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Abstract 

Spams and spamming methods are increasing vastly 

and getting complicated due to the rapid growth in 

networks, communications and technologies. Therefore, 

spam filters need to be tested continuously to evaluate 

their capabilities and efficiency in detecting and 

preventing spams. This paper discusses spams filtering 

problem using Bayesian classifier. It shows how using a 

combination of black and white lists and a customized 

spam filter based on users’ feedback can enhance the 

performance of Bayesian classifier. The paper evaluates 

three models of spam filters which are Static Bayesian 

Spam Filter, Light Adaptive Bayesian Spam Filter, and 

Enhanced Adaptive Bayesian Spam Filter. The 

experiments demonstrate that Enhanced Adaptive 

Bayesian Spam Filter, which is the one that uses 

black/white lists and users’ feedback, has the highest 

performance.  

Keywords:  Spam filter, Bayesian classifier, Security, 

Classification, White lists, Black lists 

1 Introduction 

Spams are still among the most annoying things in 
Internet. As the world has become more connected due 
the rapid growth in networks and communications, the 
number of spams and spammers has increased, and the 
spamming techniques have gotten complicated. The 
need to effective spam filters able to stop spams attacks 
is increasing. Similarly, existing spam filters need to be 
improved to cope with new types of spam attacks. 
Therefore, existing spam filters need to be tested 
continuously to evaluate their capabilities and 
efficiency against spams.  

Spam filters are classified into several categories 
such as origin-based filters, content-based filters and 
collaborative filters [1-3]. Origin-based filters such as 
[4-5] use network and routing information of a 
message to check it is spam or not. The aforementioned 

type may use different methods to detect spams such as 
using black and white lists. A black list contains a set 
of untrusted IP addresses. Any message that has an IP 
address that exists in the black list is considered a spam. 
However, this approach suffers from a number of flaws 
such as the difficulty of keeping a black list up-to-date, 
and the possibilities of using “Zombie” computers to 
avoid this type of filters. Another model that belongs to 
this category is using whitelists to store trusted 
addresses. Any message with an IP address that exists 
in the whitelist is considered a legitimate address. 
However, the size of such kind of lists grows very 
rapidly which makes them difficult to be maintained 
and used. 

Content-based filters [6-8] use the content of a 
message to identify whether if it is spam or not. This 
type may use messages headers or common keywords 
in messages. Header analysis approach focuses on the 
information contained in the header of a message, 
including routing and subject information. 
Collaborative filters [9-10] combine the experiences of 
many users to help identify spams. Spam is often sent 
to bulk, therefore, when a user classifies a message as a 
spam, other users can rely on that classification without 
analyzing the message themselves.  

This paper evaluates three Bayesian Spam Filters, 
which are Static Bayesian Spam Filter, Light Adaptive 
Bayesian Spam Filter, and Enhanced Adaptive 
Bayesian Spam Filter. The last two models are based 
on the Graham Approach who used a combination of 
black-lists, white-lists and Bayesian Classifier to detect 
and prevent spams. The paper demonstrates the model, 
the algorithm and the simulations that show and 
compare the efficiency of the three models. 

The rest of the paper is organized as follows. Next 
section discusses some related work. Section 3 
introduces the State of Art. Section 4 discusses the 
Adaptive Bayesian Spam Filter. Section 5 
demonstrates the experiments and analysis. Section 6 
concludes the work and introduces the future work. 
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2 Background 

Spam filtering is similar to text classification; it is a 
supervised learning approach that depends on a 
predefined set of labeled messages (spam or not spam) 
to predict the class of unlabeled messages [11]. An 
extensive research has been performed in designing 
spam filters or in evaluating and comparing spam 
filters. The goal is to reach an optimal design that 
effectively detects and prevents spam messages with 
minimum number of false negatives and false positives. 
Bayesian spam filter is one of the most effective spam 
filters. In this section, we briefly introduce some work 
in improving Bayesian spam filters or in comparing it 
to other spam filters.  

