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Abstract

Traditional methods of analyzing and processing com-
puter networks have difficulty dealing with their rapidly
increasing scalability, structure, and traffic complexity due
to the rapid development of information technology. Graph
neural networks (GNNs), an emerging deep learning tech-
nology, adapt to graph-structured data and relationships.
They offer new mechanisms and solutions to real-world
problems. This paper provides a structured, unified synthe-
sis of current research in this interdisciplinary field. It re-
views the basic concepts and models of GNNs, highlights
their current state in major computer network management
and optimization scenarios, and discusses typical applica-
tions, challenges, open issues, and future research direc-
tions.

Keywords: Graph neural network, Computer networks,
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1 Introduction

Graph Neural Networks (GNNs) are neural network
models for graph-structured data. They learn graph struc-
ture features and capture hidden patterns in these structures
by aggregating neighborhood information. First introduced
in 2008 [1], GNNs have rapidly been applied to complex
interaction scenarios such as social networks, recommen-
dation systems, and transportation networks [2], which
have complex, non-IDD (independently distributed), or
cross-domain data. Traditional machine learning methods
struggle to address these scenarios [3].

Although computer networks enable data communica-
tion, social networks, computer vision, and recommender
systems deal with human interactions, visual data, and
personalized ranking, respectively, all of these types of
networks have graph-structured data. Currently, managing
and optimizing computer networks is challenging. For ex-
ample, traditional iterative update mechanisms struggle to
update network topology quickly in large-scale, dynamic

*Corresponding Author: Shubao Pan; Email: panshubao@guat.edu.cn

DOI: https://doi.org/10.70003/160792642026012701010

scenarios with millisecond responses, such as 6G network
slicing [4]; classical Federated Learning (FL) methods lack
mechanisms to protect network privacy and security with-
out consuming excessive network bandwidth and compu-
tational resources [5]; accurate detection of hierarchical
attacks is difficult due to the lack of a multi-server trust
system and universal verification of adversarial attack de-
fense [6]; and existing multimodal fusion lacks interpret-
ability, relies too heavily on attention-weighted features,
and does not consider heterogeneous data causality [7].

GNNs are better suited for computer network man-
agement and optimization than traditional methods such
as table features and matrix features. GNNs can natural-
ly model computer networks. A computer network can
be viewed as an attributed dynamic graph with dynamic
properties. In these model, hosts, switches, routers, and
firewalls are nodes, and traffic paths and links are edges.
Edge attributes can include bandwidth, latency, packet loss
rate, and link stability, while node attributes can include
CPU load, queue length, storage capacity, and fault sta-
tus. Therefore, GNNs can use neighbor aggregation and
multi-hop propagation to directly capture local and global
topological features and dynamic evolution, which are
difficult to fully express using traditional methods. GNNs
can automatically learn the multidimensional relationships
between nodes, edges, and traffic without manual feature
design. As the network scale increases, the operating en-
vironment migrates, or the attack model is updated, tradi-
tional methods require retraining of the models to adapt to
new knowledge. In contrast, GNNs can adapt models to
the new nodes and edges, and new patterns and knowledge
behind the changes through inductive learning, parameter
adjustment, and self-supervised/contrastive learning. Dy-
namic GNNs can naturally model time series changes and
achieve continuous reasoning. Depending on the down-
stream tasks, network traffic or traffic forwarding rules can
also construct graphs for GNNs.

GNNs have been applied in computer networks to im-
prove dynamic graph modeling [8], real-time task schedul-
ing, energy efficiency optimization [9], and the integration
of homomorphic encryption with federated learning and
other machine learning algorithms. However, they have
not been systematically discussed, analyzed, or compared
for advanced use in many other network scenarios [10].
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A review of GNN scenarios and applications in comput-
er networks is necessary to make breakthroughs towards
time-efficient, dynamic, scalable, and secure GNN mecha-
nisms.

This paper reviews the basic concepts, classical mod-
els, usage scenarios, and applications of GNNs in com-
puter networks. The goal is threefold: to consolidate the
rapidly growing yet fragmented field of GNN research;
to emphasize the unique value that GNNs offer in solving
network problems; and to guide future research, deploy-
ment, and standardization efforts. This paper can serve
as a foundational resource for networking and machine
learning research. To the best of our knowledge, this study
is the first to directly link GNNs to related scenarios and
applications in computer networks. It makes the following
main contributions.

(1) Six GNN models are discussed from multiple di-
mensions.

