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Abstract

Traditional methods of analyzing and processing com-
puter networks have difficulty dealing with their rapidly 
increasing scalability, structure, and traffic complexity due 
to the rapid development of information technology. Graph 
neural networks (GNNs), an emerging deep learning tech-
nology, adapt to graph-structured data and relationships. 
They offer new mechanisms and solutions to real-world 
problems. This paper provides a structured, unified synthe-
sis of current research in this interdisciplinary field. It re-
views the basic concepts and models of GNNs, highlights 
their current state in major computer network management 
and optimization scenarios, and discusses typical applica-
tions, challenges, open issues, and future research direc-
tions.
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1  Introduction

Graph Neural Networks (GNNs) are neural network 
models for graph-structured data. They learn graph struc-
ture features and capture hidden patterns in these structures 
by aggregating neighborhood information. First introduced 
in 2008 [1], GNNs have rapidly been applied to complex 
interaction scenarios such as social networks, recommen-
dation systems, and transportation networks [2], which 
have complex, non-IDD (independently distributed), or 
cross-domain data. Traditional machine learning methods 
struggle to address these scenarios [3].

Although computer networks enable data communica-
tion, social networks, computer vision, and recommender 
systems deal with human interactions, visual data, and 
personalized ranking, respectively, all of these types of 
networks have graph-structured data. Currently, managing 
and optimizing computer networks is challenging. For ex-
ample, traditional iterative update mechanisms struggle to 
update network topology quickly in large-scale, dynamic 

scenarios with millisecond responses, such as 6G network 
slicing [4]; classical Federated Learning (FL) methods lack 
mechanisms to protect network privacy and security with-
out consuming excessive network bandwidth and compu-
tational resources [5]; accurate detection of hierarchical 
attacks is difficult due to the lack of a multi-server trust 
system and universal verification of adversarial attack de-
fense [6]; and existing multimodal fusion lacks interpret-
ability, relies too heavily on attention-weighted features, 
and does not consider heterogeneous data causality [7].

GNNs are better suited for computer network man-
agement and optimization than traditional methods such 
as table features and matrix features. GNNs can natural-
ly model computer networks. A computer network can 
be viewed as an attributed dynamic graph with dynamic 
properties. In these model, hosts, switches, routers, and 
firewalls are nodes, and traffic paths and links are edges. 
Edge attributes can include bandwidth, latency, packet loss 
rate, and link stability, while node attributes can include 
CPU load, queue length, storage capacity, and fault sta-
tus. Therefore, GNNs can use neighbor aggregation and 
multi-hop propagation to directly capture local and global 
topological features and dynamic evolution, which are 
difficult to fully express using traditional methods. GNNs 
can automatically learn the multidimensional relationships 
between nodes, edges, and traffic without manual feature 
design. As the network scale increases, the operating en-
vironment migrates, or the attack model is updated, tradi-
tional methods require retraining of the models to adapt to 
new knowledge. In contrast, GNNs can adapt models to 
the new nodes and edges, and new patterns and knowledge 
behind the changes through inductive learning, parameter 
adjustment, and self-supervised/contrastive learning. Dy-
namic GNNs can naturally model time series changes and 
achieve continuous reasoning. Depending on the down-
stream tasks, network traffic or traffic forwarding rules can 
also construct graphs for GNNs. 

GNNs have been applied in computer networks to im-
prove dynamic graph modeling [8], real-time task schedul-
ing, energy efficiency optimization [9], and the integration 
of homomorphic encryption with federated learning and 
other machine learning algorithms. However, they have 
not been systematically discussed, analyzed, or compared 
for advanced use in many other network scenarios [10]. 
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A review of GNN scenarios and applications in comput-
er networks is necessary to make breakthroughs towards 
time-efficient, dynamic, scalable, and secure GNN mecha-
nisms.

This paper reviews the basic concepts, classical mod-
els, usage scenarios, and applications of GNNs in com-
puter networks. The goal is threefold: to consolidate the 
rapidly growing yet fragmented field of GNN research; 
to emphasize the unique value that GNNs offer in solving 
network problems; and to guide future research, deploy-
ment, and standardization efforts. This paper can serve 
as a foundational resource for networking and machine 
learning research. To the best of our knowledge, this study 
is the first to directly link GNNs to related scenarios and 
applications in computer networks. It makes the following 
main contributions.

(1) Six GNN models are discussed from multiple di-
mensions.

(2) The six major use cases are categorized, including 
topology management, routing optimization, traffic fore-
casting, cybersecurity, and resource management. These 
use cases extend to the Internet of Things (IoT) and the 
Industrial Internet of Things (IIoT). Typical GNN appli-
cations in each scenario are reviewed to explain how and 
why GNNs should be involved.

