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Abstract

Petroleum exploration is an industry that generates 
a large amount of data, but the datasets used are highly 
correlated and complex to process. To achieve intelligent 
management of petroleum data, we propose a multi-model 
framework based on deep learning networks. This frame-
work combines the advantages of Multilayer Perceptron 
(MLP), Convolutional Neural Networks (CNN), and Long 
Short-Term Memory (LSTM)  to identify hot data that 
are more likely to be accessed by voting. In addition, we 
compare the performance of three commonly used time 
series prediction models for spatial prediction of petro-
leum exploration work areas. Experiments show that the 
multi-model framework outperforms traditional solutions 
by 25.3% and exhibits a 7.0% performance improvement 
compared to the best-performing LSTM model in a single 
model. LSTM is more suitable than Least Squares Re-
gression (LSR) and Support Vector Regression (SVR) for 
spatial prediction of petroleum data, and a simple offset 
processing of the prediction results can cover more than 
90% of real scenarios. 

Keywords: Petroleum exploration data, Intelligent data 
management, Machine learning

1  Introduction

Petroleum exploration is a data-intensive industry [1], 
accumulating massive oilfield data resources in various 
stages such as geology, logging, geophysical explora-
tion, and development, including well data, logging data, 
seismic data, layer and fault data, etc. [2]. Through main-
stream exploration analysis software such as GeoFrame, 
these data can form seismic profiles that provide data sup-
port for finding suitable petroleum exploration areas. Data 
collected in each petroleum exploration area, which is use-
ful for locating oil-bearing areas, is stored in a petroleum 
exploration work area. The data are highly correlated and 
complex to process, all of which can have an impact on the 
final results during data analysis.

To maintain a balance between storage costs and ap-
plication performance, it’s crucial to implement intelligent 
data management. Employing a single storage medium 
for all exploration data leads to either substantial storage 

expenses or compromised application performance. Thus, 
predictive technologies like pre-fetching hot data and fore-
casting data storage space growth have become imperative. 
By prioritizing hot data and storing it on high-speed media, 
data utilization efficiency can be enhanced. Additionally, 
accurately predicting data volume growth enables proac-
tive storage medium management, thereby optimizing stor-
age space utilization.

To achieve the effects of these two technologies, this 
paper proposes a multi-model framework leveraging 
Multilayer Perceptron (MLP), Convolutional Neural Net-
works (CNN), and Long Short-Term Memory (LSTM) to 
enhance pre-fetch selection analysis in petroleum explo-
ration. By integrating the strengths of these deep learning 
models through a voting mechanism, the accuracy of pre-
fetch results is improved. Moreover, this paper conducts 
a performance comparison among three commonly used 
time-series prediction models—Least Squares Regression 
(LSR), Support Vector Regression (SVR), and LSTM—
for predicting storage space in petroleum exploration data. 
Through this comparison, a machine learning prediction 
method more suitable for managing petroleum exploration 
data is identified.

The rest of this paper is organized as follows. In Sec-
tion 2, related work is discussed. Section 3 explains meth-
odologies for prediction. In Section 4, we use a series of 
benchmarks to evaluate the performance of these method-
ologies. A summary is given in Section 5.

2  Related Works

2.1 Prefetching Data
Prefetching is a critical optimization technique in com-

puter systems that aims to enhance system performance by 
accessing the required content quickly through prefetch-
ing-related content [3]. It plays a crucial role in improv-
ing the efficiency of computer systems. The accuracy of 
pre-fetching algorithms can be improved by using content 
and historical retrieval information.

Xu and his team adaptively prefetch a set of consec-
utive data stream fragments to the cache using a multi-
armed bandit model, reducing memory overhead and 
achieving effective duplicate data deletion [4]. DeepUM 
combines new page prefetching strategies with relevant 
prefetching techniques to enable deep neural networks 
with super memory usage [5].

Deep learning can predict data access patterns and fea-
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tures to improve pre-fetching effectiveness. Buyuktanir and 
Aktas applied LSTM and bidirectional LSTM to high-da-
ta-intensive network applications, modeling customer 
browsing data and predicting subsequent user behavior, 
minimizing data access latency and improving operation-
al performance and data delivery speed [6]. Ganfure and 
his team proposed the DeepPrefetcher model, which uses 
distributed representation learning to learn block access 
pattern contexts and utilizes LSTM for context awareness 
to achieve data prefetching [7]. This method is also very 
effective in improving prefetching efficiency. Using mul-
tiple deep-learning models together for classification can 
also improve the prefetching accuracy of the database [8].

