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Abstract

For a long time, machining has been an essential tech-
nology; it is crucial for shaping a wide range of high-hard-
ness materials. Artificial intelligence (AI) has grown in
popularity in recent years owing to advancements in the
computing power of hardware, development of Al frame-
works in software, and proliferation of data. Al can play a
significant role in intelligent production, allowing manu-
facturers to improve the efficiency of factory information
management and effectively reduce production and main-
tenance costs.

In this study, Al techniques are used to predict the ag-
ing trend and determine the remaining useful life (RUL)
of milling machine tools for prognostics. The proposed
approach helps to mitigate the financial burden associat-
ed with accidents caused by the aging of machine tools,
achieve intelligent production, and increase production
capacity.

Keywords: Intelligent manufacturing, Prognostics,
Artificial intelligence (Al), Long short-term memory
(LSTM), Support vector regression (SVR)

1 Introduction

Machining is a crucial technology that plays a vital
role in our daily lives because it is essential for shaping
various products fabricated from high-hardness materials.
However, over time, the machinery and equipment used in
this process inevitably deteriorate and fail; this can have
a direct impact on the reliability, availability, and safety
of the final product. If these problems are not addressed
promptly, they can result in machinery damage or even
accidents involving personnel, as well as loss of processed
and raw materials.

The development of machine tools can be traced back
to the 15th century, when the manufacturing requirements,
particularly for clocks and weapons, led to the creation
of threaded lathes and gear-type processing machine
tools used by watchmakers. Water-driven cannon boring
machines were also used during this period. In the 18th
century, the Industrial Revolution accelerated the creation
and improvement of various machine tools, including the

water-driven cylinder boring machine, which played a role
in the development of the steam engine. Subsequently,
steam-engine-driven crankshafts became the primary pow-
er source for machine tools. In the 19th century, driven by
the production of textiles, transportation tools, and arms, a
wide range of machine tools emerged, such as the double
housing planer, horizontal milling machine, cylindrical
grinding machine, gear hobbing machine, and gear shaping
machine. Machine tools were initially equipped with elec-
tric motors for centralized driving and later developed for
single-motor driving. In the early 20th century, various au-
tomatic machine tools, profiling machine tools, combined
machine tools, and automatic production machines were
successively developed, including jig boring machines and
thread grinding machines, to improve machining accuracy
and meet the requirements of mass production in industries
such as automobiles and bearings. During the late 19th
century and early 20th century, the lathe gradually evolved
into milling machines, planers, grinders, and drillers,
laying the foundation for future precision machine tools,
production mechanization, and semi-automation. After
World War II, in the 1950s, machine tools entered the era
of automation with the introduction of numerical control,
group control, and automatic production lines. Computer-
ized numerical control (CNC) machine tools emerged as
a new type of machine tool that uses computers to control
and program processing actions, tool changes, and other
functions, by generating control signals based on input in-
structions.

Traditional methods for detecting faults in CNC ma-
chine tools include the observation and automatic diag-
nosis methods. The observation method relies on human
sensory systems to detect various phenomena associated
with machine tool failures, such as sparks, abnormal noise,
and abnormal heating. By carefully observing the surface
of circuit boards with a high failure probability, techni-
cians can determine whether any indication of burning or
damage exists, thus narrowing the scope of inspection. By
contrast, the automatic diagnosis method utilizes the auto-
matic diagnosis function of the CNC system to collect sig-
nals from potentially failed areas and process them using
the machine tool’s rapid data-processing ability. Diagnostic
procedures are then implemented to analyze and determine
whether or not a system failure occurs. However, regular
maintenance checks on these methods are required to en-
sure the optimal condition of the machine, regardless of
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the presence of any current faults. Consequently, the cost
of regular maintenance, including labor and time, for CNC
machine tools is considerably high. However, with the
continuous advancement of technology and the emergence
of Industry 4.0, numerous factories are now striving to
systematically and efficiently maintain or even enhance the
production capacity of their production lines through infor-
mation digitization. They are aiming to leverage computers
in decision-making processes and achieve intelligent pro-
duction. In contrast to traditional scheduled maintenance,
the novel approach of predictive maintenance enables
maintenance actions to be performed only when they are
required. This approach significantly reduces the expenses
associated with the operation of machine tools.