(3) The challenges and open issues are identified. Fu-
ture research directions for emerging networking scenarios 
and new technologies are suggested.

The rest of this paper is organized as follows: Section 

2 provides related surveys. Sections 3 and 4 offer brief 
introductions to the fundamental concepts and models of 
GNNs, respectively. Section 5 discusses GNN scenarios 
and applications in computer networks. Section 6 address-
es the major challenges and open issues of GNNs. Section 
7 concludes the paper.

2  Related Surveys

As listed in Table 1, Shabani et al. [11] and Khemani et 
al. [12] provided thorough reviews of GNN models, algo-
rithms, and methods. Vatter et al. [13] discussed the struc-
ture of distributed GNNs; Wu et al. [14] focused on GNN 
computational architecture; and Oloulade et al. classified, 
searched, and optimized GNN models [15]. Liu et al. [16] 
and Munikoti et al. [17] discussed GNNs in the context 
of Federated Learning (FL) and Reinforcement Learning 
(RL), respectively. Nandan et al. [18], Wang et al. [19], 
and Liu et al. [20] investigated the GNNs’ representability, 
uncertainty, and tasks. While Wu et al. surveyed GNN us-
age scenarios and applications in recommendation systems 
[21], Dong et al. surveyed them in the IoTs [22], and Rah-
mani et al., Chen et al., and Wu et al. summarized them in 
transportation systems, computer vision, and natural lan-
guage processing, respectively [23-25], to the best of our 
knowledge, no existing surveys focus specifically on GNN 
applications in computer networks. This study fills this 
gap.

Table 1. Related surveys

Survey perspective References Publication year
Comprehensive [11-12] 2024

Technology

Distributed GNN [13] 2023
Computer architecture [14] 2025

Model search [15] 2022
FL [16] 2025
RL [17] 2024

Explainability [18] 2025
Uncertainty [19] 2024
Type of task [20] 2023

Application

Recommender systems [21] 2022
IoTs [22] 2023

Intelligent transportation [23] 2023
Computer vision [24] 2024

Natural language process [25] 2023

3  Fundamental of GNNs

Graph-structured data can be denoted by G = (V, E), 
where V and E are sets of vertices and edges, representing 
the entities and their relationships, respectively [26]. Un-
like images, texts, and time series data, which are Euclide-
an structures with a fixed arrangement and order of nodes, 
graphs are non-Euclidean structures. Since neural networks 
are designed for Euclidean data, they are difficult to apply 

directly to graphs. GNNs can learn vertex, edge, and graph 
representations for vertex classification and edge predic-
tion tasks [27].

A GNN typically consists of an input module, a mes-
sage-passing module, and an aggregation and update mod-
ule. Figure 1(a) shows a k-layer GNN. The input module is 
located in layer 0, where the graph structure data is provid-
ed and the embeddings are initialized. In each subsequent 
layer, the nodes collect information from their neighbors 
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through the message-passing module and update their em-
beddings through the aggregation and update module. This 
forms an iterative process called message passing [28]. Af-
ter k rounds of message passing and feature updating, each 
node learns a representation containing structural informa-
tion about itself and its neighbors. Figure 1(b) illustrates 
this process. Here, k

vh  represents the kth layer embedding 
of node v. This process is the core of GNNs. It simulates 
the topological relationships of graph structure data and 
successfully overcomes the bottleneck that traditional neu-
ral networks experience when processing non-Euclidean 
data.

4  GNN Models

4.1 Graph Convolutional Networks
Graph Convolutional Networks (GCNs) extract local 

features by convolving the features of neighboring nodes. 

A weighted adjacency matrix defines the contribution of 
neighboring nodes to improve performance and stability. 
GCNs can efficiently process graph structure data for node 
and graph classification tasks. A GCN usually consists of 
graph convolution layers, nonlinear activation functionl 
ayers, and fully connected layers, which aggregate infor-
mation from neighboring nodes, introducing nonlinear fac-
tors, and outputting the final data results, respectively [29]. 
Both GCN and Convolutional Neural Network (CNN) rely 
on convolutional structure to process data, extract features 
from neighboring nodes, and increase the perceptual scale 
for the broad tasks using a multi-layer structure, as shown 
in Figure 2. However, CNNs deal with grid-based images 
and audio in the European space, while GCNs deal with 
graph structures in the non-European space. Additionally, 
CNNs have a fixed neighborhood in which the convolution 
kernel slides, whereas GCNs have a flexible neighborhood 
defined by graph topology in which information is aggre-
gated.