In storage systems, the separation of frequently ac-
cessed data and infrequently accessed data into hot and 
cold data achieves a unified storage cost and system per-
formance. The Least Recently Used (LRU) strategy is a 
classic method for identifying cold and hot data by replac-
ing data with the least recently accessed data [9, 12]. To 
improve the accuracy of cold and hot data identification, 
various methods have been adopted domestically and 
abroad. At the data structure level, Bloom filters or Cuckoo 
filters have been proposed to enhance the accuracy of cold 
and hot identification [9]. The introduction of the Adap-
tive Robust Control (ARC) algorithm [10], Dynamic Data 
Clustering (DAC) algorithm [11], and temperature cooling 
model have continuously improved the accuracy of cold 
and hot identification. Additionally, machine learning 
methods such as those proposed in [10, 12], and [13] have 
proven to be effective in identifying cold and hot data.

2.2 Time-series Prediction
Time series prediction methods are widely used in 

various fields by forecasting future trends of the same 
event based on changes in it [14], such as in predicting 
COVID-19 cases [15-16], population forecasting [17], 
atmospheric environment prediction, etc. Traditional time 
series prediction models such as Autoregressive Moving 
Average (ARMA) and Autoregressive Integrated Moving 
Average (ARIMA) [18] are effective for data problems 
with stationary time series characteristics. However, in 
reality, most events do not change at the same rate, and the 
prediction accuracy of such nonlinear time series is diffi-
cult to meet the needs of applications.

Therefore, nonlinear prediction methods have received 
more attention both at home and abroad. Pannakkong and 
Huynh combined ARIMA with discrete wavelet transform 
(DWT) and artificial neural network (ANN) to achieve bet-
ter prediction results than a single model on three classical 
datasets [19]. Support Vector Machine (SVM) is a classical 
machine learning model [20], on which Luo, Jiang, and 
Zheng proposed a reconfigured training set SVM (RTS-
SVM) to solve the classification problem in high noise 
scenarios [21]. Recurrent Neural Network (RNN) [22-23] 
is also a neural network model that uses historical data to 
efficiently predict sequential data. To address the problem 
of RNN gradient disappearance and explosion, LSTM was 
proposed to improve RNN [24-26]. Combining LSTM 
with CNN can effectively reduce the prediction error [27-
28].

However, for scenarios in petroleum exploration, where 
the data has high correlation and complexity, there has not 
been sufficient research targeting this field. Prefetching and 
spatial prediction algorithms have not been tested for their 
effectiveness in petroleum exploration contexts.

2.3 Machine Learning in Petroleum Exploration
Machine learning is emerging as a highly effective tool 

in the realm of petroleum exploration, offering advance-
ments across its upstream, midstream, and downstream 
sectors [29]. Numerous studies have highlighted machine 
learning’s prowess in processing and analyzing vast 
amounts of data, tailoring its applications to the unique 
characteristics of petroleum exploration scenarios [30-31]. 
Al-Mudhafar et al. [32] conduct a comparative analysis 
of five machine learning algorithms aimed at classifying 
carbonate lithologies, with the goal of enhancing reservoir 
discrimination for improved fluid flow and storage capaci-
ty assessment. Sheykhinasab et al. [33] integrate the Least-
squares support-vector machines (LSSVM) and multilayer 
extreme learning machine (MELM) with optimization 
algorithms such as cuckoo optimization algorithm (COA), 
particle swarm optimization (PSO), and genetic algorithm 
(GA) to predict permeability—a crucial factor in enhanc-
ing oilfield development efficiency. Despite these advance-
ments, much of the current research primarily focuses on 
machine learning applications in oilfield exploration, with 
fewer studies addressing the storage of petroleum explora-
tion data characterized by small datasets.

3  Methodology

In this section, the paper will introduce a traditional 
method suitable for petroleum exploration scenarios and a 
new machine-learning method for distinguishing between 
cold and hot data. Additionally, a brief introduction to spa-
tial prediction models will also be presented.

3.1 Traditional Prediction Model

Figure 1. Procedure for calculating file temperature

The CT-LRU model is a traditional method for iden-
tifying hot data by predicting future file access based on 
information from various dimensions of historical files. 
The model calculates the dynamic hotness value of a file 
by weighting its information, such as access operations, 
modification operations, deletion operations, addition op-
erations, and file size. The dynamic hotness value is then 
dynamically adjusted using the temperature cooling model, 
which takes the operation time as input. Finally, the static 
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hotness value is obtained based on the file association. The 
total hotness value is the sum of the dynamic and static 
hotness values, and the higher the total hotness value, the 
higher the likelihood of accessing the file. The calculation 
process of file hotness is shown in Figure 1.