(2) The six major use cases are categorized, including
topology management, routing optimization, traffic fore-
casting, cybersecurity, and resource management. These
use cases extend to the Internet of Things (IoT) and the
Industrial Internet of Things (IIoT). Typical GNN appli-
cations in each scenario are reviewed to explain how and
why GNNs should be involved.

(3) The challenges and open issues are identified. Fu-
ture research directions for emerging networking scenarios
and new technologies are suggested.

The rest of this paper is organized as follows: Section

Table 1. Related surveys

2 provides related surveys. Sections 3 and 4 offer brief
introductions to the fundamental concepts and models of
GNN:ss, respectively. Section 5 discusses GNN scenarios
and applications in computer networks. Section 6 address-
es the major challenges and open issues of GNNs. Section
7 concludes the paper.

2 Related Surveys

As listed in Table 1, Shabani et al. [11] and Khemani et
al. [12] provided thorough reviews of GNN models, algo-
rithms, and methods. Vatter et al. [13] discussed the struc-
ture of distributed GNNs; Wu et al. [14] focused on GNN
computational architecture; and Oloulade et al. classified,
searched, and optimized GNN models [15]. Liu et al. [16]
and Munikoti et al. [17] discussed GNNs in the context
of Federated Learning (FL) and Reinforcement Learning
(RL), respectively. Nandan et al. [18], Wang et al. [19],
and Liu et al. [20] investigated the GNNs’ representability,
uncertainty, and tasks. While Wu et al. surveyed GNN us-
age scenarios and applications in recommendation systems
[21], Dong et al. surveyed them in the IoTs [22], and Rah-
mani et al., Chen et al., and Wu et al. summarized them in
transportation systems, computer vision, and natural lan-
guage processing, respectively [23-25], to the best of our
knowledge, no existing surveys focus specifically on GNN
applications in computer networks. This study fills this

gap.

Survey perspective References Publication year
Comprehensive [11-12] 2024
Distributed GNN [13] 2023
Computer architecture [14] 2025
Model search [15] 2022
Technology FL [16] 2025
RL [17] 2024
Explainability [18] 2025
Uncertainty [19] 2024
Type of task [20] 2023
Recommender systems [21] 2022
IoTs [22] 2023
Application Intelligent transportation [23] 2023
Computer vision [24] 2024
Natural language process [25] 2023

3 Fundamental of GNNs

Graph-structured data can be denoted by G = (V, E),
where V and E are sets of vertices and edges, representing
the entities and their relationships, respectively [26]. Un-
like images, texts, and time series data, which are Euclide-
an structures with a fixed arrangement and order of nodes,
graphs are non-Euclidean structures. Since neural networks
are designed for Euclidean data, they are difficult to apply

directly to graphs. GNNs can learn vertex, edge, and graph
representations for vertex classification and edge predic-
tion tasks [27].

A GNN typically consists of an input module, a mes-
sage-passing module, and an aggregation and update mod-
ule. Figure 1(a) shows a k-layer GNN. The input module is
located in layer 0, where the graph structure data is provid-
ed and the embeddings are initialized. In each subsequent
layer, the nodes collect information from their neighbors



through the message-passing module and update their em-
beddings through the aggregation and update module. This
forms an iterative process called message passing [28]. Af-
ter k rounds of message passing and feature updating, each
node learns a representation containing structural informa-
tion about itself and its neighbors. Figure 1(b) illustrates

this process. Here, hf represents the kth layer embedding

of node v. This process is the core of GNNSs. It simulates
the topological relationships of graph structure data and
successfully overcomes the bottleneck that traditional neu-
ral networks experience when processing non-Euclidean
data.

4 GNN Models

4.1 Graph Convolutional Networks
Graph Convolutional Networks (GCNs) extract local
features by convolving the features of neighboring nodes.
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A weighted adjacency matrix defines the contribution of
neighboring nodes to improve performance and stability.
GCNs can efficiently process graph structure data for node
and graph classification tasks. A GCN usually consists of
graph convolution layers, nonlinear activation functionl
ayers, and fully connected layers, which aggregate infor-
mation from neighboring nodes, introducing nonlinear fac-
tors, and outputting the final data results, respectively [29].
Both GCN and Convolutional Neural Network (CNN) rely
on convolutional structure to process data, extract features
from neighboring nodes, and increase the perceptual scale
for the broad tasks using a multi-layer structure, as shown
in Figure 2. However, CNNs deal with grid-based images
and audio in the European space, while GCNs deal with
graph structures in the non-European space. Additionally,
CNNs have a fixed neighborhood in which the convolution
kernel slides, whereas GCNs have a flexible neighborhood
defined by graph topology in which information is aggre-
gated.