Figure 1. The high-level structure of a GNN and the message passing process

Figure 2. The structures of CNN and GCN
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4.2 Graph Attention Transformers
GCNs rely on a full graph Fourier transform to aggre-

gate node features, which prevents them from scaling to 
large dynamic graphs. This leads to the development of 
Graph Attention Transformers (GATs). GATs use attention 
mechanisms to assign different weights to neighboring 
nodes and adaptively aggregate neighboring features for 
heterogeneous graph structure data. By focusing on more 
relevant neighbor nodes, GATs are more flexible and effec-
tive when dealing with complex graph structure data.

Figure 3(a) illustrates an attention mechanism. Here 
hi and hj represent the features of nodes i and j, respec-
tively. Wh

→
i and Wh

→
j are their initial weights. a→ is a learn-

able matrix, and αij is an element of a→ that represents the 
weight from hi to hj. It can be calculated by Eq. (1), where 
LeakyReLU is the activation function, T is a transformer 
operation, and || is the concatenation operation. Figure 3(b) 
illustrates a GAT’s structure, where node 1’s features are 
updated by aggregating the features of nodes 2, 3, and 4 
with the weights computed by one-head attention.
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GATs can capture fine-grained relationships in graphs 
and have demonstrated superior performance in tasks such 
as node classification and link prediction. This design 
overcomes the limitation of symmetric adjacency matrices 
in GCNs [30], and the multi-head attention mechanism im-
proves the model’s ability to express heterogeneous rela-
tionships by computing multiple independent attention sets 
in parallel.

4.3 GraphSAGE
GraphSAGE introduces neighborhood sampling and 

hierarchical aggregation strategies to address the lim-
itations of GCNs in processing industrial-scale massive 
graphs. As shown in Figure 4, GraphSAGE first samples 
a neighborhood, then aggregates feature information from 
the sampled neighbors, and finally processes a specific 
task based on the aggregated information. GraphSAGE 
can use mini-batch training to integrate randomly sampled 
neighborhood information layer by layer through learnable 
aggregation functions, such as long short-term memory 
(LSTM) and pooling. This approach alleviates computa-
tional memory pressure and is effective when dealing with 
dynamic or constantly expanding graphs. It also achieves 
zero-shot inference of new nodes and has been success-
fully applied to model billion-level community networks, 
such as the Ali e-commerce platform.

Figure 3. Attention mechanism and the GAT structure

Figure 4. The high-level structure of GraphSAGE
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4.4 Graph Recurrent Networks
Graph Recurrent Networks (GRNs) [31] target dynam-

ic graph data. GRNs model time series dependence and 
node state evolution by combining graph structure and Re-
current Neural Networks (RNNs). GRNs integrate graph 
recurrent unit or LSTM through a gated mechanism to 
model spatio-temporal correlations among node features.

RNNs have a recurrent structure that enables them to 
recall previous information to improve predictions about 
subsequent elements in a sequence. Figure 5(a) shows a 
GNN with a hidden state Zt, which is updated using the 
perceptron Zt = σ(Axt + Bzt−1). It also has an output predic-
tion yt = σ(Cxt). Figure 5(b) illustrates how a GNN is incor-
porated into a GRN to address dynamic information and 
time series data in graphs. Typical GRN research includes 
dynamic graph representation learning, temporal graph 
generation, and multi-way prediction optimization.

4.5 Summary
As shown in Table 2, GCN employs graph convolution 

to average neighbor features for small-scale graph tasks 
with simple structures and balanced node relationships. 
GAT uses attention mechanisms to adaptively learn the 
importance of neighboring nodes. It is suitable for graphs 
with unbalanced adjacency relationships or complex struc-
tures. GraphSAGE incorporates sampling and aggregation 
to efficiently train on large graphs. GRN uses RNNs to 
propagate states on graphs, modeling long-term depen-
dencies and temporal evolution between nodes in dynamic 
graphs or time-critical scenarios. GCN and GAT are de-
signed for entire graphs, whereas GraphSAGE and GRN 
are better suited for modeling large or dynamic graphs.

Other GNNs, such as the Graph AutoEncoder (GAE) 
[32] and Graph-BERT [33] models, are also widely studied 
in current research. All of these models support supervised, 
semi-supervised, and unsupervised learning. However, 
GAE and Graph-BERT are primarily designed for unsuper-
vised learning, and GCN is mainly designed for semi-su-
pervised learning.