Sahami et al. [7] proposed a machine learning 
algorithm for spam filtering. They used a Naïve 
Bayesian Classifier that was trained on a manually 
categorized spams and hams (not spams). They showed 
that Bayesian filter has an impressive performance on 
unseen incoming messages. The filter needs a training 
set of spam and legitimate messages (hams). It extracts 
three sets of words (tokens), which are words that 
occur only in spam messages, words that exist only in 
legitimate messages, and words that occur in both 
messages (spams and hams). Based on these sets, 
incoming unknown messages are classified to either 
spams or hams. Unlike Sahami, Androutsopoulos et al. 
[12] used ten-fold cross-validation to reduce the prone 
to random validation. Moreover, they discussed the 
effect of attribute-set size, training-corpus size and 
stop-lists on the filtering process. Vikas et al. [13] 
claimed that content-based filters that use Bayesian 
approach alone is not sufficient to function as a spam 
filter due to the large number of false positives. 
Therefore, to obtain an optimal spam filter, they 
suggested the use of a lemmatizer in Bayesian spam 
filter, where a lemmatizer is a stop-list and integration 
with other techniques such as the blacklist and rule-
based methods. 

Many researchers conducted experiments to 
compare and evaluate spam filters such as Cormak and 
Bratko [14] who showed that SVM and Naive 
Bayesian outperforms Knn on full email messages. 
Niimi et al. [15] evaluated both Bayesian and SVM 
spam filters and showed that these filters have high 
performance in detecting spams. Moreover, they 
showed that embedding URL pre-fetch method 
improves the performance of Bayesian filter. 
Androutsopoulos et al. [16] compared Naive Bayesian 
and Keyword-Based Spam Filters, and showed that the 
Naive Bayesian filter greatly outperforms the keyword-
based filter, even with very small training set. 

Some researchers evaluated spam filters on short 
messages such as Zelikovitz and Hirsh [17] and Healy 
et al. [18]. The problem of short messages is that they 
consist of few words composed of abbreviations and 
idioms. The authors in [18] compared Knn and SVM, 

and Naïve Bayesian Classifiers on SMS messages and 
hotel comment forms. Based on their results, SVM and 
Naive Bayesian considerably outperformed Knn. 
Similarly, Mahmoud and Mahfouz [19] proposed an 
approach for filtering SMS messages. The authors used 
a model based on Artificial Immune System (AIS) that 
uses some features such as Phone Numbers, Spam 
Words and Detectors to detect spams.  

An interesting work was performed by Metsis et al. 
[20] who compared five different versions of the Naive 
Bayes classifier. They claimed that the best 
performance was achieved by two Naïve Bayesian NB 
versions that have been used less in spam filtering, 
which are Flexible Bayes and the multinomial Naïve 
Bayesian with Boolean attributes.  

Bayesian filters have shown robust and high 
precision approach in filtering data. In addition to 
Bayesian spam filter, which is the scope of this paper, 
Bayesian filters was used in different research areas 
such as particle filtering [21] and adaptive systems.  

3 State of Art 

A Bayesian spam classifier is similar to documents 
classification using Bayesian theorem. The model 
discussed in this paper is called an adaptive classifier 
since the Bayesian spam filter for a user is updated 
continuously depending on the user’s feedback about 
the emails he/she receives. Basically, Bayesian 
classifier is used to filter emails using the following 
formula: 
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Where P(S|W) is the probability that an email is a 
spam given that it contains the word W, P(W|S) the 
probability that a word W appears in spam emails, 
P(W|H) is the probability that a word W appears in 
ham (non-spam) emails, P(S) is the probability that an 
email is a spam message without any given 
information and P(H) is the probability that an email is 
a ham message without any given information.  

