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Abstract

Digital Orthophoto Map (DOM), as a crucial surveying
and mapping product, often encounters issues such as oc-
clusion, ghosting, and edge blur in practical applications,
which undoubtedly have a negative impact on the accuracy
of image analysis. The introduction of True Digital Or-
thophoto Map (TDOM) aims to effectively address these
challenges, with its core objective being to eliminate in-
terferences caused by terrain and ground target projection
distortions. However, traditional TDOM production meth-
ods rely on digital surface models for orthorectification,
a process that often results in the occlusion of high-rise
buildings in the imagery due to the displacement of image
points. In view of this, this paper proposes an Efficient
Reconstruction and Sampling Method for TDOM Based
on 3D Point Cloud Geometry in Image Cloud Computing
(ERS-TD). This method innovatively integrates key tech-
nical components such as point cloud registration, absolute
orientation, equal interval sampling, vertical projection,
and texture mapping. Among these, the design of the equal
interval sampling method is particularly ingenious, as it
aims to efficiently and accurately extract surface point
cloud data from the model. By flexibly adjusting the grid
size of the sampling interval and comprehensively travers-
ing the entire matrix, this method can rapidly and precisely
obtain the surface point cloud information of the entire
model, significantly improving efficiency compared to
traditional methods. Furthermore, the vertical projection
method projects the surface point cloud onto a plane, ef-
fectively eliminating the influence of elevation values and
clearly revealing the outlines of buildings. In addition, to
meet the demand for 3D map construction, this study fur-
ther explores how to utilize the acquired 3D point cloud
data and texture information to construct more refined and
realistic 3D maps on the basis of generating True Digital
Orthophoto Maps. By optimizing the processing flow of
point cloud data and enhancing the accuracy of texture
mapping, this study successfully achieves the transition
from 2D imagery to 3D maps, providing new ideas and
methods for 3D map construction.
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1 Introduction

Digital Orthophoto Map (DOM) has the geometric ac-
curacy and complete image features of topographic map.
It has become an important basic surveying and mapping
product. However, there are often some problems in DOM,
such as occlusion, ghosting, edge blur and incomplete
integration [1], which affect the error of image analysis
and interpretation. True Digital Orthophoto Map (TDOM)
eliminates the projection deformation of terrain and ground
targets at the same time, and the buildings, trees and other
ground objects in the image are corrected to the correct
position without blocking other ground objects. TDOM
not only has the geometric accuracy and influence charac-
teristics of DOM, but also is rich in texture information.
It can be used for plane measurement, and can also obtain
the correct road and building boundaries to build a 3D
building scene [2]. The following figure is the comparison
between DOM and the TDOM of urban buildings. It can
be seen that the side texture of buildings is eliminated in
the TDOM of urban scene, the roof was restored to its true
position.

With the development of oblique photography, large-
scale, multi angle, high-definition, high-precision and om-
ni-directional complex scene perception becomes possible
[3]. At the same time, with the support of the development
of UAV, satellite and other platforms, the flight platform
carries multiple sensors to obtain ground object images and
elevation textures, which is gradually convenient and fast,
and then carries out homonymous image point matching,
regional network joint adjustment, inclined image dense
matching, dense point cloud generation, triangulation con-
struction, texture mapping and editing through the data
processing platform [4]. The data processing operation of
photogrammetry principle can finally realize the construc-
tion of large-scale and refined 3D point cloud geometry.

3D point cloud geometry is the product of 3D model-
ing of oblique photography, which has more intuitive and
real characteristics. Domestic scholars have also studied
the process of generating TDOM from this model. Based
on the 3D model of oblique photography, Gu et al. [5] pro-
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posed a large-scale 3D digital topographic mapping meth-
od based on tilt photography technology, which realizes
the mapping of large-scale 3D digital topographic maps;
X. Zhu [6] and others used real 3D data to complete the
production of TDOM through the acquisition of top view
image data, the acquisition of control point information
and the correction of image data; Guan et al. [7] completed
the generation of TDOM by 3D reconstruction of scene
model and sampling and pixels of the model. As shown in
Figure 1, a comparison of the difference between the DOM
and TDOM for urban buildings is presented.

Figure 1. Comparison of difference between DOM and
TDOM of urban buildings

This paper studies the key technologies of TDOM pro-
duction based on 3D point cloud geometry, including equal
interval sampling and vertical projection of 3D point cloud
geometry [8-10]. Experiments on multiple groups of data
prove the practicability of this algorithm, which provides
support for TDOM production and 3D data processing us-
ing 3D model [11-12].

This paper proposes a 3D map extraction and recon-
struction scheme for image cloud computing. The paper is
organized as follows: Section 2 provides an overview of
related literature. Section 3 explains the methodology and
data sources used. Section 4 presents our proposed scheme
and compares it with existing methods. Section 5 provides
a performance analysis. Finally, Section 6 concludes the
paper and suggests future research directions.

2 The Related Work

In recent years, significant progress has been made in
the fields of True Digital Orthophoto Map (TDOM) gen-
eration and 3D point cloud geometry applications, leading
to the emergence of a series of innovative methods and
applications. This section focuses on the relevant research
work in this field, systematically summarizes the existing
achievements, and lays a solid foundation for the research
in this paper.

2.1 Research on Point Cloud Map Representation and
Applications
Point cloud maps, due to their rich 3D scene informa-
tion, have been widely used in multiple fields. With the
development of sensor technology and the improvement

of algorithms, research on the generation and application
of point cloud maps has continued to deepen. Lee et al.
[13] developed a coarse-to-fine method, consisting of the
Building Exterior Wall-Based (BEWB) algorithm and the
Building Outline-Based (BOB) algorithm, to register point
clouds captured by different sensors in urban scenes. Spe-
cifically, the BEWB algorithm performs coarse registration
of urban point clouds by extracting building exterior walls,
establishing corresponding points, and effectively remov-
ing outliers from the corresponding point set. In contrast,
the BOB algorithm achieves precise registration of urban
point clouds acquired from multiple sensors by leveraging
building outlines and points corresponding to the point
cloud ground. by Chiang et al. [14] explored the applica-
tion of point cloud maps in autonomous vehicle naviga-
tion. By constructing a real-time point cloud processing al-
gorithm, vehicles can accurately perceive the surrounding
environment and achieve safe and reliable path planning.
This achievement provides a new direction for the devel-
opment of the intelligent transportation field and also of-
fers new ideas for the application of TDOM in urban traffic
modeling.

In addition, with the development of computer vision
technology, some studies have attempted to use deep
learning methods for semantic understanding of 3D point
cloud data [15-17]. These methods can automatically iden-
tify different ground object categories in the point cloud,
improving the analysis efficiency and accuracy of point
cloud data and providing powerful tools for information
extraction and classification of TDOM.