The formula for calculating the hotness value is shown 
below:
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where tn represents the most recent operation time, Ttn is 
the temperature obtained from the temperature cooling 
model, e−k(tn−tn−1) represents the heat decay caused by 
the time difference between the current operation tn 
and the last operation time tn−1 . Tacc , Tadd−mod , Tdel , Tsize 
respectively represent the heat values calculated from the 
access frequency, new creation/modification frequency, 
deletion frequency, and file size, which are obtained by 
optimizing the parameters f (the frequency or size of the 
actual application of dimension information) and α (the 
sensitivity of the corresponding dimension information).

corr corrT Cα= (3)

where Tcorr  is the static hotness value generated based on 
the file association, C is the number of associated files, and 
αcorr is the sensitivity of file association.

nt corrT = T +T (4)

In the CT-LRU model, the final heat value T deter-
mines where the data will be placed according to its mag-
nitude. Figure 2 illustrates the operational workflow of this 
strategy. Initially, when data is accessed, its current heat 
type is determined. New data receives a baseline heat val-
ue, whereas existing data undergoes an update in its heat 
value based on the temperature cooling model. After calcu-
lating the required heat value, if the data has been defined 
as hot or warm data, its heat value is updated. Conversely, 
If the data is not hot or warm data, it is assigned to the 
warm data category, with new heat and file relevance val-
ues computed. When storage for both warm and hot data 
reaches capacity, the model evaluates the oldest item in the 
hot data set (based on the least recent access) against the 
item with the highest heat value in the warm data. The data 
with a higher heat value is retained in the hot data, while 
the less critical data is relocated to the cold data. This 
method ensures that data with higher importance and utili-
ty are stored on media that allow faster access, optimizing 
retrieval times and storage efficiency.

Figure 2. CT-LRU strategy

3.2 Multi-Model Prediction Framework
The model framework of this paper is shown in Figure 

3. To forecast future data file accesses within the petro-
leum exploration work area, this framework integrates 
three well-established deep learning models: MLP, CNN, 
and LSTM. These models have been widely used in many 
fields and have been proven to perform well in handling 
different diverse data types.

Figure 3. Multi model framework

MLP is a feedforward neural network model and one 
of the earliest widely used neural network models. It con-
sists of multiple fully connected layers, each of which con-
tains many neuron nodes. Each node processes the input of 
the previous layer through an activation function and pass-
es it to the next layer. Due to the non-linear nature of MLP, 
it has powerful non-linear modeling capabilities and can 
model and classify highly non-linear data, and is suitable 
for many types of data. In this paper, a basic MLP model is 
implemented by establishing fully connected layers, and 
each model  is trained using the Tanh activation function, 
mean squared error loss function, and Adam optimizer. The 
hyperparameters of the model are adjusted using the val-
idation set. Compared with CNN and LSTM, MLP has 
a simpler structure, making it easier to implement and ad-
just.

CNN is a feedforward neural network model consisting 
of convolutional layers, pooling layers, and fully connect-
ed layers. The convolutional layer extracts the features of 
the input data through convolution and passes them to the 
next layer. The pooling layer reduces the size of the feature 
map, thus reducing the computation and parameter of the 
subsequent layer [34]. The dropout layer randomly drops 
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the outputs of some neurons to reduce the overfitting of the 
model. The CNN model used in this paper is shown in Fig-
ure 4, and it extracts data features and reduces overfitting 
by using multiple convolutional layers, pooling layers, and 
dropout layers. Finally, the data is adjusted to the required 
output dimension through fully connected layers.

Figure 4. The CNN model

LSTM is a recurrent neural network model composed 
of many repeated LSTM modules. The LSTM module con-
tains a forget gate, an input gate, and an output gate, which 
can control the flow of information in the LSTM module, 
allowing LSTM to remember and forget information in the 
input sequence. Unlike other recurrent neural networks, 
LSTM can avoid the problem of gradient vanishing or 
explosion in long sequence training, making it suitable for 
modeling sequence data. In this paper, the LSTM module 
is used for training, by setting the tanh activation function, 
mean squared error loss function, and Adam optimizer, 
adjusting the dropout rate, etc., to obtain more accurate 
predictions. LSTM is best at handling sequence data and 
has the greatest advantage in this scenario.