Message Passing
Process

0-th layer K-th layer K+1-th layer
(a) k-layer GNN structure
2 h,* h,k
—— 5 hg — mmmmm (}) hg — Em
|11 hsk hlk hﬁk hlk‘l
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(b) Messaging passing process (for node 1)

Figure 1. The high-level structure of a GNN and the message passing process
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Figure 2. The structures of CNN and GCN
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4.2 Graph Attention Transformers

GCNs rely on a full graph Fourier transform to aggre-
gate node features, which prevents them from scaling to
large dynamic graphs. This leads to the development of
Graph Attention Transformers (GATs). GATs use attention
mechanisms to assign different weights to neighboring
nodes and adaptively aggregate neighboring features for
heterogeneous graph structure data. By focusing on more
relevant neighbor nodes, GATs are more flexible and effec-
tive when dealing with complex graph structure data.

Figure 3(a) illustrates an attention mechanism. Here
h; and h; represent the features of nodes i and j, respec-
tively. Wh', and Wh ; are their initial weights. d is a learn-
able matrix, and «; is an element of a that represents the
weight from #; to h It can be calculated by Eq. (1), where
LeakyReL U is the actlvatlon function, 7 is a transformer
operation, and || is the concatenation operation. Figure 3(b)
illustrates a GAT’s structure, where node 1’s features are
updated by aggregating the features of nodes 2, 3, and 4
with the weights computed by one-head attention.
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GATs can capture fine-grained relationships in graphs
and have demonstrated superior performance in tasks such
as node classification and link prediction. This design
overcomes the limitation of symmetric adjacency matrices
in GCNs [30], and the multi-head attention mechanism im-
proves the model’s ability to express heterogeneous rela-
tionships by computing multiple independent attention sets
in parallel.

4.3 GraphSAGE

GraphSAGE introduces neighborhood sampling and
hierarchical aggregation strategies to address the lim-
itations of GCNs in processing industrial-scale massive
graphs. As shown in Figure 4, GraphSAGE first samples
a neighborhood, then aggregates feature information from
the sampled neighbors, and finally processes a specific
task based on the aggregated information. GraphSAGE
can use mini-batch training to integrate randomly sampled
neighborhood information layer by layer through learnable
aggregation functions, such as long short-term memory
(LSTM) and pooling. This approach alleviates computa-
tional memory pressure and is effective when dealing with
dynamic or constantly expanding graphs. It also achieves
zero-shot inference of new nodes and has been success-
fully applied to model billion-level community networks,
such as the Ali e-commerce platform.
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Figure 3. Attention mechanism and the GAT structure
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4.4 Graph Recurrent Networks

Graph Recurrent Networks (GRNs) [31] target dynam-
ic graph data. GRNs model time series dependence and
node state evolution by combining graph structure and Re-
current Neural Networks (RNNs). GRNs integrate graph
recurrent unit or LSTM through a gated mechanism to
model spatio-temporal correlations among node features.

RNNs have a recurrent structure that enables them to
recall previous information to improve predictions about
subsequent elements in a sequence. Figure 5(a) shows a
GNN with a hidden state Z, which is updated using the
perceptron Z,= o(Ax, + Bz,_,). It also has an output predic-
tion y, = o(Cx,). Figure 5(b) illustrates how a GNN is incor-
porated into a GRN to address dynamic information and
time series data in graphs. Typical GRN research includes
dynamic graph representation learning, temporal graph
generation, and multi-way prediction optimization.

4.5 Summary
As shown in Table 2, GCN employs graph convolution

(a) RNN structure

o .‘\..
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to average neighbor features for small-scale graph tasks
with simple structures and balanced node relationships.
GAT uses attention mechanisms to adaptively learn the
importance of neighboring nodes. It is suitable for graphs
with unbalanced adjacency relationships or complex struc-
tures. GraphSAGE incorporates sampling and aggregation
to efficiently train on large graphs. GRN uses RNNs to
propagate states on graphs, modeling long-term depen-
dencies and temporal evolution between nodes in dynamic
graphs or time-critical scenarios. GCN and GAT are de-
signed for entire graphs, whereas GraphSAGE and GRN
are better suited for modeling large or dynamic graphs.