Figure 5. The high-level structure of a RNN and a GRN with the RNN

Table 2. Comparison of typical GNN models

Dimensions GCN GAT GraphSAGE GRN

Aggregation Mean/Laplace 
convolution

Attention weighted 
aggregation Mean/LSTM/Pooling Based on RNNs

Neighbor weights Fixed (normalized based 
on degree)

weights may not be 
learnable

Dynamic determined by RNN 
hidden states

Information 
propagation

Fixed inter-layer 
propagation structure

Adaptive attention to 
neighbor importance

Local sampling + 
aggregation

Multi-step propagation + 
state update

For large graph Not suitable Not suitable suitable suitable
Expression Moderate Stronger Controllable Strong 

Over smoothing Prone to over-smoothing Mild (weight 
adjustment)

Mitigated (reduce 
redundant sampling)

Alleviated (state retains 
history)

Parameter count Low High (attention head) Depends on aggregation 
function

High (RNN parameters)

Tasks
Traffic classification
Routing optimization
Anomaly detection

Topo manag.
Resource manag.

cybersecurity

Topo&traffic forecast
Intrusion detection

Dynamic nodes

Traffic forecast
Anomaly detection

Routing optimization
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5  Scenarios and Applications of GNNs 
in Computer Networks

5.1 Topology Management
Topology management involves understanding, mod-

eling, and optimizing the interconnection structure of de-
vices, such as switches and routers, in a computer network. 
The goal is to enable visualization, prediction, planning, 
and management of the network. Traditional heuristic al-
gorithms, such as OSPF, are designed for networks with 
static topologies. Therefore, they have difficulty finding the 
optimal path in today’s networks, which have time-varying 
topologies caused by 5G network slicing and the IoTs and 
IIoTs. Efficient topology discovery is essential in these 
networks to enable a flexible routing strategy for predict-
ing network traffic and balancing loads. GNNs can directly 
model device connectivity and aggregate multi-hop neigh-
bor information, they can also extract graph features such 
as degree and path count in an automated, embeddable, and 
learnable manner. GNNs can train models on small graphs 
and historical data and then generalize to large graphs and 
future scenarios. By combining RNN and Transformer 
modules, GNNs have been widely applied to enable dy-
namic topology management in today’s networks.

In [34], topological data analysis (TDA) was proposed 
to enhance the representation of topology with rings and 
holes by incorporating GNNs. This method involves to-
pology-sensitive graph representation learning. In [35], 
KerGNNs were introduced by combining graph kernels 
and GNNs to capture complex node interactions effective-
ly and improve traditional GNN representations. However, 
KerGNNs still face challenges regarding computational 
complexity and parameter tuning for fully connected 
graphs and when multiple hyperparameters are involved.

5.2 Routing Optimization
Routing optimization involves determining the most ef-

ficient path for data to travel over a computer network. The 
goal is to minimize latency, maximize throughput, balance 
loads, and meet quality-of-service constraints. However, 
dynamic traffic patterns, changing topologies, multi-ob-
jective trade-offs, global dependencies, and the need for 
increased network scalability pose challenges to routing 
optimization in today’s networks. GNNs are well-suited 
for routing optimization because networks are graph-struc-
tured by nature and routing involves topology-aware deci-
sion-making.

Reference [36] proposed a routing algorithm based on 
GNN and Deep Reinforcement Learning (DRL) for SDNs. 
The GNN model was trained on the SDN controller to dy-
namically optimize the packet transmission path. The mod-
el is highly robust to changes in network topology, such as 
link addition or deletion.

Reference [37] optimized routing by integrating a 
GNN into a DRL agent and designing a specific action 
space for generalization. The DRL+GNN agent updated 
the link state during the message passing process. An RNN 
captured the link state changes, and a Deep Neural Net-
work (DNN) was used to output Q-value estimates. 

As described in reference [38], AutoGNN combines 
GNN and DRL to automatically generate routing deci-
sions. GNNs address traffic distribution within network 
topologies, while DRL trains GNN parameters. AutoGNN 
showed robustness to topology changes.

Reference [39] summarizes the integration potential 
of GNNs and DRLs in end-to-end (E2E) networks. The 
combination of GNNs and DRLs shows great potential for 
optimizing network resources, routing, and management, 
as well as contactless automation.

5.3 Traffic Forecasting
A traffic forecast predicts the future traffic conditions, 

such as bandwidth utilization, packet volume, and flow 
dynamics, over time and across network links or nodes. 
An accurate forecast supports smarter decisions regarding 
routing, resource allocation, and congestion control. Tra-
ditional forecast models (e.g., ARIMA, LSTM, and CNN) 
focus on time series and ignore the spatial dependencies 
within the network. In real networks, however, traffic at 
one node or link directly affects its neighbors. GNNs best 
capture this spatial coupling, leading to accurate, topolo-
gy-sensitive, and proactive predictions for modern network 
management and routing optimization.

