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Abstract

Digital Orthophoto Map (DOM), as a crucial surveying 
and mapping product, often encounters issues such as oc-
clusion, ghosting, and edge blur in practical applications, 
which undoubtedly have a negative impact on the accuracy 
of image analysis. The introduction of True Digital Or-
thophoto Map (TDOM) aims to effectively address these 
challenges, with its core objective being to eliminate in-
terferences caused by terrain and ground target projection 
distortions. However, traditional TDOM production meth-
ods rely on digital surface models for orthorectification, 
a process that often results in the occlusion of high-rise 
buildings in the imagery due to the displacement of image 
points. In view of this, this paper proposes an Efficient 
Reconstruction and Sampling Method for TDOM Based 
on 3D Point Cloud Geometry in Image Cloud Computing 
(ERS-TD). This method innovatively integrates key tech-
nical components such as point cloud registration, absolute 
orientation, equal interval sampling, vertical projection, 
and texture mapping. Among these, the design of the equal 
interval sampling method is particularly ingenious, as it 
aims to efficiently and accurately extract surface point 
cloud data from the model. By flexibly adjusting the grid 
size of the sampling interval and comprehensively travers-
ing the entire matrix, this method can rapidly and precisely 
obtain the surface point cloud information of the entire 
model, significantly improving efficiency compared to 
traditional methods. Furthermore, the vertical projection 
method projects the surface point cloud onto a plane, ef-
fectively eliminating the influence of elevation values and 
clearly revealing the outlines of buildings. In addition, to 
meet the demand for 3D map construction, this study fur-
ther explores how to utilize the acquired 3D point cloud 
data and texture information to construct more refined and 
realistic 3D maps on the basis of generating True Digital 
Orthophoto Maps. By optimizing the processing flow of 
point cloud data and enhancing the accuracy of texture 
mapping, this study successfully achieves the transition 
from 2D imagery to 3D maps, providing new ideas and 
methods for 3D map construction.

Keywords: Oblique photo grammetry, True digital 

orthophoto map, 3D point cloud geometry, Equal interval 
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1  Introduction

Digital Orthophoto Map (DOM) has the geometric ac-
curacy and complete image features of topographic map. 
It has become an important basic surveying and mapping 
product. However, there are often some problems in DOM, 
such as occlusion, ghosting, edge blur and incomplete 
integration [1], which affect the error of image analysis 
and interpretation. True Digital Orthophoto Map (TDOM) 
eliminates the projection deformation of terrain and ground 
targets at the same time, and the buildings, trees and other 
ground objects in the image are corrected to the correct 
position without blocking other ground objects. TDOM 
not only has the geometric accuracy and influence charac-
teristics of DOM, but also is rich in texture information. 
It can be used for plane measurement, and can also obtain 
the correct road and building boundaries to build a 3D 
building scene [2]. The following figure is the comparison 
between DOM and the TDOM of urban buildings. It can 
be seen that the side texture of buildings is eliminated in 
the TDOM of urban scene, the roof was restored to its true 
position.

With the development of oblique photography, large-
scale, multi angle, high-definition, high-precision and om-
ni-directional complex scene perception becomes possible 
[3]. At the same time, with the support of the development 
of UAV, satellite and other platforms, the flight platform 
carries multiple sensors to obtain ground object images and 
elevation textures, which is gradually convenient and fast, 
and then carries out homonymous image point matching, 
regional network joint adjustment, inclined image dense 
matching, dense point cloud generation, triangulation con-
struction, texture mapping and editing through the data 
processing platform [4]. The data processing operation of 
photogrammetry principle can finally realize the construc-
tion of large-scale and refined 3D point cloud geometry.

3D point cloud geometry is the product of 3D model-
ing of oblique photography, which has more intuitive and 
real characteristics. Domestic scholars have also studied 
the process of generating TDOM from this model. Based 
on the 3D model of oblique photography, Gu et al. [5] pro-
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posed a large-scale 3D digital topographic mapping meth-
od based on tilt photography technology, which realizes 
the mapping of large-scale 3D digital topographic maps; 
X. Zhu [6] and others used real 3D data to complete the 
production of TDOM through the acquisition of top view 
image data, the acquisition of control point information 
and the correction of image data; Guan et al. [7] completed 
the generation of TDOM by 3D reconstruction of scene 
model and sampling and pixels of the model. As shown in 
Figure 1, a comparison of the difference between the DOM 
and TDOM for urban buildings is presented.

Figure 1. Comparison of difference between DOM and 
TDOM of urban buildings

This paper studies the key technologies of TDOM pro-
duction based on 3D point cloud geometry, including equal 
interval sampling and vertical projection of 3D point cloud 
geometry [8-10]. Experiments on multiple groups of data 
prove the practicability of this algorithm, which provides 
support for TDOM production and 3D data processing us-
ing 3D model [11-12].

This paper proposes a 3D map extraction and recon-
struction scheme for image cloud computing. The paper is 
organized as follows: Section 2 provides an overview of 
related literature. Section 3 explains the methodology and 
data sources used. Section 4 presents our proposed scheme 
and compares it with existing methods. Section 5 provides 
a performance analysis. Finally, Section 6 concludes the 
paper and suggests future research directions.

