-value

Action

State

a1 a2 ... a13 a14

s1 Q(s1,a1) Q(s1,a2) ... Q(s1,a13) Q(s1,a14)

s2 Q(s2,a1) Q(s2,a2) ... Q(s2,a13) Q(s2,a14)

...

s13 Q(s13,a1) Q(s13,a2) ... Q(s13,a13) Q(s13,a14)

s14 Q(s14,a1) Q(s14,a2) ... Q(s14,a13) Q(s14,a14)

The input the controller is the current network state,

i.e., the average queue length (avg). The output is the

action adaptively adjusted according to the action

selection strategy. The router then processes the data

packets by discarding some of them according to the

adjusted drop probability function. The maxp value

QRED: A Q-Learning-based Active Queue Management Scheme 1173

reflects the degree of network congestion, i.e., the

more serious the congestion the larger maxp value and

vice versa. The curve for the packet drop probability vs

the average queue length is shown in Figure 4.

1

maxthminth

maxp2

0 avg

pb

maxp14

maxp13

maxp1

...

Figure 4. QRED’s packet dropping probability curve

States. In order to reduce the system complexity, the

state s(avg) in the Q-learning controller is quantized

into 14 classes, thus the learning unit state set is given

by s = {si}, i = 1, 2, 3... 14. The state is set to 14 ×14

groups, as shown in Table 2.

Table 2. 14 States groups

No. State No. State

s1 0.3maxth－0.35maxth s8 0.65maxth－0.7maxth

s2 0.35maxth－0.4maxth s9 0.7maxth－0.75maxth

s3 0.4maxth－0.45maxth s10 0.75maxth－0.8maxth

s4 0.45maxth－0.5maxth s11 0.8maxth－0.85maxth

s5 0.5maxth－0.55maxth s12 0.85maxth－0.9maxth

s6 0.55maxth－0.6maxth s13 0.9maxth－0.95maxth

s7 0.6maxth－0.65maxth s14 0.95maxth－maxth

Actions. Similarly, the action a(maxp) is divided into

14 classes and the learning unit action set is a={aj}, j =

1, 2, 3... 14. The action is also set to 14×14 groups, as

shown in Table 3.

Table 3. 14 Actions groups

No. Action No. Action

a1 0.1maxp a8 0.8maxp

a2 0.2maxp a9 0.9maxp

a3 0.3maxp a10 maxp

a4 0.4maxp a11 1.5maxp

a5 0.5maxp a12 2maxp

a6 0.6maxp a13 2.5maxp

a7 0.7maxp a14 3maxp

Reward. The reward function can be defined by the

following formula:

 ,

ave min max min

T D

max min max ave

C C D D
R K K

C C D D

− −

= +

− −

 (8)

where Cmax is the maximum value of system

throughput during the learning cycle and Cmin is the

minimum value of system throughput during the

learning cycle. Cave is the average of the system

throughput during the learning cycle. Dmax is the

maximum value of the system delay in the learning

cycle, and Dmin is the minimum value of the system

delay in the learning cycle. Dave is the average of the

system delay during the learning cycle. KT is the

throughput weight, and KD is the delay weight. The

weight can be set according to the particular network

service type. For example, if the uRLLC (Ultra-

Reliable Low latency Communications) service [24] in

the 5G network scene is transmitted, the KD value can

be set higher.

The reward function consider the overall network

throughput performance and network delay factors,

making the system throughput as large as possible, the

delay as small as possible. In this reward function, the

Q-learning strategy is chosen to iterate in the direction

of high throughput and low delay.

Policy. In the agent, the choice of action in the state is

actually a process of exploring the unknown. In this

process, the agent cannot always choose the current

action of maximum Q-value, to avoid falling into the

local optimal, and cannot always choose the new action,

ignoring the experience accumulated before. Therefore,

Q-learning generally through some policy to ensure the

balance between conservative and aggressive, the main

methods include ε-greedy algorithm and Boltzmann

algorithm [34].