Lin and Wang [40] proposed a multi-time scale pre-
diction model trained by CNN-GRU to capture the rapid 
changes in traffic values over short time intervals and 
address the burstiness of fine-grained network traffic. Ex-
periments showed that this approach outperforms the base-
line and reduces the burst traffic prediction error in China 
Unicom’s single-cell dataset.

Reference [42] introduced a time-series similari-
ty-based graph attention network (TSGAN) to predict cel-
lular traffic and allocate cellular network resources proac-
tively and effectively. Simulations showed that the TSGAN 
outperformed three classical prediction models on a real 
cellular network dataset in short-, medium-, and long-term 
prediction scenarios.

Reference [43] models E2E delay by using a GNN to 
learn correlations between global and basic network be-
haviors. A packet-level load balancing scheme within pro-
grammable data planes was also proposed to balance data 
plane traffic. Experiments demonstrated the feasibility and 
effectiveness of these approaches. Compared to queueing 
theory, RouteNet, and GNN-based schemes, the proposed 
approach improved the goodness of fit (R2) and generaliza-
tion ability under unknown traffic control strategies.

5.4 Cybersecurity
Cybersecurity is essential to safeguarding network 

infrastructure, sensitive data, and essential services from 
cyber threats such as malware, phishing, denial-of-service 
attacks, and data breaches. Maintaining cybersecurity is 
essential to ensuring national security, business continuity, 
public safety, and individual privacy. GNNs are particular-
ly effective in cybersecurity because many cyber systems 
and threats exhibit graph-like structures, such as host and 
network graphs, program behavior graphs, phishing and 
social attack graphs, and attack path graphs. Compared to 
current classical cybersecurity approaches, GNNs offer 
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topology awareness, contextual understanding, scalability, 
generalization, and reduced false positives. These capa-
bilities allow GNNs to capture the structural, relational, 
and temporal complexity of cyber environments, enabling 
them to detect and defend against modern cyber threats ac-
curately, adaptively, and scalably.
5.4.1 Intrusion Detection

Intrusion Detection Systems (IDS) monitor and ana-
lyze network or system activity to detect unauthorized ac-
cess, malicious behavior, and policy violations. Traditional 
IDS (especially in signature-based IDS) struggle to detect 
unknown attacks. They often produce high false positives 
in anomaly-based models and are ineffective at modeling 
complex, multi-stage, or distributed attacks. They also 
struggle to exploit structural or contextual relationships 
in traffic or behavior. GNNs are widely used because they 
can naturally model relationships between entities (e.g. 
hosts, packets, and processes) and to learn from structural 
context.

Lo et al. [7] proposed E-GraphSAGE, a GNN-based 
IDS for the IoT environment. GraphSAGE captures con-
nection and interaction patterns between devices. It learns 
device behaviors to detect abnormal and intrusive activi-
ties.

Chang et al. [44] proposed the E-GraphSAGE and 
E-ResGAT algorithms for intrusion attack detection. Re-
sidual links were introduced into the graph to preserve 
original node information and increase identification sen-
sitivity for certain malicious traffic categories, improving 
class imbalance.

Nguyen et al. [45] studied intrusion detection in mi-
croservice architectures and proposed the DeepTraLog 
model for microservice anomaly detection. DeepTraLog 
combines trace logs and graph-based deep learning to de-
tect abnormal remote procedure call traffic in containerized 
microservices.

Regarding intrusion detection based on GNNs in IoT 
systems with limited budgets, Zhou et al. [6] proposed a 
new hierarchical adversarial attack generation method that 
implements a hierarchy-aware black-box adversarial attack 
strategy. Adversarial samples are generated by hierarchi-
cally selecting high-priority vulnerable nodes based on the 
shadow GNN model by combining saliency mapping and 
the random walk restart algorithm. This research reveals 
the vulnerability of existing GNN models in IoT security 
scenarios.
5.4.2 Malware Detection

Malware detection involves identifying malicious 
software, such as viruses, worms, ransomware, Trojans, 
and spyware, that can compromise the confidentiality, in-
tegrity, or availability of computer systems. The goal is to 
accurately and reliably classify whether a program, file, 
or process exhibits malicious behavior at an early stage, 
including for obfuscated or unknown threats. Traditional 
approaches typically rely on static signatures, which can be 
easily circumvented by code obfuscation or repackaging. 
These approaches also lack insight into the complex struc-
tural behavior of malware, resulting in high false positives 
and negatives. However, since malware often exhibits 
relational, structured, and graph-like behavior—for exam-

ple, system/API calls form a behavior graph, binary codes 
form a control flow graph, function relationships form a 
call graph, and malware families share structural patterns 
in graphs—GNNs can effectively model these structures. 
Thus, GNNs can enable robust malware detection that out-
performs traditional static or rule-based methods [46].