2.2 Research on Data Acquisition Technologies

Data acquisition is a key link in obtaining high-quality
point cloud data, and certain progress has been made in
mobile laser scanning and airborne multi-spectral laser
scanning.

In the field of mobile laser scanning, Antero Kukko et
al. [18] have developed multi-platform mobile laser scan-
ning solutions (such as vehicle-mounted, cart-mounted,
and boat-mounted devices) for data acquisition in urban ar-
eas and river environments. They have also launched a new
type of backpack-mounted device, which is suitable for
measurement needs in the field of natural sciences under
variable terrain conditions, and discussed the application
performance of these solutions in various fields including
urban surveying and mapping, river geomorphology, etc..
At the same time, significant progress has also been made
in UAV-based laser scanning technology [19]. UAV laser
scanning can obtain high-resolution point cloud data from
a low-altitude perspective, making it possible to finely map
urban and natural environments.

In airborne multi-spectral laser scanning, K. Bakuta et
al. [20] used advanced multi-spectral airborne laser scan-
ning equipment combined with deep learning algorithms to
achieve high-precision classification of land cover types.
This research improves the semantic information acquisi-
tion ability of point cloud data, provides a more accurate
basis for ground object classification and information ex-
traction of TDOM, and expands the application value of
TDOM. In addition, some studies have explored the fusion
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methods of multi-spectral laser scanning data with other
data sources [21-22], improving the recognition and clas-
sification accuracy of complex ground objects by compre-
hensively utilizing different types of data.

2.3 Research on TDOM Generation

TDOM generation has always been a research focus
in the fields of photogrammetry and remote sensing, and
many scholars have carried out research from different per-
spectives. Wei et al. [23] proposed TDOM-NeRF, a novel
large-scale urban True Digital Orthophoto Map (TDOM)
generation method based on Neural Radiance Fields
(NeRF). This method does not rely on additional prior in-
formation; instead, it takes multi-view Unmanned Aerial
Vehicle (UAV) images as input and employs hash grid
features and a Multi-Layer Perceptron (MLP) to implicitly
represent the scene. By performing orthogonal volume
rendering on the scene reconstruction results, the problem
of uneven scales of synthesized views during TDOM gen-
eration is effectively solved. In practical training, a scene
block training strategy is adopted to extend the method to
TDOM generation for large-scale scenes, while achieving
high-fidelity scene reconstruction. Qu et al. [24] proposed
a novel image-to-image method that can directly generate
high-quality True Digital Orthophoto Maps (TDOMs) from
multi-view satellite images without the need for elevation
data as input. Specifically, the 3D scene is effectively rep-
resented by volumetric density and color, both of which
are modeled using a neural network. During each iteration,
this 3D representation is optimized via multi-view satellite
signals, with the adoption of a volumetric rendering for-
mula. Finally, the TDOM is generated using the orthogonal
volumetric rendering technique. In addition, some studies
have focused on quality control and evaluation methods
during the TDOM generation process [25-26]. These
methods establish a scientific evaluation index system to
comprehensively evaluate the accuracy, completeness, and
consistency of TDOM, providing a guarantee for improv-
ing the quality of TDOM.

3 Our Proposed ERS-TD

In the in-depth exploration of the production technol-
ogy of True Digital Orthophoto Maps (TDOM) and the
geometric applications of 3D point clouds, to address the
problems existing in traditional methods, this paper pro-
poses an Efficient Reconstruction and Sampling method
for TDOM based on 3D Point Cloud Geometry in Image
Cloud Computing (ERS-TD). This method integrates mul-
tiple key technologies, covering multiple links from data
processing to TDOM generation and 3D map construction.
The following will elaborate on its key components such
as the system model, core algorithms, and processes in de-
tail.

3.1 System Model and Key Definitions

In the process of generating TDOM based on 3D point
cloud geometry, a series of important technical steps and
concepts are involved. Clarifying these contents is crucial

for understanding and implementing the ERS-TD method.

In indoor mapping scenarios, point cloud data acquired
by some measurement technologies that do not rely on the
Global Navigation Satellite System (GNSS) lack georef-
erencing information, which can easily lead to deviations
between different datasets. To address this issue, Ronn-
holm proposed 13 orientation methods, among which the
3D surface matching method has attracted much attention.
This method can generate large-area multi-source data
by registering non-georeferenced datasets with large geo-
referenced “blocks”. In addition, airborne laser scanning
(ALS) data can assist in improving the registration effect
of the mobile laser scanning (MLS) system, as the visibil-
ity of GNSS signals in different areas for the MLS system
varies. In practical operations, precise registration is the
foundation for subsequent work, ensuring that point cloud
data from different sources can be fused and processed in a
unified geographic coordinate system.

The density distribution of point cloud data acquired
by laser scanning is not uniform, and this non-uniformity
can have adverse effects on subsequent modeling and other
applications. The purpose of down-sampling technology
is to generate a uniform point cloud density by reducing
redundant data close to the scanner. Before performing
down-sampling, it is necessary to identify overlapping ar-
eas in the data and quantify them based on density. Then,
sampling is carried out on the overlapping data to generate
a single, uniform point cloud. For example, when scanning
complex buildings, the point cloud close to the scanner
may be too dense. Down-sampling can reduce the data
volume while retaining key information and improve pro-
cessing efficiency.

Data integration is an important process of incorpo-
rating multiple types of information into point cloud data
to enhance its application value. Point clouds are essen-
tially a record of the environment at a specific moment.
Incorporating temporal information into point clouds can
enhance their ability to express environmental changes.
By combining temporal information with point data, data
filtering in the temporal dimension can be achieved. For
example, when monitoring urban construction progress,
the latest point cloud information can be extracted from
scanning data at different times, or point cloud pairs can be
generated to detect changes in objects such as buildings.
The incorporation of temporal information provides strong
support for analyzing the dynamic changes of the environ-
ment.

The accuracy of point clouds is closely related to the
sensors used in the acquisition process. To better meet the
requirements of different applications for data accuracy, it
is crucial to add accuracy information to the point cloud,
preferably in the form of global position accuracy. In this
way, accuracy standards can be set according to specific
needs in practical applications, and the reliability of the
data can be evaluated. When higher-accuracy point data
is available, lower-accuracy points can be excluded in a
timely manner to achieve intelligent data updating. For
example, in high-precision urban terrain mapping, accurate
accuracy information can help surveyors accurately judge
the usability of the data.
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Point clouds usually contain spectral information ob-
tained through sensor integration or laser backscatter inten-
sity and waveform analysis. Incorporating these spectral
data during the analysis and segmentation of point clouds
can significantly improve the accuracy of the results,
especially when using multi-spectral sensors. Spectral in-
formation can provide additional basis for distinguishing
different types of ground objects, such as distinguishing
vegetation from buildings. By analyzing spectral data, the
features of ground objects can be extracted more accurate-
ly, and the classification accuracy of point cloud data can
be improved.