P(W|S) and P(W|H) are computed based on the 
training set used in the Bayesian Classifier, where 
P(W|S) is computed as the ratio of the number of spam 
messages that contain the word W to the total number 
of spam messages, and P(W|H) is the ratio of the 
number of ham messages that contains the word W to 
the total number of ham messages. P(S) and P(H) 
depends on the assumption of the probability of these 
values in the real word. Both of them can be 
considered as 50% if we assume that the probability of 
the spam and ham emails are the same, or they can be 
considered as 30% and 70% respectively depending on 
the assumption that the percentage of spam emails and 
ham emails on a person’s email box is 30% and 70%. 
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To compute the probability that a given email D is a 
spam or ham, the probabilities of all words in a 
document is combined as follows:  

1
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Where Pi=P(S|Wi), and D = {W1, W2, …, Wn}. 

(2)

Different approaches for using Bayesian classifier as 
a spam filter have been suggested. One approach is 
suggested by Sahami et el. [7], where each message is 
represented by a vector space model in which each 
dimension of this space is corresponding to a given 
word in the entire messages corpus. Therefore, each 
message can be represented as a binary vector denoting 
which words are found or not in the message. 
Therefore, the classifier is used to detect junk emails 
after the classifier learns from a pre-classified set of 
training messages. Sahami’s approach used different 
features for classifying emails such as using single 
words learnt from a set of pre-classified junk mails, 
specific phrases like “Free!” or “only $”, domain-
specific non-textual features and the percentage of non-
alphanumeric characters in the subject of a mail 
message like “$$$big money$$$”. Single word 
features are extracted in the learning phase using pre-
classified emails. Learning phase is performed by 
removing words that appear fewer than three times, 
computing the mutual information between each 
feature and each class (spam or ham), giving each 
feature a rank that represents how much the feature is 
close to a given class, and finally, selecting the top 500 
features to build the classifier. After the learning 
process completes, incoming emails can be classified 
using the features learnt from the learning phase.  

Graham [8] used a different style in applying 
Bayesian classifier as a spam filter. His approach starts 
with two equal corpuses of spam messages and ham 
messages. After that, the spam corpus is scanned to 
count the frequencies of words and to store the 
frequencies in a hash table. Next, the ham corpus is 
scanned to count the frequencies of words and to store 
the frequencies in a hash table. Then, a third hash table 
is created and each token (word) is mapped to the 
probability that an email containing it is a spam using 
the following formula. 

 
(( ( ) /( ))

Pr( | )
( ( ) /( ) ( ( ) / )

B W Nbad
S W

G W Ngood B W Nbad
=

+

 (3) 

Where B(W) is the frequency of the word W in the 
spam hash table, Nbad is the number of spam messages, 
G(W) is the frequency of W in the ham hash table and 
Ngood is the number of ham messages.  

 
 

To test an incoming email, the email is tokenized 
and the probability of the words is extracted. Based on 
the probabilities, the top 15 words are chosen. After 
that, the probability of a spam is computed using 
formula 2. If the result is greater than 0.9, the email is 
considered a spam. Otherwise, it is as a ham. To 
enhance the efficiency of the filter, Graham considered 
words that occur more than five times only. In addition, 
he chose a probability of 1% and 99% for words that 
occur in one corpus and not occur in the other corpus. 
Moreover, he assigned a probability of 40% for words 
that not exist in the two corpuses. These values were 
chosen by trial and error. Graham suggested that each 
user should build his/her spam corpus. Thus, the spam 
filter is customized by building a profile for each user. 
This approach provides three advantages. Firstly, it 
makes filters more effective. Secondly, each user 
defines his precise definition of spam. Finally, it is 
difficult to spammers to tune mails to get through 
filters since there are many individuals databases. The 
work in this paper is based on Graham’s ideas and uses 
black and white lists in the filtering process. The model 
is discussed in the next section, and the evaluation of 
the model is demonstrated in sections 4. 

4 Adaptive Bayesian Spam Filter 

Each user should have his own definition about 
spam, and a spam for a user may not be a spam for 
others. However, some emails are considered spams 
for all users. Therefore, in order to construct a 
successful spam filters, content-based filtering, 
whitelist and blacklist should be combined, where a 
whitelist is defined formally as follows. 
Definition 1 (Whitelist). A list WL = {ID1, ID2, …, 
IDn}, where IDi is an email address, is called a 
whitelist for a user U if for all IDk ∈  WL, IDk is a 
trusted email address according to U. 