In recent years, artificial intelligence (Al) has grown in
popularity owing to the advancements in computer hard-
ware technology, development of user-friendly software
frameworks, and exponential growth of big data. Thus,
the aim of this study is to utilize Al to implement a funda-
mental prognostics method in intelligent production. Spe-
cifically, the method involves learning and predicting the
future evolution progress of a physically aging system of
tools.

The paper is structured into five sections. Section 1 in-
troduces the motivation and purpose of the study. Section
2 presents the relevant background knowledge and related
studies. Section 3 provides a detailed description of the
method for estimating the remaining useful life (RUL) of
CNC milling machine tools. Section 4 presents the experi-
mental results. Finally, Section 5 concludes the paper.

2 Relevant Research Background and
Methods

2.1 Overview of Machining and Intelligent Manufac-
turing

Machining is a manufacturing process that involves
altering the shape and dimensions of a workpiece using
machine tools or processing machines. This process can
be categorized into cold and hot machining, depending on
the temperature at which the workpiece is processed. Cold
machining is characterized by processing at room tempera-
ture, thereby avoiding any chemical or physical reactions
in the workpiece. Examples of cold machining include
pressure processing and cutting processing. By contrast,
hot machining involves processing the workpiece at high
temperatures, thus increasing the likelihood of chemical or
physical reactions occurring. Examples of hot machining
include heat treatment, welding, and forging. This type of
machining, which involves removing excess material, is
also referred to as subtractive manufacturing.

In the process of cutting, tool condition monitoring
(TCM) plays a crucial role in monitoring a tool’s perfor-
mance and ensuring the desired surface finish of the work-
piece [1]. The deterioration of the tool during cutting can
have direct implications on the reliability, availability, and
safety of the final product, resulting in lower quality and a
rougher surface of the workpiece. Failure to detect tool de-
terioration in real time can result in machine damage, acci-

dents involving personnel, and loss of processed materials
and raw materials. To avoid such risks, an effective mon-
itoring system should be implemented, with prognostics
and health management (PHM) being one of the methods
used [2-4].

According to the onset of the 4th industrial revolution,
the digital transformation with Al technology has led to
tremendous developments. PHM technology plays a cru-
cial role in assessing and predicting system degradation [5].
Furthermore, due to the continuous evolution of hardware
computational capabilities and deep learning models, RUL
prediction relies on tracking the health status of the system.
Therefore, its accuracy and efficiency have significantly
enhanced. To avoid irreversible losses caused by accidental
failure, the reliability and safety of the PHM methods are
validated in numerous research works [6-7].

The PHM process mainly consists of the following
steps: data acquisition, data processing, condition
assessment, diagnosis, prognostics, and decision-making
assistance. Condition assessment and prognostics can be
employed to continuously assess and predict the tool wear.
The purpose of prognostics [8-9] is to estimate the RUL
of components, sub-systems, and the system [10]; thus,
prognostics can be applied in TCM to estimate the RUL.
Figure 1 shows the RUL, where the x-axis represents the
system runtime and y-axis represents the system efficiency.
The full line represents the historical system efficiency,
whereas the dashed line represents the actual future trend
of the system efficiency. The system efficiency decreases
over time until it fails at a certain point. The dashed line
indicates the RUL before failure.

System efficiency
Failure

RUL Time

Figure 1. Schematic diagram of RUL

As shown in Figure 2, prognostics can be approached
through three different methods: model-based, data-driven,
and hybrid. The model-based method [11-12] involves de-
veloping a mathematical model that represents the physical
behavior of the system, including the aging process. This
derived model can then be used to simulate the system’s
future evolution, allowing for the observation of aging
trends and estimation of RUL. The main advantage of this
method is its high accuracy, because the mathematical
model directly reflects the system’s actual performance.
However, it is limited in its applicability to specific situa-
tions and is not applicable to most situations; it can also be
challenging and expensive to implement in practical opera-
tions. The data-driven method [13] relies on data collected
from sensors, which are processed and transformed into
a health index (HI) that represents the state of the system
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and allows for the estimation of future aging trends. This
method offers high applicability, low operational costs, and
ease of implementation. However, it is not as accurate as
the model-based method. The hybrid method combines el-
ements of both the model-based and data-driven methods,
depending on the specific requirements of the situation.
A comparison between the model-based and data-driven
methods is presented in Table 1, and the data-driven meth-
od is adopted in this study.