Accurate point cloud classification and segmentation
are the basis for extracting object parameters and building
object models. When each point in the point cloud is as-
signed a label describing the object it represents (such as
“building”, “tree”, etc.), the point cloud becomes a seman-
tic point cloud. After segmenting the point cloud, assigning
specific identifiers (such as national building identifiers)
to all points belonging to the corresponding buildings can
further enrich the semantic information of the point cloud.
This semantic information plays an important role in vi-
sualization and analysis applications. For example, in ur-
ban environment analysis, specific types of ground object
points can be quickly screened out through semantic infor-
mation, such as excluding vegetation points and focusing
on the analysis of artificial ground objects like buildings
and roads.

3.2 Point Cloud Denoising and Classification Algorithm
The original point cloud data contains a large amount
of noise, which can result in excessive data size, and the
original point cloud is not effectively classified, leading to
low efficiency in subsequent processing. Therefore, this
paper proposes a denoising and classification algorithm
based on the original point cloud to preprocess it before
further processing.
3.2.1 Improved Point Cloud Denoising Algorithm Based
on Statistical Features

The original point cloud data collected by UAV has a
large amount of data with a lot of noise, which needs to be
de-noised. The noise points can be divided into the follow-
ing four types through analysis.

e The drift noise points: Sparse or scattered points
at the edge of the principal point cloud, away from
the principal point cloud;

*  The isolated noise points: away from the principal
point cloud, the small and dense noise point set;

e The redundancy noise points: extra scan points be-
yond the predetermined range;

e The mixed noise points: miscellaneous points in-
termingled with the principal point cloud.

Due to the complexity of point cloud data noise, an
improved point cloud denoising algorithm based on statis-
tical features is proposed in this paper. The principle is that
the average distance between each point in the model data
set containing point cloud and its domain conforms to the
Gaussian distribution, and the statistical analysis method
of the average distance in the local domain of the point
cloud is compared with the principal point cloud, and the

noise point is denoised [27-30].

First, assume that the number of points in the noise
point cloud model P is n, the k-field point set of any point
pi is N(Pi). The average distance di between any point pi
in the point cloud and all adjacent points in the k-field can
be used to calculate through the Equation (1). Then, the
average distance dO of the all local fields is obtained as
show in Equation (2), ¢ is the standard deviation of the av-
erage distance in the local field of point cloud, as shown in
Equation (3). When the k-field average distance di>d,+Ac,
pi will be removed as noise.

1k
di=-3 |pi=pilp; e N (M

1 N
dy=—> d @

1 N
o= \/;Zizl(d,- ~dy) ®

When the k-field average distance di >d0+\o, pi will
be removed as noise.

3.2.2 Point Cloud Data Classification Processing Based
on Feature Vector Stochastic Forest Classification
Algorithm

The denoising point cloud data contains vegetation,
buildings, terrain, vehicles and other point cloud data, and
this paper needs to extract the terrain point cloud. In or-
der to extract the terrain point cloud, the point cloud data
should be effectively classified, and the terrain point cloud
should be extracted after classification.

The geometric features of point cloud can effectively
distinguish vegetation, buildings, terrain, vehicles and
other information. Seven feature vectors can be obtained
through the linear, planar and three-dimensional attributes
of the point and its field. The obtained feature vectors are
poured into the random forest classification algorithm for
the classification of point cloud data.

With the current point as the center, the nearest k points
are searched to form a adjacent points set P={p1, ..., pi, ...,
pk}, then the covariance tensor Cy is shown in in Equation

4).
1 .
Cy =;Zf:1(p,~—p)(p,»—p)T @)

Where, p is the center point of k-field points, the calcu-
lation Equation (5) is shown below:

k k
pi=Y. P H ®)

p =argmin,, 21

As shown in Equation (5), we seek a point p in space
such that the sum of the squared distances from it to all
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points in the neighboring point set p is minimized. This
point a can be regarded as the “central” position of the
neighboring point set p in space. Accurately determining
point p is crucial for the subsequent precise calculation of
the covariance tensor and the construction of feature vec-
tors, as it can better describe the geometric characteristics
of the point cloud data in the local region and provide a
more reliable basis for point cloud data classification.

In the process of point cloud data classification using
the eigenvector-based random forest classification algo-
rithm, the three eigenvalues A1, A2, and A3 are typically
computed using eigenvalue decomposition. For a 3x3 co-
variance tensor Cy, its eigenvalue decomposition is given
by Equation (6):

Cy =UAU" (6)

Where U is an orthogonal matrix composed of eigen-
vectors, and A is a diagonal matrix with the eigenvalues
A1, A2, and A3 on its diagonal. In practical computations,
various mathematical libraries (such as the NumPy library
in Python) can be employed to perform this process. By
applying eigenvalue decomposition to the covariance ten-
sor Cy, we can obtain three eigenvalues that satisfy A1>
A2>)13>0. Subsequently, seven feature vectors are con-
structed based on these eigenvalues for the classification
of point cloud data. These seven feature vectors can be
derived from the three eigenvalues, as shown in Table 1.

Table 1. Seven feature vectors constructed based on
feature values

Eigenvector Size
Linearity V= (/11 -4 ) !4
Plananrity V, = (AQ -A) A
Seatter V=414
Anisotropy Vy= (/11 -4 ) 4
3
Eigenentropy Vs = —Z A xIn(4)
i=1
Omnivariance Ve =3(Ax 2y x2)

Vi =2

Surface variation

In this paper, the random forest algorithm is used to
classify the point cloud data. The feature vector consists of
seven groups of feature vectors constructed by three eigen-
values. After training, the overall classification accuracy is
about 85%.

3.3 TDOM Production Process

The existing mature digital photogrammetry systems
include Pixel Factory, INPHO, etc. these digital photo-
grammetry systems have been able to produce TDOM with
high precision. The processes of TDOM production by
these systems are: digital aerial triangulation to DSM ex-

traction, DSM editing, digital TDOM correction, splicing
and color uniformity.
3.3.1 Production Process of Traditional TDOM

The traditional method of TDOM uses Digital Surface
Model (DSM) and digital differential correction technology
to correct the geometric deformation of the original image,
so that every point on the image is corrected to the vertical
angle of view. In reality, the fluctuation of the ground will
cause the difference between the actual image position of
the ground point and the ideal image position, resulting in
the displacement of the image point. Image point displace-
ment often leads to occlusion and ghosting of tall ground
objects. As shown in Figure 2, orthophoto correction will
produce image point displacement when the ground fluctu-

ates greatly.
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Figure 2. Schematic diagram of image point displacement
during orthophoto correction

3.3.2 Production Process of TDOM

In this paper, the TDOM is made for the 3D point cloud
geometry of oblique photography, and the 3D point cloud
geometry obtained by 3D reconstruction of unmanned
aerial photography image and high-resolution satellite im-
age is experimentally processed. The TDOM generation
steps in this paper are shown in Figure 3. The production
from 3D point cloud geometry to TDOM is completed by
performing point cloud registration and fusion, absolute
orientation of model, interval sampling, vertical projection
and texture mapping on the input model.