A whitelist indicates that a user trusts a number of 
senders from whom a spam will not be sent. Thus, 
using whitelists increases the precision of the filter and 
reduces the amount of processing time needed for 
filtering. Whitelists can be built by keeping a list of 
every address to whom the user has ever sent an email. 
In addition, blacklists, which contain the addresses of 
senders from whom the user does not like to receive, 
can be used. A content-based filtering is used to check 
the contents of the email to decide whether an email is 
a spam or not when the address of the sender is not in 
the blacklist and the whitelist of the user. Some 
researchers such as Graham [8] talked about using 
whitelists, blacklists and contents-based filtering in 
order to prevent spams. In this paper, we introduce a 
model for an adaptive Bayesian spam filter that uses 
the aforementioned ideas, and show how we can 
combine them to prevent spams with the least 
processing time. 
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Algorithm 1 discusses the model in details. The 
algorithm uses a general (global) blacklist that blocks 
well known spam emails and addresses common spams 
for all users (step 2-4). If a sender’s address of an 
email is not in the global black list, the email is sent to 
the customized spam filter engine (step 5). In this phase, 
the email is blocked if the sender’s address exists in the 
User-Black-List (steps 6-8). Otherwise, the email is 
checked against the User-White-List. If the sender’s 
address exists in the User-White-List, the email is 
considered a ham (not spam), and is forwarded to the 
user (steps 9-12). However, if the sender’s address is 
not in the User- White-List, the email is forwarded to 
the Bayesian Spam Filter Engine (step 13). The 
structure of the aforementioned engine is discussed in 
section 5. If the engine considers the email a spam, the 
sender’s address is added to the User-Black-List, and 
the email is rejected (steps 14-17). Otherwise, the 

email is forwarded to the user. After finishing this 
phase, the algorithm asks the user to send his/her 
feedback about the emails that are considered hams. If 
the user discovers that one of the forwarded emails is a 
spam, the sender’s address of that email is added to the 
User-Black-List, and the tokens of the email are added 
to Spam-Tokens-Database (steps 23-25). The latter 
steps represent the learning phase, where the engine is 
updated to reject those emails that were previously 
considered as hams using the older version of Spam-
Tokens-Database. However, if the user confirms that 
the email is a ham, the sender’s address is added to the 
User-White-List (if it is not there already) (steps 26-
27). These steps are used to reduce the processing time 
needed to filter incoming emails. Figure 1 demonstrates 
the model based on algorithm 1. Hence, the model 
shows the customized Bayesian Spam Filter Engine 
and does not contain the Global Black List. 

 

Algoirthm 1. Adaptive Bayesian Spam Filter  
Input: User U, UserWhitelist (UWL) ={}, UserBlacklist (UBL) = {}, GlobalBlacklist (GBL) = {S1, S2,….., Sn}, 

SpamTokensDatabase (STD), Ham = {}. 

Method: Use Global Black list and User Black list to reject spams immediately, use User White list to forward hams 

immediately, and use Bayesian Spam Filter Engine to detect spams from the uncertain emails. 