A 4

Model-based

A A

Prognostics Data-driven

> Hybrid

Figure 2. Prognostics methods

Table 1. Comparison between prognostics methods

depth of cut (axial) is 0.2 mm, and sample rate is 50k Hz.
The horizontal and vertical depths of cut are shown in
Figure 3. These parameters include the material, type, and
cutting path of the tool and the object to be machined, all
of which affect the final data collection results. This dataset
is collected from the six tools in the same environment.
2.2.2 Data Collection

Data for force, vibration, and AE-RMS are acquired by
using a dynamometer, an accelerometer, and an acoustic
emission sensor, respectively. The signals of force and vi-
bration can be further subdivided into x-, y-, and z-axis di-
rections. Each tool is completely new before use, and 315
machining cycles are implemented.
2.2.3 Equipment Setup

The equipment used in this dataset is listed in Table 2.
A Roders Tech RFM 760 high-speed CNC machine is used,
and the material to be machined is stainless steel HRC52.
As shown in Figure 4, the tool is a 2-flute ball nose cutter,
where 2-flute indicates that this tool has two blades and
ball nose indicates that the cutter head is rounded. The
three sensors used are all from Kistler. The dynamometer

Model-  Data- is mounted between the machining table and the object to
based driven be machined, and the accelerometer and acoustic emission
Applicability low high sensor are mounted on the object to be machined.
Accuracy high low .
Cost of practical operation high low Table 2. Table of equipment used for the dataset
Practical operation complexity high low Equipment name Related specifications

2.2 Introduction to Dataset

The dataset used in this study is from the 2010 PHM
Society Conference Data Challenge [14]; it is suitable for
estimating the RUL of CNC milling machine tools. The
data for force, vibration, and acoustic emission (AE)-root
mean square (RMS) are collected using a dynamometer, an
accelerometer, and an acoustic emission sensor, respective-
ly. Six tools, namely, cl, c2, ¢3, c4, c5, and c6, are used,
and each tool begins collecting data when it is completely
new. Data from 315 machining cycles are used, where cl1,
c4, and c6 are used to train the model and c¢2, ¢3, and ¢5
are used to test the training effect.
2.2.1 Operating Conditions

omega

Figure 3. Y depth of cut (left) and X depth of cut (right)

Some of the parameters set during machining can be
used to describe the machine operating conditions when
running. The spindle speed is 10400 RPM, feed rate is
1555 mm/min, Y depth of cut (radial) is 0.125 mm, Z

High-speed CNC machine
Material to be machined

Roders Tech RFM 760
stainless steel (HRC52)

Tool 2-flute ball nose cutter
Kistler quartz

Dynamometer 3-component platform
dynamometer

Accelerometer Kistler piezo

Kistler acoustic emission
(AE) sensor
NI DAQ PCI 1200 board
with 12KHz

Acoustic emission sensor

Data collection adapter

OAL

~ ]
P s 1

Figure 4. Tool appearance

3 Research Method

In this study, the experimental results of German sensor
companies are utilized, a graphical method is employed to
analyze the raw data, the HI is determined by using graphi-
cal features, and different models and a sliding window are
used to estimate the future aging trend of the tool. Finally,
the RUL of the tool is calculated.

The flow structure of the research method is shown in
Figure 5. First, the data are pre-processed. Then, feature
acquisition is performed based on the original data col-
lected, followed by data fusion using the collected data.
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The corresponding force diagrams are created based on
the fusion results of each machining cycle, followed by
the identification of convex hull for each machining cycle.
Finally, the appropriate shape features of the convex hull
are obtained based on each force diagram; these features
represent the tool’s health status, that is, the HI. Obtained
through a series of pre-processing steps, the HI is fed into
the trained regression prediction model for aging trend
projection, and then, the RUL is calculated using the de-
rived aging system evolution process.