Because we have already known the linear

relationship between the avg and the maxp, the QRED

algorithm can be set a new policy according to

experience, G-policy, the G-policy can be expressed by

the formula (9). Before the end of the study, the system

selects the action with the largest G-value in the

current state.

1

(,) .
| |

G i j
i j k

=

− +

 (9)

Where i and j are, respectively, the ordinal numbers

of the current state s group and the action under the

current s, and k∈(0,1) is the return coefficient. The

value of k determines the state sensitivity to the action,

i.e., the smaller the k-value the more sensitive the

current state is to the current action. We set | |,m i j= −

then:

1

(,) () ,G i j G m
m k

= =

+

 (10)

2

1
() 0,

()
G m

m k
′ = <

+
 (11)

1174 Journal of Internet Technology Volume 19 (2018) No.4

We can know from (10) (11) that ()G m is a

monotonically decreasing function with respect to m,

so Equation (9) shows that the closer the values of i

and j are, the larger the G-value is. As shown (k = 0.1)

in Figure 5.

Figure 5. G-Policy’s 3D curve

Because according to Table 2 and Table 3 we can

see the mapping relationship of (i, j) and (avg, maxp),

the G-policy indicates that, according to experience,

when the average queue length is small, the current

network congestion is low, and at this time we can

choose a smaller maxp. when the average queue length

is small, the current network congestion is low, then

we can choose a smaller maxp. When the average

queue length is large, the current network congestion is

high, then we can choose a larger maxp. So this policy

is in line with the empirical conclusion. The system

selects the action by the G-policy according to the G-

value Table before the Q-value is converged. The G-

value Table is shown as in Table 4.

Table 4. G-value

j

i
1 2 ... 13 14

1 G(1,1) G(1,2) ... G(1,13) G(1,14)

2 G(2,1) G(2,2) ... G(2,13) G(2,14)

...

13 G(13,1) G(13,2) ... G(13,13) G(13,14)

14 G(14,1) G(14,2) ... G(14,13) G(14,14)

Simulation shows if use this policy, can not only

improve the network congestion problem in the

learning phase, and can greatly reduce the learning

time.

The Q-learning controller process can be

summarized as follows:

Algorithm. QRED Algorithm

1: Initialize the Q-value, state, action for the agent

2: for time t do

3: for each s do

4: obtain corresponding information

 (Cmax/Cmin/Cave/Dmax/Dmin /Dave)

5: calculate the state
t
s and reward R as give in (8) (9)

 (10)

6: update Q-value Table as given in (11)

7: if the Q-value not converges then

8: select action according to G-policy

9: else

10: choose
1 1 1

argmax (,)
t t t
a Q s a

+ + +
=

11: end if

12: end for

13: t = t +1

14: end for

15: If the network topology changes, start learning again

3 Simulation Analysis

3.1 Simulation Scene and Parameter Setting

This section validates the validity and performance

of the designed QRED algorithm by NS2 [33]

simulation experiment, the simulation use the typical

single-bottleneck network topology as shown in Figure

6. There are n senders (S1~Sn), n receivers (D1~Dn) and

2 routers (R1, R2) in the network. The bandwidth and

delay between each sender and R1 are 10Mbps and

10ms, the bandwidth and delay between each receiver

and R2 are also 10Mbps and 10ms. The link between

R1 and R2 is a bottleneck link, the bandwidth and delay

are 20Mbps and 20ms respectively. For comparison,

we respectively analyzed respectively the queue length,

throughput, delay and packet loss rate [31] of RED

algorithm and QRED algorithm under low load, mid

load, high load and changing load.

S1

S2

Sn

R1

D1

D2

Dn

R220Mbps, 20ms

10Mbps, 10ms 10Mbps, 10ms

Figure 6. Simulation topology

In the simulation, the common parameters of the two

algorithms are set as follows: minth=24, maxth=72,

ωq=0.002, the buffer size is 120 packets, the

application layer uses TCP-based FTP services. In the

learning module, the α value is set to 0.01 and γ is set

to 0.8. KT and KD are set to 0.5, the learning cycle is set

QRED: A Q-Learning-based Active Queue Management Scheme 1175

to 10s. RED algorithm and QRED algorithm in the

implementation of the link between the two routers.