Other GNNs, such as the Graph AutoEncoder (GAE)
[32] and Graph-BERT [33] models, are also widely studied
in current research. All of these models support supervised,
semi-supervised, and unsupervised learning. However,
GAE and Graph-BERT are primarily designed for unsuper-
vised learning, and GCN is mainly designed for semi-su-
pervised learning.

| i /" aggregation

,,,,,,,,,,

(b) GRN structure

Figure 5. The high-level structure of a RNN and a GRN with the RNN

Table 2. Comparison of typical GNN models

Dimensions GCN GAT GraphSAGE GRN
Aggregation Mean/Lap.lace Attention we.lghted Mean/LSTM/Pooling Based on RNNs
convolution aggregation
Neighbor weights Fixed (normalized based  weights may not be Dynamic determined by RNN

on degree) learnable hidden states
Information Fixed inter-layer Adaptive attention to Local sampling + Multi-step propagation +
propagation propagation structure neighbor importance aggregation state update
For large graph Not suitable Not suitable suitable suitable
Expression Moderate Stronger Controllable Strong
Over smoothing Prone to over-smoothing Mild (weight Mitigated (reduce Alleviated (state retains
adjustment) redundant sampling) history)

Parameter count Low

High (attention head) Depends on aggregation High (RNN parameters)

function

Traffic classification
Routing optimization
Anomaly detection

Tasks

Topo manag.
Resource manag.
cybersecurity

Traffic forecast
Anomaly detection
Routing optimization

Topo&traffic forecast
Intrusion detection
Dynamic nodes
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5 Scenarios and Applications of GNNs
in Computer Networks

5.1 Topology Management

Topology management involves understanding, mod-
eling, and optimizing the interconnection structure of de-
vices, such as switches and routers, in a computer network.
The goal is to enable visualization, prediction, planning,
and management of the network. Traditional heuristic al-
gorithms, such as OSPF, are designed for networks with
static topologies. Therefore, they have difficulty finding the
optimal path in today’s networks, which have time-varying
topologies caused by 5G network slicing and the IoTs and
ITIoTs. Efficient topology discovery is essential in these
networks to enable a flexible routing strategy for predict-
ing network traffic and balancing loads. GNNs can directly
model device connectivity and aggregate multi-hop neigh-
bor information, they can also extract graph features such
as degree and path count in an automated, embeddable, and
learnable manner. GNNs can train models on small graphs
and historical data and then generalize to large graphs and
future scenarios. By combining RNN and Transformer
modules, GNNs have been widely applied to enable dy-
namic topology management in today’s networks.

In [34], topological data analysis (TDA) was proposed
to enhance the representation of topology with rings and
holes by incorporating GNNs. This method involves to-
pology-sensitive graph representation learning. In [35],
KerGNNs were introduced by combining graph kernels
and GNNs to capture complex node interactions effective-
ly and improve traditional GNN representations. However,
KerGNN:ss still face challenges regarding computational
complexity and parameter tuning for fully connected
graphs and when multiple hyperparameters are involved.

5.2 Routing Optimization

Routing optimization involves determining the most ef-
ficient path for data to travel over a computer network. The
goal is to minimize latency, maximize throughput, balance
loads, and meet quality-of-service constraints. However,
dynamic traffic patterns, changing topologies, multi-ob-
jective trade-offs, global dependencies, and the need for
increased network scalability pose challenges to routing
optimization in today’s networks. GNNs are well-suited
for routing optimization because networks are graph-struc-
tured by nature and routing involves topology-aware deci-
sion-making.

Reference [36] proposed a routing algorithm based on
GNN and Deep Reinforcement Learning (DRL) for SDNs.
The GNN model was trained on the SDN controller to dy-
namically optimize the packet transmission path. The mod-
el is highly robust to changes in network topology, such as
link addition or deletion.

Reference [37] optimized routing by integrating a
GNN into a DRL agent and designing a specific action
space for generalization. The DRL+GNN agent updated
the link state during the message passing process. An RNN
captured the link state changes, and a Deep Neural Net-
work (DNN) was used to output Q-value estimates.

As described in reference [38], AutoGNN combines
GNN and DRL to automatically generate routing deci-
sions. GNNs address traffic distribution within network
topologies, while DRL trains GNN parameters. AutoGNN
showed robustness to topology changes.

Reference [39] summarizes the integration potential
of GNNs and DRLs in end-to-end (E2E) networks. The
combination of GNNs and DRLs shows great potential for
optimizing network resources, routing, and management,
as well as contactless automation.

5.3 Traffic Forecasting

A traffic forecast predicts the future traffic conditions,
such as bandwidth utilization, packet volume, and flow
dynamics, over time and across network links or nodes.
An accurate forecast supports smarter decisions regarding
routing, resource allocation, and congestion control. Tra-
ditional forecast models (e.g., ARIMA, LSTM, and CNN)
focus on time series and ignore the spatial dependencies
within the network. In real networks, however, traffic at
one node or link directly affects its neighbors. GNNs best
capture this spatial coupling, leading to accurate, topolo-
gy-sensitive, and proactive predictions for modern network
management and routing optimization.