3D point
cloud

Point cloud
registration

onentation

interval
sampling

Vertical
projection
Texture
mapping

No, check the error
source for adjustment

Figure 3. Information processing flow of TDOM genera-
tion system

Figure 3 illustrates the information processing flow of
the TDOM generation system. Initially, three-dimension-
al point clouds serve as the input data. After undergoing
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point cloud registration and model optimization, the data
is sequentially subjected to equidistant sampling, vertical
projection, and texture mapping operations.

Following the completion of texture mapping, the pro-
cessing results must be compared against accuracy stan-
dards for evaluation. The specific accuracy standards are
as follows:

Geometric Accuracy Standards: The mean error in pla-
nar position should not exceed +0.5 meters (relative to the
true ground coordinates), and the mean error in elevation
should not exceed +0.3 meters. These standards ensure that
the TDOM accurately reflects the actual terrain and land-
forms in both planar position and elevation.

Image Resolution Standards: The spatial resolution
of the image must reach 0.2 meters, meaning each pixel
corresponds to an actual ground size of 0.2 meters x 0.2
meters. This ensures that the image details meet the appli-
cation requirements.

Color Consistency Standards: In the overlapping areas
of adjacent images, the standard deviation of color differ-
ences should not exceed 10 (calculated in the RGB color
space). This ensures that the overall image has natural col-
or transitions and consistent visual effects.

If the processing results meet the aforementioned ac-
curacy standards, the TDOM is output. If not, the sources
of error must be identified and corrected, after which the
process returns to the point cloud registration step for re-
processing.

3.4 Equal Interval Sampling

Equal interval sampling is to extract the point cloud
data on the surface of the point cloud geometry, cover the
model in the form of a two-dimensional matrix with suffi-
cient density, extract the highest point of the model of each
small grid as the sample point in the grid area, and traverse
the whole point cloud geometry to extract the surface point
cloud of the model.
3.4.1 Principle of Equal Interval Sampling

This paper implements the equal interval sampling
method, surrounds the space of the registered and oriented
3D point cloud geometry with a cube, establishes a two-di-
mensional matrix with M rows and N columns, divides the
whole cube into square cubes with the same bottom size.
By adjusting the size of the matrix cell network, the algo-
rithm finds the point with the largest elevation value in the
3D point cloud geometry in the cube where each cell net-
work is located as the sample point in the grid, and stores
it in the point set. It traverses the whole matrix to obtain
the surface point cloud of the whole model. If the extracted
point set is sparse, it will reduce the size of the grid and
traverse the whole model again, until the point cloud on
the whole model surface is extracted. The schematic dia-
gram of equal interval sampling is shown in Figure 4.
3.4.2 Algorithm Flow of Equal Interval Sampling

The flow of the algorithm is as follows:

1. Calculate the minimum and maximum values in X,
Y and Z directions of the whole model, and record them as
X min, X max, Ymin, Ymax and Zmin, Z max;

2. Calculate the difference between the maximum and
minimum values in X and Y directions to obtain the length

and width of the whole grid:

m = Xmax-Xmin

N=Ymax-Ymin

3. Set the side length of the cell net and the number of
cells per unit length, then: cell=1/cell_length;

4. To calculate the number of cells in the whole large
grid, it is necessary to round up and include the bottom of
the whole model, including:

row =[ m * cell ]

col=[n*cell ]

cellsum = row * col

Where the is the number of small cells in the entire
grid, the is the number of small cells in the X direction and
the is the number of small cells in the Y direction.

5. Traverse the whole grid, find the maximum value
point of Z-axis in each small cell, record the index of the
extreme point at this time, and store it in the index se-
quence, which is taken at the boundary of the grid;

x e [ Xmin + 1 * cell length, Xmin + (i+1) * cell
length ) U Xmin + row * cell length ]

1e[Q|0<i<row ]

y € [ Ymin + j * cell length, Ymin + (j+1) * cell
length ) U Ymin + row * cell_length ]

jel[Q]0<j<row ]

6. Copy the point cloud recorded by the index and store
it in a new point cloud set for display.

Figure 4. Schematic diagram of 3D point cloud geometry
placed in equally spaced sampling grid

3.5 Vertical Projection

Vertical projection is the top view projection of or-
thographic projection, which has authenticity, accumula-
tion and similarity. The large 3D scene model constructed
by tilt photography objectively reproduces the omni-direc-
tional scene of the survey area. Based on the characteristics
of vertical projection, the texture information correspond-
ing to dense matching points or interpolation points in the
top view can be extracted from the tilt photography scene
model to generate true orthophoto images required by oth-
er projects.

Vertically project the plane position of the point set
on the horizontal plane and form the corresponding plane
graphics of the equally spaced sampling surface point
cloud set. In this paper, the surface point cloud extract-
ed by equal interval sampling vertically projects the xoy
plane, as shown in Figure 5.
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Projection*

direction

Figure 5. Schematic diagram of vertical projection

In this paper, the vertical projection adopts the projec-
tion method of parametric model provided in PCL, pro-
jectinliers filter, and the 3D point cloud sampled at equal
intervals is filtered. The parametric setting of the model
parameters modelcoefficients by the projectinliers filter can
realize the projection operation of the point cloud geome-
try on the two-dimensional plane, line, sphere and cylinder.

The flow of vertical projection algorithm is as follows:

e Input the 3D point set after equal interval sam-
pling, and record the start time of the algorithm;

e Set the four parameters of the parametric model.
The plane model is. When setting the parameters,
set a, Band D as 0 and C as 1 to construct a plane
with Z = 0;

e The input model is filtered by projectinliers to ob-
tain the vertical projection of the model;

*  Store the point set after vertical projection, and
calculate the time-consuming algorithm.

3.6 Algorithm

The following is the pseudo code for the generation of
TDOM based on three-dimensional point cloud geometry
in technical writing style.

The TDOM generation process involves uniform sam-
pling and vertical projection of the input three-dimensional
point cloud. The pseudo code for this process is shown in
Algorithm 1.