Original data H Pre-processing =% HI
Scaler Model Scaler Aging trend

Figure 5. Flow structure of the research method

3.1 Data Pre-Processing

The prognostics method, whether model-based or da-
ta-driven, requires first determining the HI that represents
the system state, and then using regression method to pre-
dict the future trend. Therefore, the main goal of pre-pro-
cessing data is to run a series of processes on the raw data
to obtain a HI that effectively represents the state of the
system. The data pre-processing of this study is shown in
Figure 6. First, the features are acquired from the collected
raw data, then the data are fused and the force diagrams
are generated based on each machining cycle. The force
diagrams are then used to find the convex hull. Finally,
according to the convex hull of the force diagrams, the ap-
propriate shape features are identified, which represent the
health status of the tool.

Feature Data Finding Determining
acquisition | | fusion | |convex hull HI

Figure 6. Flowchart of data pre-processing

3.1.1 Feature Acquisition

Feature acquisition refers to the results of a force visu-
alization experiment conducted by Pro-micron [15], a Ger-
man sensor company, as shown in Figure 7. The bottom
part of the image shows three different tool conditions:
new, worn, and broken, from left to right. The top of the
image is the corresponding force diagram, with the x and y
axes representing the horizontal forces in the x and y direc-
tions, respectively. The size of the force diagram formed
by the new tool is relatively small compared with those
by the other two, indicating that the sharpness of the tool
surface is sufficiently high; therefore, the force required
during the machining process is smaller. When the tool
starts to wear gradually, the force diagram becomes larger,
which indicates that the tool gradually wears, resulting
in the decline in the sharpness of the tool surface and in-

creasing the force required during the machining process.
A significant change can be observed in the force diagram
when the tool breaks. Therefore, the experimental force
visualization result can be used to estimate that the tool’s x
and y forces gradually increase with the hours of use until
failure behavior occurs. As a result, in terms of feature ac-
quisition, the x and y forces are obtained as features for the
prediction of the aging trend.

\

Figure 7. Experimental results of force pro-micron spike®

3.1.2 Data Fusion

As shown in Figure 8, after the x and y forces are ex-
tracted, each corresponding x and y force is combined into
a (x, y) coordinate point. As the data are collected at a rate
of 50 kHz, several x and y force data are present in each
machining cycle; thus, the x and y forces of each machin-
ing cycle can form a 2D force diagram of that machining
cycle, where x and y axes are the forces in the x and y di-
rections, respectively.

Figure 8. Data fusion diagram for the first machining cy-
cle of the cl tool

3.1.3 Finding Convex Hull

After the complex 2D force diagram was obtained for
each machining cycle, it needed to be simplified and the
aging trend of the tool predicted; the results of Pro-micron
force visualization experiment indicated that the force
would continue to increase with the increase of hours of
use, that is, the convex hull of the 2D force diagram would
become larger. Therefore, as shown in Figure 9, the Gra-
ham Scan [16] algorithm is used to find the convex hull
part, that is, the convex hull that can cover all coordinate
points in the force diagram.

As shown in Figure 10, the first step is to find the coor-
dinate point with the smallest y-value as the starting point,
S, in a plane full of coordinate points. If several coordinate
points with the smallest y-value exist, the one with the
smallest x-value (the leftmost one) is considered.

In the second step, as shown in Figure 11, the remain-
ing coordinate points are sorted according to the polar
angle, where the polar angle is the polar coordinate angle
formed by the line segment between the point and starting
point (S), beginning from the right side and visiting coun-
terclockwise.
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I Find the starting point I

!

Calculate the polar angle between the lines
connecting each coordinate point and starting
point, and rank them from smallest to largest

la
<

I Visit all coordinate points in order I

Figure 12. Visiting coordinate point 1 in Graham Scan
Add this
End coordinate point In the third step, a stack must be established to store all
to the‘:‘stack the current convex hull coordinates, and these coordinates

must then visited and added to the stack in the order of
the second step. If the direction of movement is to the left,
then the coordinates are added to the stack. If the direction
< of movement is to the right, the coordinates at the top of
Ty o the stack are removed until all coordinates have been visit-
ed. See the following example for further explanation. As
shown in Figure 12, the first visit is to coordinate point 1,
which is added to the stack directly because no record of
the previous direction of movement is present.