2  The Related Work

In recent years, significant progress has been made in 
the fields of True Digital Orthophoto Map (TDOM) gen-
eration and 3D point cloud geometry applications, leading 
to the emergence of a series of innovative methods and 
applications. This section focuses on the relevant research 
work in this field, systematically summarizes the existing 
achievements, and lays a solid foundation for the research 
in this paper.

2.1 Research on Point Cloud Map Representation and 
Applications
Point cloud maps, due to their rich 3D scene informa-

tion, have been widely used in multiple fields. With the 
development of sensor technology and the improvement 

of algorithms, research on the generation and application 
of point cloud maps has continued to deepen. Lee et al. 
[13] developed a coarse-to-fine method, consisting of the 
Building Exterior Wall-Based (BEWB) algorithm and the 
Building Outline-Based (BOB) algorithm, to register point 
clouds captured by different sensors in urban scenes. Spe-
cifically, the BEWB algorithm performs coarse registration 
of urban point clouds by extracting building exterior walls, 
establishing corresponding points, and effectively remov-
ing outliers from the corresponding point set. In contrast, 
the BOB algorithm achieves precise registration of urban 
point clouds acquired from multiple sensors by leveraging 
building outlines and points corresponding to the point 
cloud ground. by Chiang et al. [14] explored the applica-
tion of point cloud maps in autonomous vehicle naviga-
tion. By constructing a real-time point cloud processing al-
gorithm, vehicles can accurately perceive the surrounding 
environment and achieve safe and reliable path planning. 
This achievement provides a new direction for the devel-
opment of the intelligent transportation field and also of-
fers new ideas for the application of TDOM in urban traffic 
modeling.

In addition, with the development of computer vision 
technology, some studies have attempted to use deep 
learning methods for semantic understanding of 3D point 
cloud data [15-17]. These methods can automatically iden-
tify different ground object categories in the point cloud, 
improving the analysis efficiency and accuracy of point 
cloud data and providing powerful tools for information 
extraction and classification of TDOM.

2.2 Research on Data Acquisition Technologies
Data acquisition is a key link in obtaining high-quality 

point cloud data, and certain progress has been made in 
mobile laser scanning and airborne multi-spectral laser 
scanning.

In the field of mobile laser scanning, Antero Kukko et 
al. [18] have developed multi-platform mobile laser scan-
ning solutions (such as vehicle-mounted, cart-mounted, 
and boat-mounted devices) for data acquisition in urban ar-
eas and river environments. They have also launched a new 
type of backpack-mounted device, which is suitable for 
measurement needs in the field of natural sciences under 
variable terrain conditions, and discussed the application 
performance of these solutions in various fields including 
urban surveying and mapping, river geomorphology, etc.. 
At the same time, significant progress has also been made 
in UAV-based laser scanning technology [19]. UAV laser 
scanning can obtain high-resolution point cloud data from 
a low-altitude perspective, making it possible to finely map 
urban and natural environments.

In airborne multi-spectral laser scanning, K. Bakuła et 
al. [20] used advanced multi-spectral airborne laser scan-
ning equipment combined with deep learning algorithms to 
achieve high-precision classification of land cover types. 
This research improves the semantic information acquisi-
tion ability of point cloud data, provides a more accurate 
basis for ground object classification and information ex-
traction of TDOM, and expands the application value of 
TDOM. In addition, some studies have explored the fusion 
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methods of multi-spectral laser scanning data with other 
data sources [21-22], improving the recognition and clas-
sification accuracy of complex ground objects by compre-
hensively utilizing different types of data.

2.3 Research on TDOM Generation
TDOM generation has always been a research focus 

in the fields of photogrammetry and remote sensing, and 
many scholars have carried out research from different per-
spectives. Wei et al. [23] proposed TDOM-NeRF, a novel 
large-scale urban True Digital Orthophoto Map (TDOM) 
generation method based on Neural Radiance Fields 
(NeRF). This method does not rely on additional prior in-
formation; instead, it takes multi-view Unmanned Aerial 
Vehicle (UAV) images as input and employs hash grid 
features and a Multi-Layer Perceptron (MLP) to implicitly 
represent the scene. By performing orthogonal volume 
rendering on the scene reconstruction results, the problem 
of uneven scales of synthesized views during TDOM gen-
eration is effectively solved. In practical training, a scene 
block training strategy is adopted to extend the method to 
TDOM generation for large-scale scenes, while achieving 
high-fidelity scene reconstruction. Qu et al. [24] proposed 
a novel image-to-image method that can directly generate 
high-quality True Digital Orthophoto Maps (TDOMs) from 
multi-view satellite images without the need for elevation 
data as input. Specifically, the 3D scene is effectively rep-
resented by volumetric density and color, both of which 
are modeled using a neural network. During each iteration, 
this 3D representation is optimized via multi-view satellite 
signals, with the adoption of a volumetric rendering for-
mula. Finally, the TDOM is generated using the orthogonal 
volumetric rendering technique. In addition, some studies 
have focused on quality control and evaluation methods 
during the TDOM generation process [25-26]. These 
methods establish a scientific evaluation index system to 
comprehensively evaluate the accuracy, completeness, and 
consistency of TDOM, providing a guarantee for improv-
ing the quality of TDOM.