The other links perform the Drop-Tail algorithm. In

order to fully reflect the performance of QRED

algorithm, this performance of the simulation after

learning is completed.

3.2 Low Load

The performance of the algorithm in low load, that is,

the number of network connections is fixed at 16, the

simulation time is 100 seconds. Figure 7 shows the

queue length of the RED algorithm and the QRED

algorithm. As can be seen from the figure, the average

queue length of the QRED algorithm is larger than that

of the RED algorithm. This is because when the

network is low loaded, the network is less congested,

so the QRED algorithm reduces the drop probability by

reducing maxp, and increasing the average queue length

to improve network throughput.

(a) RED

(b) QRED

Figure 7. Queue length of the two algorithms in low

load

Table 5 shows the statistical results of the

throughput, latency, and packet loss rate of the RED

algorithm and QRED algorithm under the low load. As

can be seen from Table 5, the average throughput of

the QRED algorithm is larger than the RED algorithm,

but the cost is to increase the delay.

Table 5. Network performance in low load

Performance

Algorithm

Throughput

(Kbps)

Delay

(ms)

Packet loss

rate (%)

RED 19900.99 53.85 0.36

QRED 19940.93 55.78 0.33

3.3 Mid Load

The performance of the algorithm in mid load, that

is, the number of network connections is fixed at 64,

the simulation time is 100 seconds. Figure 8 shows the

queue length of the RED algorithm and the QRED

algorithm. It can be seen from the figure that the

average queue length of the QRED algorithm is not

much different from the RED algorithm. This is

because when the network is mid loaded, the network

congestion is moderate, the drop probability of the

QRED algorithm does not need to be adjusted

compared to the RED algorithm, so the performance of

the network performance is not much difference.

(a) RED

(b) QRED

Figure 8. Queue length of the two algorithms in mid

load

1176 Journal of Internet Technology Volume 19 (2018) No.4

Table 6 shows the statistical results of the

throughput, latency, and packet loss rate of the RED

algorithm and QRED algorithm under the mid load. As

can be seen from Table 6, the performance of the

QRED algorithm is almost the same as that of RED.

Table 6. Network performance in mid load

Performance

Algorithm

Throughput

(Kbps)

Delay

(ms)

Packet loss

rate (%)

RED 19963.92 65.75 4.51

QRED 19969.71 65.70 4.47

3.4 High Load

The performance of the algorithm in high load, that

is, the number of network connections is fixed at 128,

the simulation time is 100 seconds. Figure 9 shows the

queue length of the RED algorithm and the QRED

algorithm. It can be seen from the figure that the

average queue length of the QRED algorithm is

smaller than that of the RED algorithm. This is because

when the network is high loaded, network congestion

is more serious. Therefore, the QRED algorithm

increases the drop probability by increasing maxp,

which reduce the average queue length and reduce the

network delay.

(a) RED

(b) QRED

Figure 9. Queue length of the two algorithms in high

load

Table 7 shows the statistical results of the

throughput, latency, and packet loss rate of the RED

algorithm and QRED algorithm under the high load.

As can be seen from Table 7, the delay of the QRED

algorithm is smaller than that of the RED algorithm,

and the average throughput is slightly higher than the

RED algorithm.

Table 7. Network performance in high load

Performance

Algorithm

Throughput

(Kbps)

Delay

(ms)

Packet loss

rate (%)

RED 19970.88 71.72 13.15

QRED 19971.51 69.04 11.69

3.5 Changing Load

The performance in the case of changing load, that is,

the number of connections is changed between 64, 16

and 128 every 40 seconds, the simulation time is 120

seconds.

Figure 10 shows the queue length of the QRED

algorithm under the changing load. As can be seen

from the figure, when the load changes, the queue of

QRED algorithm can be adjusted adaptively, the

overall queue length is more stable.