As shown in Figure 13, coordinate point 2 is visited
and compared with the previous direction of movement,
which is to the left; thus, this coordinate point is added to

The number of stacks is
less than 22

Let the coordinate point at the top of
the stack be x, and the coordinate
point of the current visit be y

Is x to y a left turn or
straight ahead?

the stack.
Remove the coordinate point
from the top of the stack
Figure 9. Graham Scan flowchart
° °
°
° . Figure 13. Visiting coordinate point 2 in Graham Scan
As shown in Figure 14, coordinate point 3 is visited
° and compared with the previous direction of movement,
S which is to the left; thus, this coordinate point is added to
Figure 10. Finding the starting point in Graham Scan the stack.
2
‘e ?
\\\ 3 ’l‘
\ .‘ "
‘\\‘\ \\\ \‘ "l ’.l
S

Figure 14. Visiting coordinate point 3 in Graham Scan
Figure 11. Determining the order of visits in Graham Scan
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Figure 15. Visiting coordinate point 4 in Graham Scan
(before adjustment)

Figure 16. Visiting coordinate point 4 in Graham Scan (af-
ter adjustment)

As shown in Figure 15, coordinate point 4 is visited
and compared with the previous direction of movement,
which is to the right; thus, coordinate point 3 should be
removed from the stack. If coordinate point 2 is linked
to coordinate point 4, coordinate point 3 will be included
in the area of the convex pull polygon. Subsequently,
the direction of movement from coordinate point 2 to
coordinate point 4 will be determined. If it is still to the
right, then coordinate point 2 should be removed from the
stack, and so on. In this case, the direction of movement
from coordinate point 2 to coordinate point 4 is to the
left; therefore, coordinate point 4 is added to the stack.
The result of the visit up to coordinate point 4 is shown in
Figure 16.

As shown in Figure 17, coordinate point 5 is visited
and compared with the previous direction of movement,
which is to the left; thus, this coordinate point is added to
the stack. All coordinate points are now visited, and the
whole process is completed.

Figure 17. Visiting coordinate point 5 in Graham Scan

As shown in Figure 18, the 2D force diagram convex
hull of the cl1 tool in the dataset changes at different
time points in the 1* machining cycle (brand new), 150"

machining cycle (gradual wear), and 315" machining cycle
(later period), and a trend of gradual increase in the size of
its convex hull shape can be observed.

e o @ % e mo

Ist machining cycle 150th machining cycle 315th machining cycle
Figure 18. Changes in the force diagram of the convex

hull for different machining cycles of the c1 tool

3.1.4 Determining HI

As the hours of using the tools increases, the amount
of change in the convex hull of the force diagram varies;
thus, it can represent the health condition of the tool. In
this study, the following five shape characteristics of the
convex hull are considered as candidates for the HI: the
longest distance of the convex hull, amount of change in
the longest distance from the previous convex hull, area
of the convex hull, amount of change from the area of
the previous convex hull, and sum of the changes in the
maximum distance and area of the convex hull; the most
suitable one among these is selected as the HI. Based on
all the tools in the 2010 PHM Society Conference Data
Challenge dataset, that is, tools ¢l to c6, the analysis
graphics of different shape features of the convex hull
during the machining cycle are shown in Figure 19 to
Figure 24; the x-axis represents the machining cycle,
the y-axis represents the value of the feature using this
graphic, and A represents the amount of change from the
previous machining cycle time point.

Longest distance A Longest distance

[ T O
Area AArea

A Longest distance & A Area

Figure 19. Changes in convex hull characteristics of the
force diagram for all machining cycles of the c1 tool



An Artificial Intelligence Method for Predicting the Remaining Useful Life of CNC Milling Machine 69

A Longest distance

Longest distance

S e e by

Figure 20. Changes in convex hull characteristics of the
force diagram for all machining cycles of the ¢2 tool

Longest distance A Longest distance

Area ‘ ‘ A Area

A Longest distance & A Area

Figure 21. Changes in convex hull characteristics of the
force diagram for all machining cycles of the c3 tool