3  Our Proposed ERS-TD

In the in-depth exploration of the production technol-
ogy of True Digital Orthophoto Maps (TDOM) and the 
geometric applications of 3D point clouds, to address the 
problems existing in traditional methods, this paper pro-
poses an Efficient Reconstruction and Sampling method 
for TDOM based on 3D Point Cloud Geometry in Image 
Cloud Computing (ERS-TD). This method integrates mul-
tiple key technologies, covering multiple links from data 
processing to TDOM generation and 3D map construction. 
The following will elaborate on its key components such 
as the system model, core algorithms, and processes in de-
tail.

3.1 System Model and Key Definitions
In the process of generating TDOM based on 3D point 

cloud geometry, a series of important technical steps and 
concepts are involved. Clarifying these contents is crucial 

for understanding and implementing the ERS-TD method.
In indoor mapping scenarios, point cloud data acquired 

by some measurement technologies that do not rely on the 
Global Navigation Satellite System (GNSS) lack georef-
erencing information, which can easily lead to deviations 
between different datasets. To address this issue, Rönn-
holm proposed 13 orientation methods, among which the 
3D surface matching method has attracted much attention. 
This method can generate large-area multi-source data 
by registering non-georeferenced datasets with large geo-
referenced “blocks”. In addition, airborne laser scanning 
(ALS) data can assist in improving the registration effect 
of the mobile laser scanning (MLS) system, as the visibil-
ity of GNSS signals in different areas for the MLS system 
varies. In practical operations, precise registration is the 
foundation for subsequent work, ensuring that point cloud 
data from different sources can be fused and processed in a 
unified geographic coordinate system.

The density distribution of point cloud data acquired 
by laser scanning is not uniform, and this non-uniformity 
can have adverse effects on subsequent modeling and other 
applications. The purpose of down-sampling technology 
is to generate a uniform point cloud density by reducing 
redundant data close to the scanner. Before performing 
down-sampling, it is necessary to identify overlapping ar-
eas in the data and quantify them based on density. Then, 
sampling is carried out on the overlapping data to generate 
a single, uniform point cloud. For example, when scanning 
complex buildings, the point cloud close to the scanner 
may be too dense. Down-sampling can reduce the data 
volume while retaining key information and improve pro-
cessing efficiency.

Data integration is an important process of incorpo-
rating multiple types of information into point cloud data 
to enhance its application value. Point clouds are essen-
tially a record of the environment at a specific moment. 
Incorporating temporal information into point clouds can 
enhance their ability to express environmental changes. 
By combining temporal information with point data, data 
filtering in the temporal dimension can be achieved. For 
example, when monitoring urban construction progress, 
the latest point cloud information can be extracted from 
scanning data at different times, or point cloud pairs can be 
generated to detect changes in objects such as buildings. 
The incorporation of temporal information provides strong 
support for analyzing the dynamic changes of the environ-
ment.

The accuracy of point clouds is closely related to the 
sensors used in the acquisition process. To better meet the 
requirements of different applications for data accuracy, it 
is crucial to add accuracy information to the point cloud, 
preferably in the form of global position accuracy. In this 
way, accuracy standards can be set according to specific 
needs in practical applications, and the reliability of the 
data can be evaluated. When higher-accuracy point data 
is available, lower-accuracy points can be excluded in a 
timely manner to achieve intelligent data updating. For 
example, in high-precision urban terrain mapping, accurate 
accuracy information can help surveyors accurately judge 
the usability of the data.
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Point clouds usually contain spectral information ob-
tained through sensor integration or laser backscatter inten-
sity and waveform analysis. Incorporating these spectral 
data during the analysis and segmentation of point clouds 
can significantly improve the accuracy of the results, 
especially when using multi-spectral sensors. Spectral in-
formation can provide additional basis for distinguishing 
different types of ground objects, such as distinguishing 
vegetation from buildings. By analyzing spectral data, the 
features of ground objects can be extracted more accurate-
ly, and the classification accuracy of point cloud data can 
be improved.

Accurate point cloud classification and segmentation 
are the basis for extracting object parameters and building 
object models. When each point in the point cloud is as-
signed a label describing the object it represents (such as 
“building”, “tree”, etc.), the point cloud becomes a seman-
tic point cloud. After segmenting the point cloud, assigning 
specific identifiers (such as national building identifiers) 
to all points belonging to the corresponding buildings can 
further enrich the semantic information of the point cloud. 
This semantic information plays an important role in vi-
sualization and analysis applications. For example, in ur-
ban environment analysis, specific types of ground object 
points can be quickly screened out through semantic infor-
mation, such as excluding vegetation points and focusing 
on the analysis of artificial ground objects like buildings 
and roads.

3.2 Point Cloud Denoising and Classification Algorithm
The original point cloud data contains a large amount 

of noise, which can result in excessive data size, and the 
original point cloud is not effectively classified, leading to 
low efficiency in subsequent processing. Therefore, this 
paper proposes a denoising and classification algorithm 
based on the original point cloud to preprocess it before 
further processing.
3.2.1 Improved Point Cloud Denoising Algorithm Based 

on Statistical Features
The original point cloud data collected by UAV has a 

large amount of data with a lot of noise, which needs to be 
de-noised. The noise points can be divided into the follow-
ing four types through analysis. 

•	 The drift noise points: Sparse or scattered points 
at the edge of the principal point cloud, away from 
the principal point cloud;

•	 The isolated noise points: away from the principal 
point cloud, the small and dense noise point set;  

•	 The redundancy noise points: extra scan points be-
yond the predetermined range; 

•	 The mixed noise points: miscellaneous points in-
termingled with the principal point cloud.