Lin and Wang [40] proposed a multi-time scale pre-
diction model trained by CNN-GRU to capture the rapid
changes in traffic values over short time intervals and
address the burstiness of fine-grained network traffic. Ex-
periments showed that this approach outperforms the base-
line and reduces the burst traffic prediction error in China
Unicom’s single-cell dataset.

Reference [42] introduced a time-series similari-
ty-based graph attention network (TSGAN) to predict cel-
lular traffic and allocate cellular network resources proac-
tively and effectively. Simulations showed that the TSGAN
outperformed three classical prediction models on a real
cellular network dataset in short-, medium-, and long-term
prediction scenarios.

Reference [43] models E2E delay by using a GNN to
learn correlations between global and basic network be-
haviors. A packet-level load balancing scheme within pro-
grammable data planes was also proposed to balance data
plane traffic. Experiments demonstrated the feasibility and
effectiveness of these approaches. Compared to queueing
theory, RouteNet, and GNN-based schemes, the proposed
approach improved the goodness of fit (R”) and generaliza-
tion ability under unknown traffic control strategies.

5.4 Cybersecurity

Cybersecurity is essential to safeguarding network
infrastructure, sensitive data, and essential services from
cyber threats such as malware, phishing, denial-of-service
attacks, and data breaches. Maintaining cybersecurity is
essential to ensuring national security, business continuity,
public safety, and individual privacy. GNNs are particular-
ly effective in cybersecurity because many cyber systems
and threats exhibit graph-like structures, such as host and
network graphs, program behavior graphs, phishing and
social attack graphs, and attack path graphs. Compared to
current classical cybersecurity approaches, GNNs offer



topology awareness, contextual understanding, scalability,
generalization, and reduced false positives. These capa-
bilities allow GNNs to capture the structural, relational,
and temporal complexity of cyber environments, enabling
them to detect and defend against modern cyber threats ac-
curately, adaptively, and scalably.

5.4.1 Intrusion Detection

Intrusion Detection Systems (IDS) monitor and ana-
lyze network or system activity to detect unauthorized ac-
cess, malicious behavior, and policy violations. Traditional
IDS (especially in signature-based IDS) struggle to detect
unknown attacks. They often produce high false positives
in anomaly-based models and are ineffective at modeling
complex, multi-stage, or distributed attacks. They also
struggle to exploit structural or contextual relationships
in traffic or behavior. GNNs are widely used because they
can naturally model relationships between entities (e.g.
hosts, packets, and processes) and to learn from structural
context.

Lo et al. [7] proposed E-GraphSAGE, a GNN-based
IDS for the IoT environment. GraphSAGE captures con-
nection and interaction patterns between devices. It learns
device behaviors to detect abnormal and intrusive activi-
ties.

Chang et al. [44] proposed the E-GraphSAGE and
E-ResGAT algorithms for intrusion attack detection. Re-
sidual links were introduced into the graph to preserve
original node information and increase identification sen-
sitivity for certain malicious traffic categories, improving
class imbalance.

Nguyen et al. [45] studied intrusion detection in mi-
croservice architectures and proposed the DeepTralLog
model for microservice anomaly detection. DeepTralog
combines trace logs and graph-based deep learning to de-
tect abnormal remote procedure call traffic in containerized
microservices.

Regarding intrusion detection based on GNNs in IoT
systems with limited budgets, Zhou et al. [6] proposed a
new hierarchical adversarial attack generation method that
implements a hierarchy-aware black-box adversarial attack
strategy. Adversarial samples are generated by hierarchi-
cally selecting high-priority vulnerable nodes based on the
shadow GNN model by combining saliency mapping and
the random walk restart algorithm. This research reveals
the vulnerability of existing GNN models in IoT security
scenarios.

5.4.2 Malware Detection

Malware detection involves identifying malicious
software, such as viruses, worms, ransomware, Trojans,
and spyware, that can compromise the confidentiality, in-
tegrity, or availability of computer systems. The goal is to
accurately and reliably classify whether a program, file,
or process exhibits malicious behavior at an early stage,
including for obfuscated or unknown threats. Traditional
approaches typically rely on static signatures, which can be
easily circumvented by code obfuscation or repackaging.
These approaches also lack insight into the complex struc-
tural behavior of malware, resulting in high false positives
and negatives. However, since malware often exhibits
relational, structured, and graph-like behavior—for exam-
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ple, system/API calls form a behavior graph, binary codes
form a control flow graph, function relationships form a
call graph, and malware families share structural patterns
in graphs—GNNSs can effectively model these structures.
Thus, GNNs can enable robust malware detection that out-
performs traditional static or rule-based methods [46].