1. For each E // E is an incoming Email. 

2.    If SenderAddress(E) ∈  GBL  // The sender in the Global Black List 

3.           E � Spam                       // E is a spam 

4.           Reject E                          // E is filtered as a spam 

5.    Else                                       // Forward to the customized spam filter engine 

6.           If SenderAddress(E) ∈   UBL(U) // The sender in the User Black List 

7.              E �Spam  

8.              Reject E 

9.           Else if SenderAddress(E) ∈   UWL(U) // The sender in the User White List 

10.               E �Ham                    // E is a ham (not spam) 

11.               Ham = Ham ∪  {E}     // Add E to ham list 

12.               Forward E to U          // Forward the email E to the user U 

13.           Else                               // Send E to the Bayesian Spam Filter Engine (BSFE) 

14.               If Check (E, BSFE) = True    // Using Bayesian Spam Filter Engine (BSFE), E is a spam  

15.                   E � Spam 

16.                   UBL = UBL ∪  SenderAddress(E)     // Add the sender address to the user black list  

17.                   Reject E 

18.               Else                                 // Using Bayesian Spam Filter Engine (BSFE), E is not a spam 

19.                    E � Ham 

20.                    Ham = Ham ∪  {E}  

21.                    Forward E to U 

22.   For Each E in Ham                                     // Checking the feedback of the user  

23.        If FeedBack(U, E) = Spam                     // if the user marked it as a spam 

24.           STD = STD ∪  Tokens(E)                  // Update the spam tokens database SED  

25.           UBL = UBL ∪  SenderAddress(E)     // Add the sender address to the user black list  

26.        Else                                                       // if the user didn’t mark it as a spam 

27.             UWL =UWL∪SenderAddress(E)// Add sender address to user white list if it is not there 
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Figure 1. An adaptive Bayesian spam filter model 

5 Experiments 

5.1 Program Structure 

Evaluating the model needs an interactive interface 
that enables users to send their feedback about the 
arrived emails. Therefore, the program was designed 
with an interactive web-interface. This is actually the 
adaptive learning feature. After letting the system 
check the email, the user can click on the “This is a 
SPAM” button to confirm that the email is actually a 
spam. By doing that, the entered email will also be 
added to the spam-corpus, and the program will “learn” 
one new sampling of a spam regarding to that user and 
become more efficient on spam-detection. Similarly, 
the user can click on “NOT SPAM” button to clarify 
that the message is a good (normal) email. The email 
will be added to the ham-corpus and will be useful for 
non-spam detection in the future.  

The program uses one Black-list, one White-list, and 
two wordlist dictionary files. The first dictionary file 
(kDict.fin) stores all words (terms), along with the 
occurrence frequency of each word appears in the 

spam ham corpuses. The second dictionary file 
(kWord.fin) stores a pair of word – spam value which 
indicates that this word is more likely used in spam or 
ham message. The program consists of two server-
webpages and four C++ programs: 

(1) Token (ktoken.lex) to tokenize (separates) all the 
terms in the spam and ham corpus. 

(2) kBW (kBWList.lex) to write the senders’ 
addresses to black or white lists. 

(3) kCalc (kCalculate.cpp to count how many 
messages in the Spam and Ham corpus. 

(4) kCheck (kCheck.lex)  to calculate the overall 
spam-probability of the email. 

The filtering process consists of two phases: the 
tokenizing (preparation) phase and the retrieval 

(checking) phase, which are discussed in the following 
subsections.  

The tokenizing phase uses the Token and kBW 
programs to generate the two dictionary files and the 
Black/White lists. As shown in Figure 2, the Spam and 
Ham messages are used by two programs, which are 
Token and kBW, to produce the dictionary files and 
the Black / White lists. The Token program has two 
sub-processes as follows: 

 

Figure 2. Tokenizing (preparation) phase diagram 
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The Retrieval phase mainly uses the kCheck 
program to calculate the likelihood that a user’s email 
is a spam. This phase also uses both webpages as 
communicating terminal with the user, where the 
webpage transfers user’s email input to the kCheck 
program and displays the result back to the user. This 
program will tokenize the input email, select the most 
popular fifteen words, read their spam-value from the 

dictionary file, and then apply the overall-formula (in 
section 3) to get the overall probabilistic value of the 
input email. If this overall value is greater than 0.9 
(90%), the input email is considered as spam. 
Otherwise (value less than 0.9), it is regarded as 
normal (legitimate) email. Figure 3 shows the retrieval 
phase. 

 

Figure 3. Retrieve (checking) phase diagram

5.2 Results 

A corpus of 400 spam emails and 400 ham emails 
was used in the learning phase, which was extracted 
from the Apache SpamAssassin Project [23]. The 
testing process in this model was performed manually 
to get the feedback from users. Therefore, the testing 
corpus, which is 200 emails (100 ham and 100 spam), 
was relatively small.  