Algorithm 1. TDOM algorithm

Input: inputPointCloud (point cloud data that needs to be
processed)

Output: projectedPointCloud (point cloud data after
being processed by the Uniform Sampling, Vertical
Projection, and Return TDOM functions)

1. Function: Uniform Sampling

2. begin

3. Xmin, Xmax, Ymin, Ymax, Zmin, Zmax = calculate
MinMax(inputPointCloud)

m = Xmax - Xmin

n=Ymax - Ymin

cell length = calculateCellLength(inputPointCloud)
row = round(m / cell length)

col =round(n/ cell length)

9. cellsum = row * col

10. indexList =[]

11. fori=0 torow do

12.  forj=0to col do

13. x_min = Xmin + i * cell length

NN

14. x_max = Xmin + (i + 1) * cell_length
15. y_min = Ymin +j * cell_length
16. y_max =Ymin + (j + 1) * cell_length

17.  subPointCloud = extractSubPointCloud(inputPoint
Cloud, x_min, Xx_max, y_min, y_max)

18. maxZIndex = findMaxZIndex(subPointCloud)
19. indexList.append(maxZIndex)

20. end

21. end

22 .outputPointCloud=extractPointCloudBylIndices(inputP
ointCloud, indexList)

23. // Function: Vertical Projection

24. planeModel = setPlaneModel()
25.projectedPointCloud=projectPointCloudToPlane(outpu
tPointCloud, planeModel)

26. // Function: Return TDOM

27. return projectedPointCloud

28. end

To generate TDOM, we first perform uniform sampling
on the input three-dimensional point cloud to extract the
surface point cloud of the model. The uniform sampling
process involves dividing the point cloud into small grids
and extracting the highest point in each grid. The extracted
points are then used to generate the output point cloud.

Next, we perform vertical projection on the output
point cloud to generate the TDOM. The vertical projection
process involves projecting the point cloud onto a plane
with Z=0. This is achieved by setting a plane model and
using it to project the point cloud onto the plane.

Finally, the generated TDOM is returned as the output
of the function.

4 Performance Analysis

4.1 Experimental Environment and Data Preparation

This paper uses C + + programming combined with
PCL library to realize the function of 3D point cloud ge-
ometry processing. The experimental environment of this
paper is shown in Table 2:

Table 2. Configuration of experimental environment

Name Parameter
CPU Intel(R) Core(TM) i7-8750H CPU @2 20GHz 2. 21GH
GPU GeForce RTX2070
Memory 32.0GB

Operating system
Debugging environment

Microsoft Windows 10
Microsoft Visual Studio 2017
PCL 190

“Third party Library

To comprehensively verify the performance of the
method proposed in this paper, experimental tests were
conducted using a 3D point cloud geometric model gener-
ated from multi-view satellite images and a 3D real-scene
model of the Big Wild Goose Pagoda in Xi’an captured
by an unmanned aerial vehicle (UAV). The point cloud of
the 3D point cloud geometric model from satellite images
carries grayscale information, while the point cloud of the
UAV 3D real-scene model has no color information, and
its color texture is attached to the triangular mesh. The
above data model is shown in Figure 6.
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Name Data presentation Point cloud number

Some regional model of the

-
Big Wild Goose Pagoda 779

Complete model of the Big

2032
Wild Goose Pagoda 4203

Satellite reconstruction model
in some region of South
America

700854

Satellite reconstruction model
in some region of South
America

233530

Satellite Reconstruction
Model in a certain region of
South America-Perspec

1692601

Figure 6. Data model

4.2 Performance Analysis of Equal-Interval Sampling
4.2.1 Determination and Adjustment of Grid Size

The side length of the square grid is calculated and set
based on the maximum and minimum values of the 3D
point cloud geometric model after absolute orientation in
the X, Y, and Z directions. When determining the grid size,
both model complexity and processing efficiency need to
be considered. If the grid is too large, the extracted point
cloud will be sparse and unable to accurately represent the
model surface; if the grid is too small, the computation-
al load and processing time will increase. After multiple
parameter adjustments, a reasonable grid size is found to
ensure that the model is completely covered and the point
cloud density is appropriate. When adjusting the grid size,
it is found that different types of models have different sen-
sitivities to grid size. For models with complex structures,
a smaller grid is required to accurately capture their details;
for relatively simple models, an overly large grid will lead
to the loss of details, but an overly small grid will increase
unnecessary computational load. In practical applications,
the grid size needs to be dynamically adjusted according
to the characteristics of the model and application require-
ments. For example, a smaller grid should be used when
performing fine modeling of architectural models; when
conducting rough modeling of regional terrain, the grid
size can be appropriately increased.
4.2.2 Determination and Adjustment of Grid Size

In this experiment, the point cloud geometric model of
the Big Wild Goose Pagoda in Xi’an reconstructed from
UAV images was used, and the model was divided into
grids with a side length of 1x1 cm pixels. From the exper-
imental results shown in Figure 7 (Figure 7(a) displays the
leveled data model of the original Big Wild Goose Pagoda
model, represented by green point clouds; Figure 7(b)
shows the point cloud data extracted using equal-interval
sampling with a square grid size of 1x1 cm, represented by
red point clouds), the extracted point clouds are dense and

completely cover the model surface. This indicates that the
equal-interval sampling algorithm can accurately extract
the point clouds on the model surface. At this grid size, the
details of the model are effectively preserved, such as the
doors, windows, and eaves of the Big Wild Goose Pagoda,
which are clearly visible. Further analysis reveals that the
equal-interval sampling algorithm can well maintain the
geometric features of objects with regular shapes; how-
ever, when dealing with some irregular shapes, such as
natural objects like trees, it may lead to the loss of some
details due to the limitations of sampling points. This is
because equal-interval sampling is based on regular grids
and has relatively weak adaptability to irregular shapes.
In subsequent research, other sampling methods, such as
feature-based sampling, can be considered to achieve more
accurate sampling of objects with irregular shapes.

(b)

Figure 7. Overall schematic diagram and local details of
equal-interval sampling: (a) shows the leveled data model
of the original Big Wild Goose Pagoda model (represented
by green point clouds); (b) presents the point cloud data
extracted via 1x1 cm square grid equal-interval sampling
(represented by red point clouds)

4.2.3 Analysis of Equal-Interval Sampling Results from
Satellite Images

Figure 8 presents a comparison between the original
3D point cloud geometric model from satellite images and
the 3D point cloud geometric model after equal-interval
sampling. Visually, after the original model undergoes
equal-interval sampling processing, the side point cloud
data are filtered out, while the surface data remain com-
plete and clear. The figure shows the comparison of exper-
imental results of equal-interval sampling from satellite
images. The results indicate that the algorithm effectively
removes redundant point clouds, retaining only the key
surface information, which improves the efficiency and
accuracy of subsequent processing. This verifies the effec-
tiveness and applicability of the algorithm for processing
3D point cloud geometric models generated from satellite
images. However, when processing satellite images, it is
found that factors such as cloud cover can affect the sam-
pling results. The point cloud data in the areas covered by
clouds may be inaccurate, leading to missing or incorrect
information in these areas after sampling. In practical
applications, for the preprocessing of satellite images, in
addition to conventional operations such as denoising, it is
also necessary to add the identification and processing of
areas covered by clouds. Image segmentation techniques
can be used to first identify the cloud-covered areas, and
then the point cloud data in these areas can be supplement-
ed through interpolation or other data sources to improve
the accuracy of the sampling results.
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Satellite 3D point cloud geometry