Each individual model is capable of extracting valuable 
information from the data to predict future access patterns 
of documents. To fully leverage the strengths of these three 
models, this paper employs a multi-model framework to 
integrate and weigh the results obtained from each model, 
ultimately deriving the final prediction outcomes. Differ-
ent weights are assigned to documents predicted by each 
model based on their respective prediction results. The 
value assigned to each file is the aggregate of the weighted 
values from all three models. By comparing the values 
assigned to different files, those with higher values are 
deemed more likely to be accessed. This approach allows 
for a comprehensive and nuanced prediction of document 
access patterns by amalgamating insights from diverse 
models.

Vfile = Wmlp * Premlp + Wcnn * Precnn + Wlstm * Prelstm (5)

Where V is the value of files, W is the weight of each 
model, and Pre is the predicted result of each model for 
each file.

Specifically, this paper initially evaluates the accuracy 
of three models—MLP, CNN, and LSTM—when uti-

lized individually for prediction. It was found that LSTM 
outperforms CNN, and CNN in turn outperforms MLP. 
However, using a single model in isolation does not yield 
optimal outcomes, as the potential of CNN and MLP is not 
completely harnessed. Therefore, the paper explores the 
accuracy improvement through model combination. When 
a set of data is predicted by two or more models simultane-
ously, this paper refers to it as being predicted by a combi-
nation of the models.

After integrating the models, there was a notable in-
crease in the accuracy of the predictions, albeit with a 
corresponding reduction in the amount of data available.  
To compensate, the data were weighted and ranked. Each 
model is assigned a weight based on its accuracy; models 
with higher accuracy receive higher weights. The weight 
of a model is applied to its predictions by multiplying the 
model’s weight by its confidence in each prediction. If data 
are predicted by multiple models, the total weight is the 
sum of the weights of these models. This approach, by uti-
lizing the collective judgment of multiple models, reduces 
the risk of errors that might arise from relying on a single 
model and selects data based on the highest aggregate 
weights for predictions.

Based on the historical file access patterns, this paper 
establishes the relationship between the set of files in each 
cache and the set of files in the future cache, as shown in 
Figure 5. This approach predicts the next files to be ac-
cessed based on the order of past file operations, ensuring 
predictions are timely and relevant while minimizing the 
disruption caused by outdated data.

Figure 5. Relationship between data for prediction

3.3 Spatial Prediction Model
The spatial prediction model anticipates future space 

utilization based on past space usage at various points in 
time. In the scenario of petroleum exploration, the storage 
space in the work area remains constant during regular in-
tervals and only expands when the area is actively utilized. 
However, the uncertainty of its variation makes predicting 
workspace hard. To predict the storage space occupied 
by each petroleum exploration workspace, this research 
focuses on implementing several commonly used time 
series prediction models, including LSR, SVR, and LSTM 
networks, for predicting petroleum exploration data stor-
age space and performing comparative analysis to find the 
most suitable prediction method for petroleum exploration 
data management.
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4  Performance and Analysis

The experimental platform used in this research is a 
PC equipped with an Intel(R) Core(TM) i7-10510U CPU 
processor with a clock speed of 2.30 GHz, 8 cores, and 16 
GB of memory. The data used are records of operations, 
including accesses, additions, modifications, and deletions, 
for a specific work area in an actual petroleum exploration 
scenario in the Shengli Oilfield. There are 9032 files in this 
work area with a total size of 78.1GB, and 44016 opera-
tions were performed. After pre-processing the operation 
records, the files were divided into hot data and cold data, 
and a time series prediction of the workspace size was per-
formed.

Figure 6 shows the distribution of the number of oper-
ations for each file. It can be observed that in the past six 
months, over 97% of the files in the area were operated on 
11 times or less. Additionally, a small peak in the number 
of file accesses is observed at 9 and 10 times. From this, 
we can observe that most of the data files in this work area 
were accessed only a few times. The small peaks in access 
frequency are highly likely to indicate that these data were 
accessed together.

Figure 6. Distribution of the number of file operations

4.1 Hot Data Prefetching Strategy
Based on the application scenario of integrated explo-

ration research, the experiment extracts the operation re-
cords of a petroleum exploration area within 6 months and 
records the various dimensional information of the files 
used in the area. Based on the file operations and various 
dimensional information, the performance of two tradi-
tional models (LRU, CT-LRU), MLP, CNN, LSTM, and 
multi-model framework (MMF) is compared.
4.1.1 Pre-processing

Based on the operation time of files in the workspace, 
a relationship is established between the history of the 
operated files and the next operated file. A new vector is 
formed by combining files with cache size quantities based 
on file names. By processing this vector through neural 
network layers, the final probability of accessing each file 
is obtained.