Busch et al. [47] proposed a method for detecting and
classifying malware based on network flow graphs. First,
a flow graph is constructed by dynamically analyzing net-
work traffic during application execution to create a richer
representation of network communication. The graph is
then fed to three GNN models to detect malware in both
supervised and unsupervised scenarios. Experiments
demonstrate that these models significantly outperform the
baseline model in various prediction tasks and require few-
er data labels or less training data to do so.

Feng et al. [48] fed call graphs and functional depen-
dency graphs into a GNN to accurately identify malware.
They combined dynamic behavior and static structural
features to improve sensitivity to code obfuscation and the
inadequacy of traditional methods to represent features.

Yumlembam et al. [49] used a GNN and a VGAE-Mal-
GAN adversarial architecture to detect malware on the
Android platform. VGAE-MalGAN generated adversarial
samples, and API graph embedding combined with permis-
sion and intention features improved the model’s robust-
ness and provided a more comprehensive feature represen-
tation. However, this approach still faces challenges related
to dataset dependency and computational complexity in
practical applications.

5.5 Resource Management

Network resource management involves efficiently
allocating and using limited network resources. The goal is
to ensure high performance, fairness, reliability, and scal-
ability for applications and services. However, traditional
approaches to resource management struggle with dynamic
workloads, complex dependencies, high dimensionality,
real-time requirements, and multi-objective optimization in
today’s networks. Since resource management is essential-
ly a graph problem, GNNs are ideal for solving real-time,
multi-objective resource management problems.

Chen et al. [50] proposed a GNN framework for net-
work resource optimization in wireless loT systems. The
framework performs well in homogeneous systems and
could potentially be used in heterogeneous networks.

Peng et al. [51] applied Vertex- and Edge-GNNs to
learn network resource allocation policies. Both GNNs up-
date their hidden representations by processing and pooling
neighbor information to exploit topological information.
The performance of the Vertex- and Edge-GNNs depends
on the linearity and output dimensions of the processing
and combination functions.

Li et al. [52] proposed TapFinger, a distributed sched-
uler that minimizes the total execution time of edge cluster
tasks by co-optimizing task placement and fine-grained
multi-resource allocation. TapFinger uses Multi-Agent
Reinforcement Learning (MARL) to learn the uncertain
resource sensitivity of the tasks and employs several tech-
niques to improve efficiency.
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Wang et al. [53] proposed an edge-update mechanism
that enables GNNs to handle both node and edge variables,
and proved its permutation equivariance property with re-
spect to both transmitters and receivers.

Meng et al. [54] proposed a GNN-based algorithm that
minimizes the total delay and energy consumption during
training. This improves the performance of distributed
FL in D2D wireless networks. The proposed GNN uses a
multi-head graph attention mechanism to capture the vari-
ous characteristics of clients and wireless channels. It also
has a neighbor selection module that allows each client
to select a subset of its neighbors to participate in model
aggregation. A decoder is used for each client to determine
the transmission power and computational resources.

Luo et al. [10] proposed a GNN-based resource allo-
cation method to enhance a digital Twin’s multiple Un-
manned Aerial Vehicle (UAV) radar network. Through
joint spectrum allocation and power control, this method

maximizes the minimum signal-to-noise ratio (SINR) of
all UAVs.

5.6 Extending to IoTs and IloTs

Computer networks connect computers, routers, and
servers for general-purpose communications, such as
email, web browsing, and apps. [oTs connect sensors, actu-
ators, and embedded devices for sensing and control. [IoTs
connect Program Logic Controllers, Supervisory Control
and Data Acquisition systems, robots, and industrial sen-
sors for industrial system automation, monitoring, and
control. [oT and IIoT systems differ from traditional com-
puter networks in that they are heterogeneous, dynamic,
and tightly coupled to the physical world. GNNs provide
a powerful framework for learning from their graph-struc-
tured, spatio-temporal, and multi-modal data. This enables
intelligent applications like fault detection, traffic forecast-
ing, and secure control, especially in real-time industrial
settings or at the edge.