3D point cloud geometry after equally spaced sampling

Figure 8. Comparison between original satellite 3D point
cloud geometry and equidistant sampling 3D point cloud
geometry

4.3 Performance Analysis of Vertical Projection
4.3.1 Vertical Projection Algorithm

The point cloud data obtained by equal-interval sam-
pling is vertically projected onto the XOY plane. Using
the projectlnliers filter method in the PCL (Point Cloud Li-
brary), we set the plane parameters A=B=D=0and C =
1 to obtain the parameters for the plane model Z = 0. Then,
the sampled point cloud is filtered, and the elevation value
of the processed point cloud is set to 0 for visualization
and display. When using the projection method in the PCL,
it is found that different versions of the library have differ-
ences in projection accuracy and speed. Newer versions of
the library may have optimized algorithms, improving pro-
jection accuracy, but may also increase the computational
load due to added features, resulting in slower projection
speeds. In practical applications, it is necessary to select an
appropriate version of the library according to specific re-
quirements. If high projection accuracy is required, a new
version of the library can be chosen; if speed is a more
critical factor, a more suitable version needs to be selected
by comprehensively considering the functions and perfor-
mance of the library.
4.3.2 Analysis of Vertical Projection Effects

The experimental results (combined with Figure 7(a),
Figure 7(b) and Figure 9. [Figure 7(a) shows the point
cloud after equal-interval sampling before vertical pro-
jection; Figure 7(b) shows the point cloud after vertical
projection; Figure 9 shows the comparison between the
model before vertical projection and the plane after ver-
tical projection, presenting the overall and partial data of
the Big Wild Goose Pagoda from both side and top-view
perspectives]) indicate that vertical projection eliminates
the elevation values of the point cloud. After projection,
the surrounding features of the Big Wild Goose Pagoda are
distinct, and the outlines of the houses are clear. The Z-axis
data of the point cloud is eliminated after projection, the
model remains complete, and the algorithm runs at a high
speed. It effectively converts 3D point cloud data into 2D
planar data, preserving key features and improving pro-
cessing efficiency. However, during the projection process,
it is found that when the point cloud data contains noise or
the model surface is discontinuous, abnormal projection

results may occur. For example, at the edges of some mod-
els, projection distortion may appear. This is because noise
points and discontinuous surfaces can affect the projection
algorithm’s judgment of the model structure. In subse-
quent research, data preprocessing can be added before
projection, such as more rigorous denoising or smoothing
the model surface, to improve the quality of the projection
results.

Vertical projection diagram

Vertical preprojection model

Figure 9. Comparison between model before vertical pro-
jection and plane after vertical projection

4.4 Performance Analysis of Texture Mapping

After vertical projection, texture mapping is carried out
on the satellite-reconstructed point cloud with grayscale in-
formation to obtain Figure 10, which includes a grayscale
effect image and a pseudo-color effect image. The gray-
scale effect image clearly displays the surface features of
the model, while the pseudo-color effect image intuitively
reflects different areas of the model through color varia-
tions. Texture mapping adds visual information to the True
Digital Orthophoto Map (TDOM), enhancing its readabil-
ity and practicality. However, during the texture mapping
process, some areas have problems such as low texture fit,
stretching, or distortion. These issues may be caused by
factors such as the quality of the point cloud data and the
accuracy of the texture mapping algorithm. Subsequent
optimization of the algorithm is required to improve the
texture fit. Further analysis reveals that the effect of texture
mapping is also related to the density of the point cloud.
When the point cloud density is low, texture mapping
may appear blurry or discontinuous; when the point cloud
density is too high, it will increase the computational load
and processing time. In practical applications, appropriate
texture mapping algorithms and parameters need to be
selected according to the point cloud density and texture
quality requirements. For example, for low-density point
clouds, an interpolation-based texture mapping method
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can be used to improve the continuity of the texture; for
high-density point clouds, a more complex but more accu-
rate algorithm can be employed to enhance the texture fit.

Order
number

Grayscale effect map

False color effect map

Figure 10. Effect picture of TDOM generated by 3D point
cloud geometry of satellite image with gray scale

4.5 Comparative Analysis with Other Methods

Comparing our method with traditional TDOM pro-
duction methods, the traditional methods are prone to
problems such as occlusion and ghosting when dealing
with complex scenes and large-scale point cloud data.
Our method effectively eliminates these problems through
equal-interval sampling and vertical projection, generating
more accurate and clear TDOMs. In terms of algorithm ef-
ficiency, our method also has an advantage, as it can com-
plete TDOM production in a relatively short time. Howev-
er, compared with some emerging deep learning methods,
our method is still lacking in automation. Deep learning
methods can automatically learn the features and patterns
of point cloud data through large-scale data training, en-
abling more intelligent TDOM production. Nevertheless,
deep learning methods require a large amount of training
data and strong computing resources, and the interpretabil-
ity of the models is poor. In practical applications, the ad-
vantages of our method and deep learning methods can be
combined to improve automation while ensuring algorithm
efficiency and accuracy. For example, in the data prepro-
cessing stage, our method can be used for rapid point cloud
sampling and projection, and then the processed data can
be used as input for the deep learning model. The powerful
feature-learning ability of the deep learning model can be
leveraged to further optimize the TDOM generation effect.

In summary, our TDOM production method based on
3D point cloud geometry has obvious performance advan-
tages. It can effectively handle complex scenes and large-
scale point cloud data to generate high-quality TDOMs.
However, there are deficiencies in aspects such as texture
mapping and automation, which require further research
and improvement.

5 Conclusion

In this paper, the TDOM is made based on the 3D point
cloud geometry, and the algorithm of equal interval sam-
pling and vertical projection of the TDOM is studied. This
part is the key to generate the TDOM. The TDOM can
be used as the source of mapping, map vectorization and
monomer modeling, which plays an important role in the
future digital city, environmental monitoring and emergen-
Cy response.

For the equal interval sampling of the 3D point cloud
geometry, debug the size of the cell network at the sam-
pling interval, extract the maximum elevation point of
the point cloud data falling in each cell network as the
sampling point of the cell network, and traverse the whole
matrix to obtain the surface point cloud data of the whole
model. This process depends on absolute orientation or
model flattening algorithm. Only when the model is flat-
tened, the equal interval sampling method in this paper is
effective; The point cloud with elevation value obtained
after equal interval sampling is vertically projected. The
projection is based on XOY plane, and the surface point
cloud obtained by equal interval sampling is brought into it
for vertical projection. Projection results all points fall on
the plane, all point clouds form a plane from the side view,
and the building outline in the original model is also obvi-
ous from the top view.