The traditional CT-LRU model optimizes its param-
eters through exhaustive grid search. As shown in Figure 
7, in the case of petroleum exploration, when only one 
parameter is changed while the others remain fixed, each 
parameter change affects the final cache hit rate, with pa-
rameters αsize and αacc having a larger effect and parameter 

αdel having a smaller effect. For the parameter αsize , the file 
size tends to zero for larger magnitudes. The optimal pa-
rameter configuration scheme can be found after training.

Figure 7. Relationship between coefficient and the hit ratio

4.1.2 Cache Hit Ratio
In this experiment, the hit rate of six strategies, LRU, 

CT-LRU, MLP, CNN, LSTM, and MMF, was compared 
under different cache size ratios. The variation of the hit 
rate is shown in Figure 8.

Figure 8. The Variation of hit ratio by the cache

According to Figure 8, it is evident that the cache hit 
rate remains low when the cache size is small. This phe-
nomenon can be attributed to the low repetition rate and 
extended usage periods of the dataset within the petroleum 
exploration scenario. The traditional CT-LRU strategy 
performs well because it considers the information of 
various dimensions of each file. However, deep learning 
algorithms can mine more content and relationships of 
historical data, resulting in better performance in most 
cases. LSTM performs best in the single-model framework 
with up to 21.2% improvement compared to CT-LRU. 
The multi-model framework obtained by three-model 
voting performs the best, with up to 25.3% improvement 
compared to CT-LRU and up to 7.0% improvement com-
pared to LSTM. This demonstrates the applicability of the 
multi-model framework in this case.

4.2 Workspace Prediction
In this paper, we predict the storage space required for 

a given petroleum exploration work area based on its stor-
age space variation. Due to the uncertainty of work area 
usage and the lack of a clear model, three methods, namely 
LSR, SVR, and LSTM, are chosen in this paper to analyze 
and predict the storage space of a work area in the context 
of oil exploration.
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The storage space in the work area is at a scale of 1010, 
which may lead to significant prediction errors. Therefore, 
the Max-Min normalization method is used to normalize 
the size of the storage space before further prediction.

LSR, SVR, and LSTM all predict the next storage 
space size based on the last three storage space sizes. The 
prediction results are shown in Figure 9, and the predicted 
R2 values are shown in Table 1.

Figure 9. Results of spatial prediction of work area

Table 1. Results of space size prediction

Model R2

LSR 0.988
SVR 0.965

LSTM 0.992

As shown in Figure 9 and Figure 10, LSTM achieves 
better predictive performance than LSR and SVR. Without 
any processing, using LSTM to allocate storage space in 
advance can cover 78.3% of the cases. In this paper, by 
performing a simple offset processing on the LSTM pre-
diction results and allocating an additional 3MB of space, 
the correct prediction space coverage rate can be increased 
by 17.8% to over 96% in O(1) time.

Figure 10. Variation of prediction success rate with offset 
space size

As shown in Figure 11, we compare the 281 work areas 
where the size of the work area will change, and we can 
intuitively see from the depth of color comparison that the 
LSTM algorithm generally outperforms the LSR and SVR 
algorithms on each work area.

Therefore, the LSTM model can be better applied to 
the spatial prediction of intelligent data management in the 
petroleum exploration scenario with simple subsequent 
processing.

Figure 11. Heatmap of models for all work areas

5  Conclusion

To achieve intelligent management of oil exploration 
data, this study proposes a multi-model framework based 
on MLP, CNN, and LSTM for analyzing prefetch selec-
tion in petroleum exploration scenarios. The multi-model 
framework can take advantage of various single models to 
improve the success rate of prediction. The experimental 
results indicate that the multi-model framework obtained 
by voting on the three models performs the best, with a 
maximum improvement of 25.3% compared to the tra-
ditional CT-LRU model and up to 7.0% compared to the 
LSTM. These results demonstrate the applicability of the 
multi-model framework in the current scenario. A compar-
ison of LSR, SVR, and LSTM spatial prediction models in 
the scenario of petroleum exploration, where LSTM per-
forms the best. With a simple constant time modification, 
it can predict 90% of the results. Future work will explore 
improvements to the machine learning model in the pe-
troleum exploration scenario to improve the accuracy and 
robustness of spatial prediction.
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