Due to the complexity of point cloud data noise, an 
improved point cloud denoising algorithm based on statis-
tical features is proposed in this paper. The principle is that 
the average distance between each point in the model data 
set containing point cloud and its domain conforms to the 
Gaussian distribution, and the statistical analysis method 
of the average distance in the local domain of the point 
cloud is compared with the principal point cloud, and the 

noise point is denoised [27-30].
First, assume that the number of points in the noise 

point cloud model P is n, the k-field point set of any point 
pi is N(Pi). The average distance di between any point pi 
in the point cloud and all adjacent points in the k-field can 
be used to calculate through the Equation (1). Then, the 
average distance d0 of the all local fields is obtained as 
show in Equation (2), σ is the standard deviation of the av-
erage distance in the local field of point cloud, as shown in 
Equation (3). When the k-field average distance di>d0+λσ, 
pi will be removed as noise.
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When the k-field average distance di >d0+λσ, pi will 
be removed as noise.
3.2.2 Point Cloud Data Classification Processing Based 

on Feature Vector Stochastic Forest Classification 
Algorithm  

The denoising point cloud data contains vegetation, 
buildings, terrain, vehicles and other point cloud data, and 
this paper needs to extract the terrain point cloud. In or-
der to extract the terrain point cloud, the point cloud data 
should be effectively classified, and the terrain point cloud 
should be extracted after classification.

The geometric features of point cloud can effectively 
distinguish vegetation, buildings, terrain, vehicles and 
other information. Seven feature vectors can be obtained 
through the linear, planar and three-dimensional attributes 
of the point and its field. The obtained feature vectors are 
poured into the random forest classification algorithm for 
the classification of point cloud data.

With the current point as the center, the nearest k points 
are searched to form a adjacent points set P={p1, …, pi, …, 
pk}, then the covariance tensor CX is shown in in Equation 
(4). 

( )( )
1

1 ˆ̂k T
X i ii

C p p p p
k =

= − −∑ (4)

Where, p̂ is the center point of k-field points, the calcu-
lation Equation (5) is shown below:

1 1
ˆ arg min

k k
p i ii

p p p
=

= −∑ ∑ (5)

As shown in Equation (5), we seek a point p̂ in space 
such that the sum of the squared distances from it to all 
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points in the neighboring point set p is minimized. This 
point a can be regarded as the “central” position of the 
neighboring point set p in space. Accurately determining 
point p̂ is crucial for the subsequent precise calculation of 
the covariance tensor and the construction of feature vec-
tors, as it can better describe the geometric characteristics 
of the point cloud data in the local region and provide a 
more reliable basis for point cloud data classification.

In the process of point cloud data classification using 
the eigenvector-based random forest classification algo-
rithm, the three eigenvalues λ1, λ2, and λ3 are typically 
computed using eigenvalue decomposition. For a 3×3 co-
variance tensor CX, its eigenvalue decomposition is given 
by Equation (6):

T
XC U U= Λ (6)

Where U is an orthogonal matrix composed of eigen-
vectors, and Λ  is a diagonal matrix with the eigenvalues 
λ1, λ2, and λ3 on its diagonal. In practical computations, 
various mathematical libraries (such as the NumPy library 
in Python) can be employed to perform this process. By 
applying eigenvalue decomposition to the covariance ten-
sor CX, we can obtain three eigenvalues that satisfy λ1> 
λ2>λ3>0. Subsequently, seven feature vectors are con-
structed based on these eigenvalues for the classification 
of point cloud data. These seven feature vectors can be 
derived from the three eigenvalues, as shown in Table 1.

Table 1. Seven feature vectors constructed based on 
feature values

Eigenvector Size
Linearity ( )1 1 2 1/V λ λ λ= −

Plananrity ( )2 2 3 1/V λ λ λ= −

Seatter 3 3 1/V λ λ=

Anisotropy ( )4 1 3 1/V λ λ λ= −

Eigenentropy ( )
3

5
1

lni i
i

V λ λ
=

= − ×∑

Omnivariance ( )3
6 1 2 3V λ λ λ= × ×

Surface variation 7 3V λ=

In this paper, the random forest algorithm is used to 
classify the point cloud data. The feature vector consists of 
seven groups of feature vectors constructed by three eigen-
values. After training, the overall classification accuracy is 
about 85%.

3.3 TDOM Production Process
The existing mature digital photogrammetry systems 

include Pixel Factory, INPHO, etc. these digital photo-
grammetry systems have been able to produce TDOM with 
high precision. The processes of TDOM production by 
these systems are: digital aerial triangulation to DSM ex-

traction, DSM editing, digital TDOM correction, splicing 
and color uniformity.
3.3.1 Production Process of Traditional TDOM

The traditional method of TDOM uses Digital Surface 
Model (DSM) and digital differential correction technology 
to correct the geometric deformation of the original image, 
so that every point on the image is corrected to the vertical 
angle of view. In reality, the fluctuation of the ground will 
cause the difference between the actual image position of 
the ground point and the ideal image position, resulting in 
the displacement of the image point. Image point displace-
ment often leads to occlusion and ghosting of tall ground 
objects. As shown in Figure 2, orthophoto correction will 
produce image point displacement when the ground fluctu-
ates greatly.