(a) RED

(b) QRED

Figure 10. Queue length of the two algorithms in

changing load

QRED: A Q-Learning-based Active Queue Management Scheme 1177

The statistics of the throughput, delay, and packet

loss rate of the RED algorithm and QRED algorithm

are shown in Table 8. It can be found that in the

dynamic network environment, the performance of the

QRED algorithm is better than that of the RED

algorithm.

Table 8. Network performance in changing load

Performance

Algorithm

Throughput

(Kbps)

Delay

(ms)

Packet loss

rate (%)

RED 19854.53 67.76 6.26

QRED 19892.71 66.51 5.83

Through the aforementioned simulations and

analysis, the performance of QRED algorithm include

throughput, delay, and packet loss rate is consistent

with the expected results. Although unilateral

performance improvement is not too much, the overall

performance in different network scenarios is better

than the RED algorithm. Therefore, QRED algorithm

can improve the sensitive parameters of RED

algorithm to a certain extent, so that the QRED

algorithm achieve better network performance and can

select appropriate parameters adaptively according to

different network scenarios.

4 Conclusion

In order to improve the RED algorithm parameter

settings, make the algorithm achieve better network

performance, the RED algorithm adaptively selects the

appropriate parameters according to different network

scenarios. This paper presents an improved RED

algorithm, known as QRED. In this algorithm, the Q-

learning algorithm is used to select the maximum

packet drop probability parameter. The RED algorithm

parameters are sensitive to defects and can predict

dynamic changes in network systems. The optimal

network performance control strategy is obtained by

the learning unit. It can adaptively adjust the

algorithm’s maximum packet drop probability,

achieving improved network performance by avoiding

congestion. The simulation experiments verify the

advantages of the QRED algorithm, which can be

implemented in the network to maintain stability,

reduce delay, improve the throughput and so on. The

QRED algorithm overall network performance is better

than that produced by the RED algorithm. In our future

work, we will consider improving the accuracy of

adjustment of actions, such as considering Fuzzy Q-

learning. On the other hand, we will consider the

fairness issue of the RED algorithm.

References

[1] V. Jacobson, Congestion Avoidance and Control, Acm

Sigcomm Computer Communication Review, Vol. 18, No. 4,

pp. 314-329, August, 1988.

[2] N.-F. Huang, G.-Y. Jai, H.-C. Chao, Y.-J. Tzang, H.-Y.

Chang, Application Traffic Classification at the Early Stage

by Characterizing Application Rounds, Information Sciences,

Vol. 232, pp. 130-142, May, 2013.

[3] L. Zhou, H.-C. Chao, Multimedia Traffic Security Architecture

for the Internet of Things, IEEE Network, Vol. 25, No. 3, pp.

35-40, May/June, 2011.

[4] L.-J. Zhang, D.-Y. Gao, W.-C. Zhao, H.-C. Chao, A

Multilevel Information Fusion Approach for Road

Congestion Detection in VANETs, Mathematical and

Computer Modelling, Vol. 58, No. 5-6, pp. 1206-1221,

September, 2013.

[5] Y.-C. Chang, Heterogeneous Wireless Sensor Network with

EPC Network Architecture for U-life Environment, Journal

of Internet Technology, Vol. 15, No. 4, pp. 647-655, July,

2014.

[6] Z.-P. An, D.-Y. Zhang, H.-M. Dang, H.-N. Ding, Enhanced

Random Early Detection Algorithm, Journal of Xian Jiaotong

University, Vol. 37, No. 8, pp. 829-832, August, 2003.

[7] T. Yamaguchi, Y. Takahashi, A Queue Management Algorithm

for Fair Bandwidth Allocation, Computer Communications,

Vol. 30, No. 9, pp. 2048-2059, June, 2007.

[8] S. Floyd, V. Jacobson, Random Early Detection Gateways for

Congestion Avoidance, IEEE/ACM Transactions on

Networking, Vol. 1, No. 4, pp. 397-413, August, 1993.