Longest distance A Longest distance

A Longest distance & A Area

|

Figure 22. Changes in convex hull characteristics of the
force diagram for all machining cycles of the c4 tool
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Figure 23. Changes in convex hull characteristics of the
force diagram for all machining cycles of the c5 tool
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Figure 24. Changes in convex hull characteristics of the
force diagram for all machining cycles of the c6 tool

These results reveal that the longest distance of the
convex hull and the area of the convex hull clearly increase
with increasing hours of use, which is more in line with the
HI of this study than other characteristics. Based on this
characteristic, the tool is assumed to be completely new at
the beginning with the lowest characteristic value, and as
the tool ages with increased hours of use, the characteristic
value gradually increases until a potential failure behavior
occurs; therefore, the final selection is made from the
longest distance of the convex hull and the area of the
convex hull. In this study, the first predicted time (FPT)
represents the time point when significant decline begins to
occur, as shown in Equation (1), where x(#) represents the
RMS value at time point ¢, u is the mean value of RMS
from the beginning to time point ¢, and o is the standard
deviation of RMS values from the beginning to time
point #, . The concept behind this method is to determine
whether or not it is the extreme value. Most of the data
from a normal distribution are concentrated in the range
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of 1-2 times the standard deviation from the mean value,
with a few exceptions concentrated in 3 times the standard
deviation. Three times the standard deviation indicates that
the value is an extreme value, implying that abnormalities
may occur for the tool at that time point, causing the value
at that time point to be more different from the previous
value. Therefore, this method can be used to find the time
point at which a significant decline begins to occur. In
addition, from the time point where the condition is met,
five consecutive time points must meet the condition
before the time point is considered to be the starting point
of significant decline we are searching.

Figure 25 to Figure 30 show the comparison results
of the longest distance of each tool using the convex hull
of the force diagram and the calculation of the FPT of the
convex hull area.

‘x(tj)—u‘230',t=i,i+1,...,i+v—1 1)

o 50 00 150 200 0 00 ° 50 100 150 200 250 300
ah cycle ith cycle

Figure 25. Comparison of the cl tool’s longest distance
(left) and area (right) FPT
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Figure 26. Comparison of the c2 tool’s longest distance
(left) and area (right) FPT
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Figure 27. Comparison of the c3 tool’s longest distance
(left) and area (right) FPT
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Figure 28. Comparison of the c4 tool’s longest distance
(left) and area (right) FPT

— aist — area
— FPT =189 20000 — FPT=121

100
5000
50 /ﬂ_’/‘/..
o

0 s0 100 150 200 250 300 o 50 100 150 200 250 300
ith cycle th cycle

Figure 29. Comparison of the ¢5 tool’s longest distance
(left) and area (right) FPT

150 200 wo 130 200
itn cycle th cycle

Figure 30. Comparison of the c6 tool’s longest distance
(left) and area (right) FPT

A combination of these results reveals that the FPT of
the convex hull area is reached earlier than the convex hull
longest distance, that is, the convex hull area reflects the
aging phenomenon earlier than the longest distance of the
convex hull; thus, the convex hull area is finally selected
as the HI to reflect to the tool aging condition.

3.1.5 Data Pruning and Threshold Setting

Tools fail as the hours of use increase. To predict the
aging trend of tools, this study only collects data before the
failure behavior occurs and sets a threshold value based on
the degree of wear to stop using the tool. Figure 31 shows
the comparison before and after data pruning and threshold
value setting. The end part of the c1 tool (cyan line) clearly
shows oscillation, which is an abnormal phenomenon that
can lead to a potential failure behavior and must be re-
moved. Subsequently, for the last degree of wear, all tools
are examined and the threshold value is set at the corre-
sponding position; the threshold value will vary depending
on the decision.