Table 3. Scenarios and applications of GNNs in computer networks

Scenarios Applications Contributions
Topo. Mana. TDA [34] Improve representation of topologies with rings and holes.
KerGNNSs [35] Combine graph kernel and GNN
. . GNN+DRL [36-38] Combine GNN and DRL
Routing Opti.
[39] Integrate graph structure and RL
Multi-time Scale Model [40] Capture traffic abrupt changes at multiple scales
Traffic T-ISTGNN [41] RL and hypothesis transfer learning for domain adaptation
Forecast TSGAN [42] Time-series similarity-based GAT for cellular traffic prediction
E2E Delay Modeling [43] Model global network behavior correlations for load balancing
[7] Edge Classification [oT Intrusion Detection System
Intru- E-ResGAT [44] Residual connection improves class imbalance
sion DeepTralog [45] Combine logs and GNNs to detect RPC anomalies for microservices
Cyber- Advers Attack [6] Use saliency map and random walk to create adversarial samples
security Flow Graph [47] Flow graph aggregates traffic behavior for malware detection.
Mal- Call Graph + FDG Use dynamic behavior and static features to improve obfuscation
ware [48] resilience
[49] Adversarial architecture for Android malware detection.
Resource Optimization [50] Optimize resource allocation for wireless [oTs
Resource Allocation [51] Edge graph network to optimize resource allocation strategy
Resource TapFinger [52] Jointly optimizE task placement and multi-resource allocation
Mana. Edge-Update GNN [53] Handle node/edge variables and prove permutation equivariability
GNN+FL in D2D [54] Use multi-head attention to reduce training cost
UAV Radar Networks [10] Maximize minimal UAV SINR to improve sensing coverage in multi-
UAV systems.
Device Management [55] Use a spatio-tempqral graph to improve the collaboration of
heterogeneous devices.
Graph Embedding Anomaly Real-time incremental learning and spatio-temporal correlation analysis
Detection [56] to improve detection speed and accuracy
. [57] IoT node classification.
Extending to GAT-Based [oT ID [58] Traffic graphs for accurate binary/multi-class classification
[oTs & lIoTs

EGNN [59]

Subgraphs mines device correlation, dual modes reduce energy cost

Time-Series GGCN for Botnet

Detection [60]

A time series polygon graph for traffic dynamic feature analysis

HetEP [61]

Heterogeneous GNN fuses spatio-temporal relationship to predict
manufacturing energy consumption.




Dong et al. [55] used GNNs to model the complex in-
teractions between devices, thereby optimizing IoT device
utilization and diagnosing system failures. They construct-
ed a graph of the physical connection, communication
topology, or data dependency between devices. Then, they
abstracted a spatio-temporal graph and built a GAT model
to improve the cooperation efficiency of heterogeneous de-
vices for device management and fault diagnosis.

Jiang et al. [56] proposed a fast anomaly detection
framework for IoT services. They used graph embedding
to model the complex dependencies between logs. They
designed a real-time incremental learning mechanism
to handle dynamic data streams. They also employed
spatio-temporal correlation analysis to effectively detect
anomalies.

Sejan et al. [57] transformed IoT devices into graphs
and used GNNs for node classification. They abstracted
IoT devices as fully or randomly connected graphs and
presented two GNN models (ARMAConv and Clus-
ter-GCN) for experimentation.

Ahanger et al. [58] converted original network traffic
into graphs and developed an IoT intrusion detection mod-
el based on GATs. Their experiments demonstrated 98%
accuracy in binary classification and 99.2% accuracy in
multi-classification.

Guo et al. [59] proposed an energy-efficient GNN
(EGNN) for IoT anomaly detection. The EGNN introduced
a subgraph generation approach for device association
mining. It also adopted a dual-mode switching mechanism
where only the central data of the subgraph was transmit-
ted in normal mode and the entire subgraph was analyzed
in abnormal mode to reduce energy consumption.

Altaf et al. [60] proposed an Internet of Things (IoT)
botnet detection model based on a time-series Gated Graph
Convolutional Network (GGCN). They improved detection
accuracy on the Mirai dataset by up to 25% by construct-
ing a time-series multilateral graph to analyze the dynamic
characteristics of network traffic.

Su et al. [61] proposed a heterogeneous manufactur-
ing correlation graph (HetMG) and an energy consump-
tion prediction method (HetEP) based on HetMG. HetEP
combines relational GCNs and LSTMs to identify spa-
tio-temporal relationships among heterogeneous elements
in the manufacturing process. It can predict order- and
product-level energy consumption for green manufacturing
based on heterogeneous GNNs.

All of the applications mentioned in this section are
listed in Table 3.