Busch et al. [47] proposed a method for detecting and 
classifying malware based on network flow graphs. First, 
a flow graph is constructed by dynamically analyzing net-
work traffic during application execution to create a richer 
representation of network communication. The graph is 
then fed to three GNN models to detect malware in both 
supervised and unsupervised scenarios. Experiments 
demonstrate that these models significantly outperform the 
baseline model in various prediction tasks and require few-
er data labels or less training data to do so.

Feng et al. [48] fed call graphs and functional depen-
dency graphs into a GNN to accurately identify malware. 
They combined dynamic behavior and static structural 
features to improve sensitivity to code obfuscation and the 
inadequacy of traditional methods to represent features. 

Yumlembam et al. [49] used a GNN and a VGAE-Mal-
GAN adversarial architecture to detect malware on the 
Android platform. VGAE-MalGAN generated adversarial 
samples, and API graph embedding combined with permis-
sion and intention features improved the model’s robust-
ness and provided a more comprehensive feature represen-
tation. However, this approach still faces challenges related 
to dataset dependency and computational complexity in 
practical applications.

5.5 Resource Management
Network resource management involves efficiently 

allocating and using limited network resources. The goal is 
to ensure high performance, fairness, reliability, and scal-
ability for applications and services. However, traditional 
approaches to resource management struggle with dynamic 
workloads, complex dependencies, high dimensionality, 
real-time requirements, and multi-objective optimization in 
today’s networks. Since resource management is essential-
ly a graph problem, GNNs are ideal for solving real-time, 
multi-objective resource management problems.

Chen et al. [50] proposed a GNN framework for net-
work resource optimization in wireless IoT systems. The 
framework performs well in homogeneous systems and 
could potentially be used in heterogeneous networks.

Peng et al. [51] applied Vertex- and Edge-GNNs to 
learn network resource allocation policies. Both GNNs up-
date their hidden representations by processing and pooling 
neighbor information to exploit topological information. 
The performance of the Vertex- and Edge-GNNs depends 
on the linearity and output dimensions of the processing 
and combination functions.

Li et al. [52] proposed TapFinger, a distributed sched-
uler that minimizes the total execution time of edge cluster 
tasks by co-optimizing task placement and fine-grained 
multi-resource allocation. TapFinger uses Multi-Agent 
Reinforcement Learning (MARL) to learn the uncertain 
resource sensitivity of the tasks and employs several tech-
niques to improve efficiency.
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Wang et al. [53] proposed an edge-update mechanism 
that enables GNNs to handle both node and edge variables, 
and proved its permutation equivariance property with re-
spect to both transmitters and receivers. 

Meng et al. [54] proposed a GNN-based algorithm that 
minimizes the total delay and energy consumption during 
training. This improves the performance of distributed 
FL in D2D wireless networks. The proposed GNN uses a 
multi-head graph attention mechanism to capture the vari-
ous characteristics of clients and wireless channels. It also 
has a neighbor selection module that allows each client 
to select a subset of its neighbors to participate in model 
aggregation. A decoder is used for each client to determine 
the transmission power and computational resources. 

Luo et al. [10] proposed a GNN-based resource allo-
cation method to enhance a digital Twin’s multiple Un-
manned Aerial Vehicle (UAV) radar network. Through 
joint spectrum allocation and power control, this method 

maximizes the minimum signal-to-noise ratio (SINR) of 
all UAVs. 

5.6 Extending to IoTs and IIoTs
Computer networks connect computers, routers, and 

servers for general-purpose communications, such as 
email, web browsing, and apps. IoTs connect sensors, actu-
ators, and embedded devices for sensing and control. IIoTs 
connect Program Logic Controllers, Supervisory Control 
and Data Acquisition systems, robots, and industrial sen-
sors for industrial system automation, monitoring, and 
control. IoT and IIoT systems differ from traditional com-
puter networks in that they are heterogeneous, dynamic, 
and tightly coupled to the physical world. GNNs provide 
a powerful framework for learning from their graph-struc-
tured, spatio-temporal, and multi-modal data. This enables 
intelligent applications like fault detection, traffic forecast-
ing, and secure control, especially in real-time industrial 
settings or at the edge.