Figure 2. Schematic diagram of image point displacement 
during orthophoto correction

3.3.2 Production Process of TDOM 
In this paper, the TDOM is made for the 3D point cloud 

geometry of oblique photography, and the 3D point cloud 
geometry obtained by 3D reconstruction of unmanned 
aerial photography image and high-resolution satellite im-
age is experimentally processed. The TDOM generation 
steps in this paper are shown in Figure 3. The production 
from 3D point cloud geometry to TDOM is completed by 
performing point cloud registration and fusion, absolute 
orientation of model, interval sampling, vertical projection 
and texture mapping on the input model.

Figure 3. Information processing flow of TDOM genera-
tion system

Figure 3 illustrates the information processing flow of 
the TDOM generation system. Initially, three-dimension-
al point clouds serve as the input data. After undergoing 
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point cloud registration and model optimization, the data 
is sequentially subjected to equidistant sampling, vertical 
projection, and texture mapping operations.

Following the completion of texture mapping, the pro-
cessing results must be compared against accuracy stan-
dards for evaluation. The specific accuracy standards are 
as follows:

Geometric Accuracy Standards: The mean error in pla-
nar position should not exceed ±0.5 meters (relative to the 
true ground coordinates), and the mean error in elevation 
should not exceed ±0.3 meters. These standards ensure that 
the TDOM accurately reflects the actual terrain and land-
forms in both planar position and elevation.

Image Resolution Standards: The spatial resolution 
of the image must reach 0.2 meters, meaning each pixel 
corresponds to an actual ground size of 0.2 meters × 0.2 
meters. This ensures that the image details meet the appli-
cation requirements.

Color Consistency Standards: In the overlapping areas 
of adjacent images, the standard deviation of color differ-
ences should not exceed 10 (calculated in the RGB color 
space). This ensures that the overall image has natural col-
or transitions and consistent visual effects.

If the processing results meet the aforementioned ac-
curacy standards, the TDOM is output. If not, the sources 
of error must be identified and corrected, after which the 
process returns to the point cloud registration step for re-
processing.

3.4 Equal Interval Sampling
Equal interval sampling is to extract the point cloud 

data on the surface of the point cloud geometry, cover the 
model in the form of a two-dimensional matrix with suffi-
cient density, extract the highest point of the model of each 
small grid as the sample point in the grid area, and traverse 
the whole point cloud geometry to extract the surface point 
cloud of the model.
3.4.1 Principle of Equal Interval Sampling

This paper implements the equal interval sampling 
method, surrounds the space of the registered and oriented 
3D point cloud geometry with a cube, establishes a two-di-
mensional matrix with M rows and N columns, divides the 
whole cube into square cubes with the same bottom size. 
By adjusting the size of the matrix cell network, the algo-
rithm finds the point with the largest elevation value in the 
3D point cloud geometry in the cube where each cell net-
work is located as the sample point in the grid, and stores 
it in the point set. It traverses the whole matrix to obtain 
the surface point cloud of the whole model. If the extracted 
point set is sparse, it will reduce the size of the grid and 
traverse the whole model again, until the point cloud on 
the whole model surface is extracted. The schematic dia-
gram of equal interval sampling is shown in Figure 4.
3.4.2 Algorithm Flow of Equal Interval Sampling

The flow of the algorithm is as follows:
1. Calculate the minimum and maximum values in X, 

Y and Z directions of the whole model, and record them as 
X min, X max, Ymin, Ymax and Zmin, Z max;

2. Calculate the difference between the maximum and 
minimum values in X and Y directions to obtain the length 

and width of the whole grid:
m = Xmax-Xmin
N=Ymax-Ymin
3. Set the side length of the cell net and the number of 

cells per unit length, then: cell=1/cell_length;
4. To calculate the number of cells in the whole large 

grid, it is necessary to round up and include the bottom of 
the whole model, including:

row = [ m * cell ]
col = [ n * cell ]
cellsum = row * col
Where the is the number of small cells in the entire 

grid, the is the number of small cells in the X direction and 
the is the number of small cells in the Y direction.

5. Traverse the whole grid, find the maximum value 
point of Z-axis in each small cell, record the index of the 
extreme point at this time, and store it in the index se-
quence, which is taken at the boundary of the grid;

x ∈ [ Xmin + i * cell_length, Xmin + (i+1) * cell_
length ) U Xmin + row * cell_length ]

i ∈ [ Q | 0 ≤ i ≤ row ]
y ∈ [ Ymin + j * cell_length, Ymin + (j+1) * cell_

length ) U Ymin + row * cell_length ]
j ∈ [ Q | 0 ≤ j ≤ row ]
6. Copy the point cloud recorded by the index and store 

it in a new point cloud set for display.

Figure 4. Schematic diagram of 3D point cloud geometry 
placed in equally spaced sampling grid

3.5 Vertical Projection
Vertical projection is the top view projection of or-

thographic projection, which has authenticity, accumula-
tion and similarity. The large 3D scene model constructed 
by tilt photography objectively reproduces the omni-direc-
tional scene of the survey area. Based on the characteristics 
of vertical projection, the texture information correspond-
ing to dense matching points or interpolation points in the 
top view can be extracted from the tilt photography scene 
model to generate true orthophoto images required by oth-
er projects.