6 Challenges and Open Issues

6.1 Graph Construction in Dynamic Networks

Graph construction transforms raw network data, such
as system logs [62], packet traces, or topology snapshots
[63], into a graph representation. Since the topology, traf-
fic, and behavior evolve over time, graph construction re-
mains a non-trivial in current research. Typical graph con-
struction methods include snapshot-based, event-driven,
sliding window temporal graphs, and learned or inferred
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graphs. However, updating graphs continuously from high-
speed network streams while dealing with incomplete,
noisy, or irregular traffic data remains a major challenge.
Current research also lacks approaches for IoT and distrib-
uted systems, which may not report the full topology and
face trade-offs between constructing fine-grained graphs
and maintaining scalability. Future research directions in-
clude inferring dynamic graphs from unlabeled sequences
and constructing fine-grained graphs only when anomalies
or bottlenecks are detected, and federated/delayed graph
construction and E2E frameworks, in which the GNN
learns both the graph and the prediction task.

6.2 Spatio-Temporal Learning

Modeling spatio-temporal dynamics IN computer net-
works remains an open issue [64]. Modern architectures
combine graph convolution with temporal modeling, often
using RNNs, attention mechanisms, or diffusion mecha-
nisms. However, these architectures struggle to represent
graphs dynamically, handle asynchronous and bursty data,
address label scarcity and delay feedback scenarios, and
manage model complexity and computational overhead.
Open issues include performing continuous learning on
dynamic graphs with streaming data, designing real-time
models with efficient temporal encoding and sparse GNN
updates, handling multiscale patterns, and improving ex-
plainability.

6.3 Scalability to Large-Scale Networks

Applying GNNs to large-scale computer networks
poses significant scalability challenges due to the explo-
sive growth in graph size, dynamic updates, and real-time
inference requirements [65]. Although sampling-based
GNNss can limit computation and subgraph partitioning
methods can divide large graphs into subgraphs for local
training in mini-batch or distributed settings, controlling
memory overhead and message passing costs for large net-
works remains challenging. Achieving real-time reference
latency and topology updates for industrial applications
is also a major issue. Future research directions include
developing efficient online prediction models for edge sys-
tems, improving sample quality without full aggregation,
and enabling visual, interpretable GNN inference for large,
mission-critical networks.

6.4 Data Quality and Privacy in Sensitive Domains
Data quality and privacy are critical in sensitive do-
mains such as healthcare, cybersecurity, and social net-
works. Trained GNN models can reveal sensitive node
features or graph structures [66]. Incomplete or inaccurate
graphs may result in missing edges, incorrect labels, or
incomplete node features. Graphs distributed across in-
stitutions also raise data-sharing concerns. Currently, dif-
ferential privacy is used to protect sensitive information.
Federated GNNSs, such as FLARE [67], use subgraphs to
preserve utility while masking sensitive patterns [68]. Two
potential future research directions are combining differen-
tial privacy and dynamic GNNs to provide a data-centric
GNN pipeline and using generative models to produce
privacy-preserving but utility-rich graphs and privacy-pre-
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serving collaborative modeling across distributed and het-
erogeneous loT nodes.

6.5 Others

Future research directions include developing robust,
trustworthy, and explainable GNNs in security-critical
systems, training transferable GNNs that generalize across
domains, network sizes, and topologies, and combining
meta-learning or federated GNNs to handle data hetero-
geneity [69], and deploying GNNs in real-time systems
with minimal disruption. Although Python scripts are often
used for efficiency, tools such as Gephi [70] can be used
for visualization. Publicly available traffic datasets include
ISCX (www.unb.ca/cic/datasets/ vpn.html), USTC (staff.
ustc.edu.cn/~cheneh/paper pdf/ 2016/ang-Network-Traf-
fic.pdf), CAIDA (catalog.caida.org), and CTU-13 (mcfp.
weebly.com/the-ctu-13-dataset.html).

7 Conclusions

In this paper, we provide a systematic review of the ba-
sic concept of GNNss, discuss the advantages and disadvan-
tages of their classical models, and summarize their typical
use scenarios and applications in computer networks. We
categorized six major usage scenarios, including topology
management, routing optimization, traffic forecasting, cy-
bersecurity, resource management, and extending to IoTs
& IloTs. Our focus was on the typical applications and
how GNN fit into them. We identified the challenges and
open issues, and suggested the potential future research
directions regarding emerging network scenarios and new
technologies. By consolidating this rapidly growing yet
fragmented research field, we have highlighted the unique
value that GNNs bring to computer networks, serving as
a foundational resource for both networking and machine
learning research.
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