[9] S. Floyd, K. Fall, Promoting the Use of End-to-end

Congestion Control in the Internet, IEEE/ACM Transactions

on Networking, Vol. 7, No. 4, pp. 458-472, August, 1999.

[10] W.-C. Feng, D. D. Kandlur, D. Saha, K. G. Shin, A Self-

configuring RED Gateway, Eighteenth Annual Joint

Conference of the IEEE Computer and Communications

Societies, New York, NY, 1999, pp. 1320-1328.

[11] S. Floyd, R. Gummadi, S. Shenker, Adaptive RED: An

Algorithm for Increasing the Robustness of RED’s Active

Queue Management, http://www.icir.org/floyd/papers.html.

[12] S. S. Masoumzadeh, G. Taghizadeh, K. Meshgi, S. Shiry,

Deep Blue: A Fuzzy Q-learning Enhanced Active Queue

Management Scheme, 2009 International Conference on

Adaptive and Intelligent Systems, Klagenfurt, Austria, 2009,

pp. 43-48.

[13] W.-C. Feng, K. G. Shin, D. D. Kandlur, D. Saha, The

BLUE Active Queue Management Algorithms, IEEE/ACM

Transactions on Networking, Vol. 10, No. 4, pp. 513-528,

August, 2002.

[14] Y.-B. Zhang, D.-M. Hang, Z.-X. Ma, Z.-G. Cao, A Robust

Active Queue Management Algorithm Based on Reinforcement

Learning, Journal of Software, Vol. 15, No. 7, pp. 1090-1098,

July, 2004.

[15] A. A. Tarraf, I. W. Habib, T. N. Saadawi, Reinforcement

Learning-based Neural Network Congestion Controller for

ATM Networks, Military Communications Conference, San

Diego, CA, 1995, pp. 668-672.

[16] M.-C. Hsiao, K.-S. Hwang, S.-W. Tan, C.-S. Wu, Reinforcement

Learning Congestion Controller for Multimedia Surveillance

System, 2003 IEEE International Conference on Robotics

1178 Journal of Internet Technology Volume 19 (2018) No.4

and Automation, Taipei, Taiwan, 2003, pp. 4403-4407.

[17] K.-S. Hwang, S.-W. Tan, M.-C. Hsiao, C.-S. Wu, Cooperative

Multiagent Congestion Control for High-speed Networks,

IEEE Transactions on Systems, Man, and Cybernetics, Part B

(Cybernetics), Vol. 35, No. 2, pp. 255-268, April, 2005.

[18] S.-J. Tang, J.-Q. Zhou, Z. Zhang, Research on Active Queue

Management Based on Fuzzy Neural PID Controller, Computer

Technology and Development, Vol. 8, pp. 99-102, August,

2015.

[19] C. Gao, Y.-J. Ou, Y.-C. Wang, An Improved Fairness

Algorithm of RED by Distinguishing the Type of Protocol,

Science Technology and Engineering, Vol. 15, No. 1, pp. 96-

99, January, 2015.

[20] M. Zhang, J.-Q. Zhou, S.-J. Tang, Research on Improved

gCHOKe Algorithm Based on Sampling, Computer

Technology and Development, Vol. 25, No. 9, pp. 98-101,

September, 2015.

[21] C. J. C. H. Watkins, Learning from Delayed Rewards, Ph.D.

Thesis, University of Cambridge, Cambridge, UK, 1989.

[22] C. J. Watkins, P. Dayan, Technical Note: Q-Learning, Machine

Learning, Vol. 8, No. 3-4, pp. 279-292, May, 1992.

[23] N. Nikaein, E. Schiller, R. Favraud, K. Katsalis, D.

Stavropoulos, I. Alyafawi, Z. Zhao, T. Braun, T. Korakis,

Network Store: Exploring Slicing in Future 5G Networks,

Proceedings of the 10th International Workshop on Mobility

in the Evolving Internet Architecture, Paris, France, 2015, pp.