During the tokenizing (preparation) process, the 
program produced one Black-list, one White-list, and 
two wordlist dictionary files. The contents of the body 
and the header of emails were used in the learning and 
the testing phase. To test the program, 200 emails were 
used. The testing sample was split into five groups, and 
each group contained 40 emails: 20 hams and 20 spams. 
The testing phase was performed in three phases. In the 
first phase, a Static Bayesian Spam Filter (SBSF) was 
tested. In this model, the spam tokens and the black 
and white lists were not updated. The purpose of this 
stage is to show the difference in performance between 
the static model and the adaptive model. In the second 
phase, a Light Adaptive Bayesian Spam Filter (LABSF) 
was tested using the same corpus used in the first phase. 
LABSF learns from incoming emails and updates the 
Spam Database engine that contains the tokens of 
spams. However, this model was tested without using 
black and white lists. The goal of this phase is to show 
the advantage of  constructing a customized Bayesian 
Spam Filter for each user and how this approach 
improves the spam filtering process. In the final phase, 

the Enhanced Adaptive Bayesian Spam Filter (EABSF) 
was tested. The EABSF is a combination of LABSF 
and black and white lists. The purpose of this phase is 
to show what improvement to the LABSF the black 
and white lists add. Actually, using these lists improves 
the accuracy of the spam filter by reducing the number 
of false positives and false negatives. This result is 
achieved since using white and black lists reduces the 
number of emails filtered by the adaptive Bayesian 
spam filter. In other words, the known spam emails or 
known ham emails according to the black lists and the 
white lists of a user are classified and removed earlier 
by the  system.   Thus,   there    is     no probability to 
classify them mistakenly by the Bayesian spam filter. 
Moreover, using these lists reduces the time of the 
filtering process since known emails according to these 
lists are not tested using the filter.  

Figure 4 shows the results of false positives 
produced in the three phases. As shown, in some 
testing groups, the number of false positives produced 
by three models is the same (group 2). However, in 
other testing groups (groups 1, 3, 4, and 5) the 
performance of the SBSF was the worst. Moreover, the 
performance of the LABSF and EABSF was similar in 
3 groups out of 5. Nonetheless, the performance of the 
EABSF was the best among the three models regarding 
the produced false positives.   
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Figure 4. False positives for the three models 

Figure 5 compares the number of false negatives 
produced by three models. As shown in the figure, the 
worst performance is by the SBSF, while the best 
performance was achieved by the EABSF. Obviously, 
adding the learning feature to the Bayesian spam filter 
increased its performance. Furthermore, combining the 
learning with the black and white lists has boosted the 
performance and increased the accuracy in EABSF.  

 

Figure 5. False negatives for the three models 

Figure 6 shows the overall recall and precision of 
the three models. As shown in the figure, the 
performance of the Bayesian Spam Filter increases as 
the user feedback and black and white lists are added. 
That is, the EABSF has the best performance among 
all models with a recall value of 95% and a precision 
of 97.9%.   

 

Figure 6. The recall and precision values of the three 
models 

5 Conclusions  

This paper has shown the advantages of using a 
customized Bayesian spam filter for each user. The 

model in this paper uses a combination of adaptive 
Bayesian classifier, black lists and white lists. It 
updates the spam tokens depending on users’ feedback 
so that it builds the spam classifier depending on the 
precise definition of the spam of each individual. In 
addition, it updates the white lists and the black lists 
for each user depending on his/her feedback as well, 
which increases the accuracy of the spam filter. The 
paper has introduced an algorithm that shows how the 
model works in details. In addition, the paper has 
demonstrated experiments that compare three models 
of Bayesian spam filters, which are Static Bayesian 

Spam Filter, Light Adaptive Bayesian Spam Filter, and 
Enhanced Adaptive Bayesian Spam Filter. The paper 
has shown that the Enhanced Adaptive Bayesian Spam 
Filter has the best performance among all models.  
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