Table 3. Scenarios and applications of GNNs in computer networks

Scenarios Applications Contributions

Topo. Mana. TDA [34] Improve representation of topologies with rings and holes.
KerGNNs [35] Combine graph kernel and GNN

Routing Opti.
GNN+DRL [36-38] Combine GNN and DRL
[39] Integrate graph structure and RL

Traffic 
Forecast

Multi-time Scale Model [40] Capture traffic abrupt changes at multiple scales
T-ISTGNN [41] RL and hypothesis transfer learning for domain adaptation
TSGAN [42] Time-series similarity-based GAT for cellular traffic prediction
E2E Delay Modeling [43] Model global network behavior correlations for load balancing

Cyber-
security

Intru-
sion 

[7] Edge Classification IoT Intrusion Detection System
E-ResGAT [44] Residual connection improves class imbalance
DeepTraLog [45] Combine logs and GNNs to detect RPC anomalies for microservices
Advers Attack [6] Use saliency map and random walk to create adversarial samples

Mal-
ware

Flow Graph [47] Flow graph aggregates traffic behavior for malware detection.
Call Graph + FDG 
[48]

Use dynamic behavior and static features to improve obfuscation 
resilience

[49] Adversarial architecture for Android malware detection.

Resource 
Mana.

Resource Optimization [50] Optimize resource allocation for wireless IoTs
Resource Allocation [51] Edge graph network to optimize resource allocation strategy
TapFinger [52] Jointly optimizE task placement and multi-resource allocation
Edge-Update GNN [53] Handle node/edge variables and prove permutation equivariability
GNN+FL in D2D [54] Use multi-head attention to reduce training cost

UAV Radar Networks [10] Maximize minimal UAV SINR to improve sensing coverage in multi-
UAV systems.

Extending to 
IoTs & IIoTs

Device Management [55] Use a spatio-temporal graph to improve the collaboration of 
heterogeneous devices.

Graph Embedding Anomaly 
Detection [56]

Real-time incremental learning and spatio-temporal correlation analysis 
to improve detection speed and accuracy

[57] IoT node classification.
GAT-Based IoT ID [58] Traffic graphs for accurate binary/multi-class classification
EGNN [59] Subgraphs mines device correlation, dual modes reduce energy cost
Time-Series GGCN for Botnet 
Detection [60] A time series polygon graph for traffic dynamic feature analysis

HetEP [61] Heterogeneous GNN fuses spatio-temporal relationship to predict 
manufacturing energy consumption.
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Dong et al. [55] used GNNs to model the complex in-
teractions between devices, thereby optimizing IoT device 
utilization and diagnosing system failures. They construct-
ed a graph of the physical connection, communication 
topology, or data dependency between devices. Then, they 
abstracted a spatio-temporal graph and built a GAT model 
to improve the cooperation efficiency of heterogeneous de-
vices for device management and fault diagnosis. 

Jiang et al. [56] proposed a fast anomaly detection 
framework for IoT services. They used graph embedding 
to model the complex dependencies between logs. They 
designed a real-time incremental learning mechanism 
to handle dynamic data streams. They also employed 
spatio-temporal correlation analysis to effectively detect 
anomalies. 

Sejan et al. [57] transformed IoT devices into graphs 
and used GNNs for node classification. They abstracted 
IoT devices as fully or randomly connected graphs and 
presented two GNN models (ARMAConv and Clus-
ter-GCN) for experimentation. 

Ahanger et al. [58] converted original network traffic 
into graphs and developed an IoT intrusion detection mod-
el based on GATs. Their experiments demonstrated 98% 
accuracy in binary classification and 99.2% accuracy in 
multi-classification. 

Guo et al. [59] proposed an energy-efficient GNN 
(EGNN) for IoT anomaly detection. The EGNN introduced 
a subgraph generation approach for device association 
mining. It also adopted a dual-mode switching mechanism 
where only the central data of the subgraph was transmit-
ted in normal mode and the entire subgraph was analyzed 
in abnormal mode to reduce energy consumption.

Altaf et al. [60] proposed an Internet of Things (IoT) 
botnet detection model based on a time-series Gated Graph 
Convolutional Network (GGCN). They improved detection 
accuracy on the Mirai dataset by up to 25% by construct-
ing a time-series multilateral graph to analyze the dynamic 
characteristics of network traffic. 

Su et al. [61] proposed a heterogeneous manufactur-
ing correlation graph (HetMG) and an energy consump-
tion prediction method (HetEP) based on HetMG. HetEP 
combines relational GCNs and LSTMs to identify spa-
tio-temporal relationships among heterogeneous elements 
in the manufacturing process. It can predict order- and 
product-level energy consumption for green manufacturing 
based on heterogeneous GNNs. 

All of the applications mentioned in this section are 
listed in Table 3.