Vertically project the plane position of the point set 
on the horizontal plane and form the corresponding plane 
graphics of the equally spaced sampling surface point 
cloud set. In this paper, the surface point cloud extract-
ed by equal interval sampling vertically projects the xoy 
plane, as shown in Figure 5.
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Figure 5. Schematic diagram of vertical projection

In this paper, the vertical projection adopts the projec-
tion method of parametric model provided in PCL, pro-
jectinliers filter, and the 3D point cloud sampled at equal 
intervals is filtered. The parametric setting of the model 
parameters modelcoefficients by the projectinliers filter can 
realize the projection operation of the point cloud geome-
try on the two-dimensional plane, line, sphere and cylinder.

The flow of vertical projection algorithm is as follows:
•	 Input the 3D point set after equal interval sam-

pling, and record the start time of the algorithm; 
•	 Set the four parameters of the parametric model. 

The plane model is. When setting the parameters, 
set a, B and D as 0 and C as 1 to construct a plane 
with Z = 0; 

•	 The input model is filtered by projectinliers to ob-
tain the vertical projection of the model; 

•	 Store the point set after vertical projection, and 
calculate the time-consuming algorithm.

3.6 Algorithm
The following is the pseudo code for the generation of 

TDOM based on three-dimensional point cloud geometry 
in technical writing style.

The TDOM generation process involves uniform sam-
pling and vertical projection of the input three-dimensional 
point cloud. The pseudo code for this process is shown in 
Algorithm 1.

Algorithm 1. TDOM algorithm
Input: inputPointCloud (point cloud data that needs to be 
processed)
Output: projectedPointCloud (point cloud data after 
being processed by the Uniform Sampling, Vertical 
Projection, and Return TDOM functions)
1. Function: Uniform Sampling
2. begin
3.    Xmin, Xmax, Ymin, Ymax, Zmin, Zmax = calculate
MinMax(inputPointCloud)
4.    m = Xmax - Xmin
5.    n = Ymax - Ymin
6.    cell_length = calculateCellLength(inputPointCloud)
7.    row = round(m / cell_length)
8.    col = round(n / cell_length)
9.    cellsum = row * col
10.   indexList = []
11.   for i = 0 to row do
12.       for j = 0 to col do
13.           x_min = Xmin + i * cell_length

14.           x_max = Xmin + (i + 1) * cell_length
15.           y_min = Ymin + j * cell_length
16.           y_max = Ymin + (j + 1) * cell_length
17.      subPointCloud = extractSubPointCloud(inputPoint
Cloud, x_min, x_max, y_min, y_max)
18.           maxZIndex = findMaxZIndex(subPointCloud)
19.           indexList.append(maxZIndex)
20.       end 
21.   end 
22.outputPointCloud=extractPointCloudByIndices(inputP
ointCloud, indexList)
23.   // Function: Vertical Projection
24.   planeModel = setPlaneModel()
25.projectedPointCloud=projectPointCloudToPlane(outpu
tPointCloud, planeModel)
26.   // Function: Return TDOM
27.   return projectedPointCloud
28. end

To generate TDOM, we first perform uniform sampling 
on the input three-dimensional point cloud to extract the 
surface point cloud of the model. The uniform sampling 
process involves dividing the point cloud into small grids 
and extracting the highest point in each grid. The extracted 
points are then used to generate the output point cloud.

Next, we perform vertical projection on the output 
point cloud to generate the TDOM. The vertical projection 
process involves projecting the point cloud onto a plane 
with Z=0. This is achieved by setting a plane model and 
using it to project the point cloud onto the plane.

Finally, the generated TDOM is returned as the output 
of the function.

4  Performance Analysis

4.1 Experimental Environment and Data Preparation
This paper uses C + + programming combined with 

PCL library to realize the function of 3D point cloud ge-
ometry processing. The experimental environment of this 
paper is shown in Table 2:

Table 2. Configuration of experimental environment

To comprehensively verify the performance of the 
method proposed in this paper, experimental tests were 
conducted using a 3D point cloud geometric model gener-
ated from multi-view satellite images and a 3D real-scene 
model of the Big Wild Goose Pagoda in Xi’an captured 
by an unmanned aerial vehicle (UAV). The point cloud of 
the 3D point cloud geometric model from satellite images 
carries grayscale information, while the point cloud of the 
UAV 3D real-scene model has no color information, and 
its color texture is attached to the triangular mesh. The 
above data model is shown in Figure 6.
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Figure 6. Data model

4.2 Performance Analysis of Equal-Interval Sampling
4.2.1 Determination and Adjustment of Grid Size

The side length of the square grid is calculated and set 
based on the maximum and minimum values of the 3D 
point cloud geometric model after absolute orientation in 
the X, Y, and Z directions. When determining the grid size, 
both model complexity and processing efficiency need to 
be considered. If the grid is too large, the extracted point 
cloud will be sparse and unable to accurately represent the 
model surface; if the grid is too small, the computation-
al load and processing time will increase. After multiple 
parameter adjustments, a reasonable grid size is found to 
ensure that the model is completely covered and the point 
cloud density is appropriate. When adjusting the grid size, 
it is found that different types of models have different sen-
sitivities to grid size. For models with complex structures, 
a smaller grid is required to accurately capture their details; 
for relatively simple models, an overly large grid will lead 
to the loss of details, but an overly small grid will increase 
unnecessary computational load. In practical applications, 
the grid size needs to be dynamically adjusted according 
to the characteristics of the model and application require-
ments. For example, a smaller grid should be used when 
performing fine modeling of architectural models; when 
conducting rough modeling of regional terrain, the grid 
size can be appropriately increased.
4.2.2 Determination and Adjustment of Grid Size