The equal interval sampling method in this paper takes
one minute to calculate the local wild goose pagoda model.
When the amount of data increases, the calculation time
increases exponentially. In the follow-up research, the
sampling grid setting will be further improved. Through
the estimation of the model edge, the calculation of blank
cells will be reduced, and the algorithm will be accelerated
to improve the efficiency of equal interval sampling in the
case of large amount of data. Through the experiments of
equal interval sampling and vertical projection, the TDOM
of multi view satellite image is generated in this paper.
Compared with the model, it can be seen that there are still
some shadows and a small number of holes. It is further
necessary to add this part of the image in the same area to
make up for the problems caused by the lack of images or
shadows.

Acknowledgements

This work was supported by the Project of Science and
Technology Department of Jilin Province, China (Grant
number: 202002044JC). It was also supported by the Nat-
ural Science Foundation of Hubei Province of China (Grant
number: 2022CFB536). Jianyin Tang and Mingyu Lin con-
tributed equally to this work.

References

[17 J. X. Yang, Z. L. Cai, T. J. Wang, T. Ye, H. R. Gao, H.
Huang, Ortho-3DGS: True Digital Orthophoto Generation
From Unmanned Aerial Vehicle Imagery Using the Depth-



ERS-TD: An Efficient Reconstruction and Sampling Method for TDOM Based on 3D Point Cloud Geometry in Image Cloud Computing 119

[10]

[11]

[12]

Regulated 3D Gaussian Splatting, [EEE Journal of Selected
Topics in Applied Earth Observations and Remote Sensing,
Vol. 18, pp. 10972-10994, March 2025.
https://doi.org/10.1109/JSTARS.2025.3552105

X. Wang, W. Zhang, H. Xie, H. Ai, Q. Q. Yuan, Z. Q. Zhan,
Tortho-Gaussian: Splatting True Digital Orthophoto Maps,
https://arxiv.org/abs/2411.19594, November, 2024.
https://doi.org/10.48550/arXiv.2411.19594

N. G. Jiao, F. Wang, Y. X. Hu, Y. M. Xiang, R. Liu, H. J.
You, SAR True Digital Ortho Map Production for Target
Geometric Structure Preservation, /EEE Journal of Selected
Topics in Applied Earth Observations and Remote Sensing,
Vol. 16, pp. 10279-10286, October, 2023.
https://doi.org/10.1109/JSTARS.2023.3328049

Y. Zeng, C. J. Sreenan, L. Sitanayah, N. Xiong, J. H. Park,
G. Zheng, An Emergency-Adaptive Routing Scheme
for Wireless Sensor Networks for Building Fire Hazard
Monitoring, Sensors, Vol. 11, No. 3, pp. 2899-2919, March,
2011.

https://doi.org/10.3390/s110302899

L. Gu, H. Zhang, X. J. Wu, Surveying and mapping of
large-scale 3D digital topographic map based on oblique
photography technology, Journal of Radiation Research
and Applied Sciences, Vol. 17, No. 1, Article No. 100772,
March, 2024.

https://doi.org/10.1016/j.jrras.2023.100772

X. Zhu, The Study of the Real Projective Image
Based on TDOM, Master’s Thesis, Chengdu
University of Technology, Chengdu, Sichuan, China,
2018. https://kns.cnki.net/KCMS/detail/detail.
aspx?dbname=CMFD201901&filename=1018259277.nh
H. Guan, H. Jiang, T. Cao, X. Liu, Construct 3D models
of scene on true orthoimage, Science of Surveying and
Mapping, Vol. 34, No. 3, pp. 71-73, 2009.
https://d.wanfangdata.com.cn/periodical/chkx200903025
K. Chen, Y. Liu, J. Zhang, T. Zhang, K. Liu, J. Yang,
GPRT: A Gaussian Process Regression-Based Radio Map
Construction Method for Rugged Terrain, /EEE Internet of
Things Journal, Vol. 12, No. 13, pp. 23905-23920, July,
2025.

https://doi.org/10.1109/J10T.2025.3554507

P. E. Kuevor, M. Ghaffari, E. M. Atkins, J. W. Cutler, Fast
and Noise-Resilient Magnetic Field Mapping on a Low-
Cost UAV Using Gaussian Process Regression, Sensors,
Vol. 23, No. 8, Article No. 3897, April, 2023.
https://doi.org/10.3390/s23083897

J. Yang, N. Xiong, A. V. Vasilakos, Z. Fang, D. Park, X.
Xu, S. Yoon, S. Xie, Y. Yang, A Fingerprint Recognition
Scheme Based on Assembling Invariant Moments for
Cloud Computing Communications, /EEE Systems Journal,
Vol. 5, No. 4, pp. 574-583, December, 2011.
https://doi.org/10.1109/JSYST.2011.2165600

S. Huang, Z. Zeng, K. Ota, M. Dong, T. Wang, N. N.
Xiong, An Intelligent Collaboration Trust Interconnections
System for Mobile Information Control in Ubiquitous 5G
Networks, IEEE Transactions on Network Science and
Engineering, Vol. 8, No. 1, pp. 347-365, January-March,
2021.

https://doi.org/10.1109/TNSE.2020.3038454

J. Yang, X. P. Li, L. Luo, L. W. Zhao, J. Wei, T. Ma, New
Supplementary Photography Methods after the Anomalous
of Ground Control Points in UAV Structure-from-Motion
Photogrammetry, Drones, Vol. 6, No. 5, Article No. 105,
May, 2022.

https://doi.org/10.3390/drones6050105

[13]

[14]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

E. Lee, Y. Kwon, C. Kim, W. Choi, H. G. Sohn, Multi-
source Point Cloud Registration for Urban Areas Using a
Coarse-to-Fine Approach, GIScience & Remote Sensing,
Vol. 61, No. 1, Article No. 2341557, 2024.
https://doi.org/10.1080/15481603.2024.2341557

K. W. Chiang, S. Srinara, Y. T. Chiu, S. Tsai, M. L. Tsai, C.
Satirapod, N. El-Sheimy, M. Ai, Creation and Verification
of High-Definition Point Cloud Maps for Autonomous
Vehicle Navigation, /IEEE Internet of Things Journal, Vol.
11, No. 23, pp. 37582-37598, December, 2024.
https://doi.org/10.1109/J10T.2024.3435344

C. R. Qi, H. Su, K. Mo, L. J. Guibas, PointNet: Deep
Learning on Point Sets for 3D Classification and
Segmentation, Proc. IEEE Conference on Computer Vision
and Pattern Recognition, Honolulu, HI, USA, pp. 77-85,
2017.

https://doi.org/10.1109/CVPR.2017.16

C. R. Qi, L. Yi, H. Su, L. J. Guibas, PointNet++: Deep
Hierarchical Feature Learning on Point Sets in a Metric
Space, Proc. Advances in Neural Information Processing
Systems, Long Beach, CA, USA, pp. 5105-5114, 2017.
https://dl.acm.org/doi/10.5555/3295222.3295263