6  Challenges and Open Issues

6.1 Graph Construction in Dynamic Networks
Graph construction transforms raw network data, such 

as system logs [62], packet traces, or topology snapshots 
[63], into a graph representation. Since the topology, traf-
fic, and behavior evolve over time, graph construction re-
mains a non-trivial in current research. Typical graph con-
struction methods include snapshot-based, event-driven, 
sliding window temporal graphs, and learned or inferred 

graphs. However, updating graphs continuously from high-
speed network streams while dealing with incomplete, 
noisy, or irregular traffic data remains a major challenge. 
Current research also lacks approaches for IoT and distrib-
uted systems, which may not report the full topology and 
face trade-offs between constructing fine-grained graphs 
and maintaining scalability. Future research directions in-
clude inferring dynamic graphs from unlabeled sequences 
and constructing fine-grained graphs only when anomalies 
or bottlenecks are detected, and federated/delayed graph 
construction and E2E frameworks, in which the GNN 
learns both the graph and the prediction task.

6.2 Spatio-Temporal Learning
Modeling spatio-temporal dynamics IN computer net-

works remains an open issue [64]. Modern architectures 
combine graph convolution with temporal modeling, often 
using RNNs, attention mechanisms, or diffusion mecha-
nisms. However, these architectures struggle to represent 
graphs dynamically, handle asynchronous and bursty data, 
address label scarcity and delay feedback scenarios, and 
manage model complexity and computational overhead.  
Open issues include performing continuous learning on 
dynamic graphs with streaming data, designing real-time 
models with efficient temporal encoding and sparse GNN 
updates, handling multiscale patterns, and improving ex-
plainability.

6.3 Scalability to Large-Scale Networks
Applying GNNs to large-scale computer networks 

poses significant scalability challenges due to the explo-
sive growth in graph size, dynamic updates, and real-time 
inference requirements [65]. Although sampling-based 
GNNs can limit computation and subgraph partitioning 
methods can divide large graphs into subgraphs for local 
training in mini-batch or distributed settings, controlling 
memory overhead and message passing costs for large net-
works remains challenging. Achieving real-time reference 
latency and topology updates for industrial applications 
is also a major issue. Future research directions include 
developing efficient online prediction models for edge sys-
tems, improving sample quality without full aggregation, 
and enabling visual, interpretable GNN inference for large, 
mission-critical networks.

6.4 Data Quality and Privacy in Sensitive Domains
Data quality and privacy are critical in sensitive do-

mains such as healthcare, cybersecurity, and social net-
works. Trained GNN models can reveal sensitive node 
features or graph structures [66]. Incomplete or inaccurate 
graphs may result in missing edges, incorrect labels, or 
incomplete node features. Graphs distributed across in-
stitutions also raise data-sharing concerns. Currently, dif-
ferential privacy is used to protect sensitive information. 
Federated GNNs, such as FLARE [67], use subgraphs to 
preserve utility while masking sensitive patterns [68]. Two 
potential future research directions are combining differen-
tial privacy and dynamic GNNs to provide a data-centric 
GNN pipeline and using generative models to produce 
privacy-preserving but utility-rich graphs and privacy-pre-
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serving collaborative modeling across distributed and het-
erogeneous IoT nodes.

6.5 Others
Future research directions include developing robust, 

trustworthy, and explainable GNNs in security-critical 
systems, training transferable GNNs that generalize across 
domains, network sizes, and topologies, and combining 
meta-learning or federated GNNs to handle data hetero-
geneity [69], and deploying GNNs in real-time systems 
with minimal disruption. Although Python scripts are often 
used for efficiency, tools such as Gephi [70] can be used 
for visualization. Publicly available traffic datasets include 
ISCX (www.unb.ca/cic/datasets/ vpn.html), USTC (staff.
ustc.edu.cn/~cheneh/paper_pdf/ 2016/ang-Network-Traf-
fic.pdf), CAIDA (catalog.caida.org), and CTU-13 (mcfp.
weebly.com/the-ctu-13-dataset.html).

7  Conclusions

In this paper, we provide a systematic review of the ba-
sic concept of GNNs, discuss the advantages and disadvan-
tages of their classical models, and summarize their typical 
use scenarios and applications in computer networks. We 
categorized six major usage scenarios, including topology 
management, routing optimization, traffic forecasting, cy-
bersecurity, resource management, and extending to IoTs 
& IIoTs. Our focus was on the typical applications and 
how GNNs fit into them. We identified the challenges and 
open issues, and suggested the potential future research 
directions regarding emerging network scenarios and new 
technologies. By consolidating this rapidly growing yet 
fragmented research field, we have highlighted the unique 
value that GNNs bring to computer networks, serving as 
a foundational resource for both networking and machine 
learning research.
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