In this experiment, the point cloud geometric model of 
the Big Wild Goose Pagoda in Xi’an reconstructed from 
UAV images was used, and the model was divided into 
grids with a side length of 1×1 cm pixels. From the exper-
imental results shown in Figure 7 (Figure 7(a) displays the 
leveled data model of the original Big Wild Goose Pagoda 
model, represented by green point clouds; Figure 7(b) 
shows the point cloud data extracted using equal-interval 
sampling with a square grid size of 1×1 cm, represented by 
red point clouds), the extracted point clouds are dense and 

completely cover the model surface. This indicates that the 
equal-interval sampling algorithm can accurately extract 
the point clouds on the model surface. At this grid size, the 
details of the model are effectively preserved, such as the 
doors, windows, and eaves of the Big Wild Goose Pagoda, 
which are clearly visible. Further analysis reveals that the 
equal-interval sampling algorithm can well maintain the 
geometric features of objects with regular shapes; how-
ever, when dealing with some irregular shapes, such as 
natural objects like trees, it may lead to the loss of some 
details due to the limitations of sampling points. This is 
because equal-interval sampling is based on regular grids 
and has relatively weak adaptability to irregular shapes. 
In subsequent research, other sampling methods, such as 
feature-based sampling, can be considered to achieve more 
accurate sampling of objects with irregular shapes.

                             (a)                                         (b)

Figure 7. Overall schematic diagram and local details of 
equal-interval sampling: (a) shows the leveled data model 
of the original Big Wild Goose Pagoda model (represented 
by green point clouds); (b) presents the point cloud data 
extracted via 1×1 cm square grid equal-interval sampling 
(represented by red point clouds)

4.2.3 Analysis of Equal-Interval Sampling Results from 
Satellite Images

Figure 8 presents a comparison between the original 
3D point cloud geometric model from satellite images and 
the 3D point cloud geometric model after equal-interval 
sampling. Visually, after the original model undergoes 
equal-interval sampling processing, the side point cloud 
data are filtered out, while the surface data remain com-
plete and clear. The figure shows the comparison of exper-
imental results of equal-interval sampling from satellite 
images. The results indicate that the algorithm effectively 
removes redundant point clouds, retaining only the key 
surface information, which improves the efficiency and 
accuracy of subsequent processing. This verifies the effec-
tiveness and applicability of the algorithm for processing 
3D point cloud geometric models generated from satellite 
images. However, when processing satellite images, it is 
found that factors such as cloud cover can affect the sam-
pling results. The point cloud data in the areas covered by 
clouds may be inaccurate, leading to missing or incorrect 
information in these areas after sampling. In practical 
applications, for the preprocessing of satellite images, in 
addition to conventional operations such as denoising, it is 
also necessary to add the identification and processing of 
areas covered by clouds. Image segmentation techniques 
can be used to first identify the cloud-covered areas, and 
then the point cloud data in these areas can be supplement-
ed through interpolation or other data sources to improve 
the accuracy of the sampling results.
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Figure 8. Comparison between original satellite 3D point 
cloud geometry and equidistant sampling 3D point cloud 
geometry

4.3 Performance Analysis of Vertical Projection
4.3.1 Vertical Projection Algorithm

The point cloud data obtained by equal-interval sam-
pling is vertically projected onto the XOY plane. Using 
the projectInliers filter method in the PCL (Point Cloud Li-
brary), we set the plane parameters A = B = D = 0 and C = 
1 to obtain the parameters for the plane model Z = 0. Then, 
the sampled point cloud is filtered, and the elevation value 
of the processed point cloud is set to 0 for visualization 
and display. When using the projection method in the PCL, 
it is found that different versions of the library have differ-
ences in projection accuracy and speed. Newer versions of 
the library may have optimized algorithms, improving pro-
jection accuracy, but may also increase the computational 
load due to added features, resulting in slower projection 
speeds. In practical applications, it is necessary to select an 
appropriate version of the library according to specific re-
quirements. If high projection accuracy is required, a new 
version of the library can be chosen; if speed is a more 
critical factor, a more suitable version needs to be selected 
by comprehensively considering the functions and perfor-
mance of the library.
4.3.2 Analysis of Vertical Projection Effects

The experimental results (combined with Figure 7(a), 
Figure 7(b) and Figure 9. [Figure 7(a) shows the point 
cloud after equal-interval sampling before vertical pro-
jection; Figure 7(b) shows the point cloud after vertical 
projection; Figure 9 shows the comparison between the 
model before vertical projection and the plane after ver-
tical projection, presenting the overall and partial data of 
the Big Wild Goose Pagoda from both side and top-view 
perspectives]) indicate that vertical projection eliminates 
the elevation values of the point cloud. After projection, 
the surrounding features of the Big Wild Goose Pagoda are 
distinct, and the outlines of the houses are clear. The Z-axis 
data of the point cloud is eliminated after projection, the 
model remains complete, and the algorithm runs at a high 
speed. It effectively converts 3D point cloud data into 2D 
planar data, preserving key features and improving pro-
cessing efficiency. However, during the projection process, 
it is found that when the point cloud data contains noise or 
the model surface is discontinuous, abnormal projection 

results may occur. For example, at the edges of some mod-
els, projection distortion may appear. This is because noise 
points and discontinuous surfaces can affect the projection 
algorithm’s judgment of the model structure. In subse-
quent research, data preprocessing can be added before 
projection, such as more rigorous denoising or smoothing 
the model surface, to improve the quality of the projection 
results.