8-13.

[24] H. Wei, Z.-F. Zhang, B. Fan, Network Slice Access Selection

Scheme in 5G, 2017 IEEE 2nd Information Technology,

Networking, Electronic and Automation Control Conference,

Chengdu, China, 2017, pp. 352-356.

[25] H.-J. Zhang, N. Liu, X.-L. Chu, K.-P. Long, A.-H. Aghvami,

V. C. M. Leung, Network Slicing based 5G, Future Mobile

Networks: Mobility, Resource Management, and Challenges,

IEEE Communications Magazine, Vol. 55, No. 8, pp. 138-

145, August, 2017.

[26] K. Katsalis, N. Nikaein, E. Schiller, A. Ksentini, T. Braun,

Network Slices toward 5G Communications: Slicing the LTE

Network, IEEE Communications Magazine, Vol. 55, No. 8,

pp. 146-154, August, 2017.

[27] S.-B. Zhang, G. Li, J. Kang, Study of Congestion Control

Algorithm based on Neural Network Supervised Control,

Application Research of Computers, Vol. 27, No. 2, pp. 657-

660, February, 2010.

[28] W. Wu, Y. Ren, X.-M. Shan, Stability Analysis on Active

Queue Management Algorithms in Routers, Proceedings of

9th International Symposium on Modeling, Analysis and

Simulation of Computer and Telecommunication Systems,

Cincinnati, OH, 2001, pp. 125-132.

[29] M. May, J. Bolot, C. Diot, B. Lyles, Reasons not to Deploy

RED, 1999 Seventh International Workshop on Quality of

Service, London, UK, 1999, pp. 260-262.

[30] G. Hasegawa, T. Matsuo, M. Murata, H. Miyahara,

Comparisons of Packet Scheduling Algorithms for Fair

Service Among Connections on the Internet, Nineteenth

Annual Joint Conference of the IEEE Computer and

Communications Societies, Tel Aviv, Israel, 2000, pp. 1253-

1262.

[31] L. Shen, X.-J. Mao, M.-G. Dong, The Construction of a Self-

adaptive Multi-Agent System Based on Reinforcement

Learning, Computer Engineering & Science, Vol. 33, No. 12,

pp. 72-77, December, 2011.

[32] D.-H. Hu, An Introduction to Markov Process in Random

Environment, Acta Mathematica Scientia, Vol. 30, No. 5, pp.

1210-1241, October, 2010.

[33] E. Altman, T. Jimenez, NS Simulator for Beginners, Synthesis

Lectures on Communication Networks, Vol. 5, No. 1, pp. 1-

184, January, 2012.

[34] R. S. Sutton, A. G. Barto, Reinforcement Learning: An

Introduction, Cambridge: MIT Press, 1998.

Biographies

Yuhan Su received his B.S. degree

from Huaqiao University, Xiamen,

China. He is currently pursuing the

Ph.D. degree in communication and

information system at Xiamen

University, China. His research

interests include wireless

communication, congestion control, network coding,

etc.

Lianfen Huang received the B.S.

degree in radio physics and the Ph.D.

degree in communication engineering

from Xiamen University, Xiamen,

China, in 1984 and 2008, respectively.

She was a Visiting Scholar at

Tsinghua University, Beijing, China, in 1997, and a

Visiting Scholar at Chinese University of Hong Kong,

Shatin, Hong Kong, in 2012. She is a Professor of

Communication Engineering with Xiamen University.

Her research interests include wireless communication,

wireless network, and signal process.

Chenwei Feng received the B.S.

degree in communication engineering

from Fuzhou University, Fuzhou,

China, in 2004. The M.S. degree and

the Ph.D. degree in communication

engineering from Xiamen University,

Xiamen, China, in 2007 and 2017,

respectively. He is an Associate Professor of

Communication Engineering with Xiamen University

of Technology, Xiamen, China. His research interests

include wireless communication, wireless network and

congestion control.