Y. Wang, Y. Sun, Z. Liu, S. E. Sarma, M. M. Bronstein, J.
M. Solomon, Dynamic Graph CNN for Learning on Point
Clouds, ACM Transactions on Graphics (TOG), Vol. 38,
No. 5, pp. 1-12, October, 2019.
https://doi.org/10.1145/3326362

A. Kukko, H. Kaartinen, J. Hyypp4, Y. Chen, Multiplatform
Mobile Laser Scanning: Usability and Performance,
Sensors, Vol. 12, No. 9, pp. 11712-11733, September,
2012.

https://doi.org/10.3390/s120911712

A. M. Almeshal, M. R. Alenezi, A. K. Alshatti, Accuracy
Assessment of Small Unmanned Aerial Vehicle for Traffic
Accident Photogrammetry in the Extreme Operating
Conditions of Kuwait, Information, Vol. 11, No. 9, Article
No. 442, September, 2020.

https://doi.org/10.3390/info 11090442

K. Bakuta, P. Kupidura, L. Jetowicki, Testing of Land
Cover Classification from Multispectral Airborne
Laser Scanning Data, The International Archives of the
Photogrammetry, Remote Sensing and Spatial Information
Sciences, Vol. XLI-B7, pp. 161-169, 2016.
https://doi.org/10.5194/isprs-archives-XLI-B7-161-2016

G. Sohn, I. Dowman, Data fusion of high-resolution
satellite imagery and LiDAR data for automatic building
extraction, ISPRS Journal of Photogrammetry and Remote
Sensing, Vol. 62, No. 1, pp. 43-63, May, 2007.
https://doi.org/10.1016/j.isprsjprs.2007.01.001

X. X. Zhu, D. Tuia, L. Mou, G. S. Xia, L. Zhang, F.
Xu, F. Fraundorfer, Deep Learning in Remote Sensing:
A Comprehensive Review and List of Resources, /IEEE
Geoscience and Remote Sensing Magazine, Vol. 5, No. 4,
pp. 8-36, December, 2017.
https://doi.org/10.1109/MGRS.2017.2762307

J. X. Wei, G. B. Zhu, X. L. Chen, NeRF-Based Large-
Scale Urban True Digital Orthophoto Map Generation
Method, IEEE Journal of Selected Topics in Applied Earth
Observations and Remote Sensing, Vol. 18, pp. 1070—-1084,
2025.

https://doi.org/10.1109/JSTARS.2024.3491869

Y. J. Qu, X. Y. An, S. H. Chen, F. Deng, Satellite True
Digital Orthophoto Map Generation Without Elevation
Data: A New NeRF-Based Method, Remote Sensing Letters,
Vol. 15, No. 3, pp. 258-269, 2024.



120 Journal of Internet Technology Vol. 27 No. 1, January 2026

https://doi.org/10.1080/2150704X.2024.2313608

[25] Y. Imai, Y. Akamatsu, M. Mori, N. Shirai, M. Maruya,
H. Ohyama, An Accuracy Assessment of DSMs and
Orthoimages Derived from ALOS/PRISM and Their
Avalilability in Forestry, The International Archives of the
Photogrammetry, Remote Sensing and Spatial Information
Sciences, Vol. XXXVII, Part B8, pp. 1021-1025, 2008.

[26] D. El-Rushaidat, R. Yeh, X. M. Tricoche, Accurate parallel
reconstruction of unstructured datasets on rectilinear grids,
Journal of Visualization, Vol. 24, No. 4, pp. 787-806,
August, 2021.
https://doi.org/10.1007/s12650-020-00740-0

[27] X. Wu, J. Xu, Z. Zhu, Y. Wang, Q. Zhang, S. Tang, M.
Liang, B. Cao, Correlation filter tracking algorithm based
on spatial-temporal regularization and context awareness,
Applied Intelligence, Vol. 52, No. 15, pp. 17772-17783,
December, 2022.
https://doi.org/10.1007/s10489-022-03458-8

[28] Q. Wang, Q. H. Gu, L. Chen, Y. P. Guo, N. X. Xiong, A
MOEA/D with global and local cooperative optimization
for complicated bi-objective optimization problems,
Applied Soft Computing, Vol. 137, Article No. 110162,
April, 2023.
https://doi.org/10.1016/j.as0¢.2023.110162

[29] Z. Feng, L. Yan, Y. Xia, B. Xiao, An Adaptive Padding
Correlation Filter With Group Feature Fusion for Robust
Visual Tracking, I[EEE/CAA Journal of Automatica Sinica,
Vol. 9, No. 10, pp. 1845-1860, October, 2022.
https://doi.org/10.1109/JAS.2022.105878

[30] K. Li, A Survey of Multi-objective Evolutionary Algorithm
Based on Decomposition: Past and Future, /IEEE
Transactions on Evolutionary Computation, Early Access,
pp- 1-1, 2024.
https://doi.org/10.1109/TEVC.2024.3496507

Biographies

Jianyin Tang is a PhD Candidate at
Changchun University of Science and
Technology. Currently, he is a Senior
Engineer. His research interests include
machine learning and machine vision.

Mingyu Lin is an M.S. graduate from
Nanchang Hangkong University, China.
Currently, she is an associate professor
at the School of Computer Science and
Technology, Hubei Business College,
China. Her research interests include
pattern recognition and data analysis.

Zhenglin Yu prof. & doctoral supervisor
at Changchun Univ. of Sci. & Tech.
(China), now works at its Mechatronic
Eng. Dept. He researches mechatronic
system control. Led projects like China’s
Nat. Nat. Sci. Found., covering deep hole
inner-surface photoelectric detection and
airborne photoelectric countermeasure
platforms. Won Jilin Provincial & National Defense Sci-

Tech Progress Awards, published papers (e.g., 3D Point
Cloud Registration for Complex Surfaces via iGPS), and
holds titles like Jilin’s Middle-aged & Young Sci-Tech
Leader.

Zhenhua Xiao is a Ph.D. in Computer
Science. Currently, he is an associate
professor. His research interests include
artificial immune systems, image
recognition, fault diagnosis, and IoT
security.

Neal N. Xiong is a professor, holds dual
PhDs from Japan’s Graduate School
of Frontier Sciences (Univ of Electro-
Communications) and China’s Wuhan
Univ (Sch of Comp Sci); he teaches
at Georgia State Univ (Dept of Comp
Sci) and Colorado Sch of Mines (USA),
was nominated for China Computer
Federation’s Excellent Doctoral Dissertation Award,
and has published ~500 papers (=250 journal ones) in
venues like IEEE JSAC, IEEE/ACM Transactions, IEEE
INFOCOM.