Figure 9. Comparison between model before vertical pro-
jection and plane after vertical projection

4.4 Performance Analysis of Texture Mapping
After vertical projection, texture mapping is carried out 

on the satellite-reconstructed point cloud with grayscale in-
formation to obtain Figure 10, which includes a grayscale 
effect image and a pseudo-color effect image. The gray-
scale effect image clearly displays the surface features of 
the model, while the pseudo-color effect image intuitively 
reflects different areas of the model through color varia-
tions. Texture mapping adds visual information to the True 
Digital Orthophoto Map (TDOM), enhancing its readabil-
ity and practicality. However, during the texture mapping 
process, some areas have problems such as low texture fit, 
stretching, or distortion. These issues may be caused by 
factors such as the quality of the point cloud data and the 
accuracy of the texture mapping algorithm. Subsequent 
optimization of the algorithm is required to improve the 
texture fit. Further analysis reveals that the effect of texture 
mapping is also related to the density of the point cloud. 
When the point cloud density is low, texture mapping 
may appear blurry or discontinuous; when the point cloud 
density is too high, it will increase the computational load 
and processing time. In practical applications, appropriate 
texture mapping algorithms and parameters need to be 
selected according to the point cloud density and texture 
quality requirements. For example, for low-density point 
clouds, an interpolation-based texture mapping method 
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can be used to improve the continuity of the texture; for 
high-density point clouds, a more complex but more accu-
rate algorithm can be employed to enhance the texture fit.

Figure 10. Effect picture of TDOM generated by 3D point 
cloud geometry of satellite image with gray scale

4.5 Comparative Analysis with Other Methods
Comparing our method with traditional TDOM pro-

duction methods, the traditional methods are prone to 
problems such as occlusion and ghosting when dealing 
with complex scenes and large-scale point cloud data. 
Our method effectively eliminates these problems through 
equal-interval sampling and vertical projection, generating 
more accurate and clear TDOMs. In terms of algorithm ef-
ficiency, our method also has an advantage, as it can com-
plete TDOM production in a relatively short time. Howev-
er, compared with some emerging deep learning methods, 
our method is still lacking in automation. Deep learning 
methods can automatically learn the features and patterns 
of point cloud data through large-scale data training, en-
abling more intelligent TDOM production. Nevertheless, 
deep learning methods require a large amount of training 
data and strong computing resources, and the interpretabil-
ity of the models is poor. In practical applications, the ad-
vantages of our method and deep learning methods can be 
combined to improve automation while ensuring algorithm 
efficiency and accuracy. For example, in the data prepro-
cessing stage, our method can be used for rapid point cloud 
sampling and projection, and then the processed data can 
be used as input for the deep learning model. The powerful 
feature-learning ability of the deep learning model can be 
leveraged to further optimize the TDOM generation effect.

In summary, our TDOM production method based on 
3D point cloud geometry has obvious performance advan-
tages. It can effectively handle complex scenes and large-
scale point cloud data to generate high-quality TDOMs. 
However, there are deficiencies in aspects such as texture 
mapping and automation, which require further research 
and improvement.

5  Conclusion 

In this paper, the TDOM is made based on the 3D point 
cloud geometry, and the algorithm of equal interval sam-
pling and vertical projection of the TDOM is studied. This 
part is the key to generate the TDOM. The TDOM can 
be used as the source of mapping, map vectorization and 
monomer modeling, which plays an important role in the 
future digital city, environmental monitoring and emergen-
cy response. 

For the equal interval sampling of the 3D point cloud 
geometry, debug the size of the cell network at the sam-
pling interval, extract the maximum elevation point of 
the point cloud data falling in each cell network as the 
sampling point of the cell network, and traverse the whole 
matrix to obtain the surface point cloud data of the whole 
model. This process depends on absolute orientation or 
model flattening algorithm. Only when the model is flat-
tened, the equal interval sampling method in this paper is 
effective; The point cloud with elevation value obtained 
after equal interval sampling is vertically projected. The 
projection is based on XOY plane, and the surface point 
cloud obtained by equal interval sampling is brought into it 
for vertical projection. Projection results all points fall on 
the plane, all point clouds form a plane from the side view, 
and the building outline in the original model is also obvi-
ous from the top view.

The equal interval sampling method in this paper takes 
one minute to calculate the local wild goose pagoda model. 
When the amount of data increases, the calculation time 
increases exponentially. In the follow-up research, the 
sampling grid setting will be further improved. Through 
the estimation of the model edge, the calculation of blank 
cells will be reduced, and the algorithm will be accelerated 
to improve the efficiency of equal interval sampling in the 
case of large amount of data. Through the experiments of 
equal interval sampling and vertical projection, the TDOM 
of multi view satellite image is generated in this paper. 
Compared with the model, it can be seen that there are still 
some shadows and a small number of holes. It is further 
necessary to add this part of the image in the same area to 
make up for the problems caused by the lack of images or 
shadows.
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