200
0000

g

¥ isono

$iowo

5000

Figure 31. Comparison before and after data pruning and
threshold setting

3.2 Aging Trend Projection and RUL Estimation

The sliding window method is used to project the trend
of aging. As shown in Equation (2), where input end x
and output end y are HIs, ¢ represents the present time, n
represents the length of time, and f represents the trained
regression prediction model, the health pointers for the
present and previous n time units are fed into the trained
regression prediction model and the model outputs the HI
for the next time point. The new HI is then considered as
inputs, and the oldest input is replaced to form new input,
which is fed into the model again to obtain the HI for the
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next time point. This process is repeated again and again
to form a sequence diagram of the HI related to each time
point, which can be used to project the future aging trend
of the tool at that time point.

f([xtf(nfl),...,xt]) =Y. ?2)

Figure 32 displays the ¢3 tool in the dataset. The left
graph shows the aging trend projection, where the x-axis
represents the machining cycle and y-axis represents the
HI or tool wear. The right graph depicts RUL estimation,
where the x-axis represents the machining cycle and
y-axis represents the RUL at that time point. Based on the
assumption that the present time is at the 50" machining
cycle, the sliding window method is used to project the
future aging trend (shown as the red line) and the actual
future trend (shown as the black dashed line). The actual
RUL is the time when the black dashed line reaches the
threshold value from the 50" machining cycle, whereas
the estimated RUL is the time when the red line reaches
the threshold value from the 50" machining cycle. For
the graph on the right, the black dashed line indicates the
actual RUL and the red solid line indicates the estimated
RUL. The estimated RUL is higher than the actual RUL at
the 50" machining cycle. In addition, the tool wear level
does not increase significantly at the beginning, resulting
in an inaccurate RUL prediction. After the tool is used for
a certain period and the wear level starts to increase, the
RUL prediction accuracy increases.

€3 RUL estimation process €3 RUL estimation result

- e ground truth
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Figure 32. Aging trend projection and RUL estimation
graph
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Figure 33. Schematic diagram of piece-wise RUL

As the initial RUL prediction is not sufficiently accu-
rate, the piece-wise RUL [17-18] method is used in the
effectiveness evaluation in this study. When an initial error
occurs to the system at a certain time point, that is, when

the HI starts to change significantly, the RUL decreases
with the hours of use and no indication exists prior to the
initial error; thus, the predicted result is not very satisfac-
tory. As shown in Figure 33, the x-axis represents the time
and y-axis represents the RUL at that point of time. The
actual RUL is represented by the solid blue line, which de-
creases linearly with the hour of use, step by step, towards
the time point of failure.

3.3 Performance Indicators

The first is accuracy [19], which shows the average
accuracy of the RUL prediction. The value closer to 1 in-
dicates higher accuracy, while a value further from 1 indi-
cates poorer accuracy. Equation (3) shows that 7 represents
total time and ¢ represents each processing cycle time
point. Equation (3) sums and averages the negative power
of the exponential for each time point, where x represents
the proportion of the estimated error that is accounted for
by the actual. A value of | indicates agreement between
the estimated and actual values, when the error is 0; while
a larger error value yields a smaller value.

RUL,; (1)~RUL(t)
T RUL, ey

Accuracy = %Zt:l e 3

The second is precision [19], which represents the
average accuracy of the prediction. A lower value indicates
better concentration, while a higher value indicates less
concentration. This is calculated using Equation (4), where
T represents the total time and ¢ represents each processing
cycle time point. ¢ represents the predicted error, as shown
in Equation (5), and ¢ represents the average value of the
error, as shown in Equation (6).

M (0))

Precision =
T
£(t)= RUL,, ()= RUL(t) ®)
_ 1 T
FerYie ©

The third is mean absolute percentage error (MAPER)
[19], which represents the percentage of the prediction
average error. A lower MAPER value is better, as shown
in Equation (7), where ¢ represents the predicted error.
As shown in Equation (5), all time points calculated in
Equation (7) are summed and averaged. The proportion
of predicted errors on the actual at each time point is
calculated, followed by multiplying by 100 into percentage
and considering the absolute value.

r [100-¢(¢)
| RUL

real ( 1)

MAPER = lz

T (M
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The fourth is runtime, which indicates the running
time. A lower runtime is better, as shown in Equation (8),
where C represents the time spent to project the aging
trend. This equation is applied to calculate the total sum
of the time spent on projecting the aging trend at all time
points.

Runtime = z; C(t) 3

3.4 Data Acquisition and Prognostics

To predict the aging trend of CNC milling machine
tools, there are three key stages required to process the data
collection. As illustrated in Figure 34, the first phase is to
collect data from a CNC milling machine. It is important
to ensure the data collected is effective and trustworthy,
therefore the qualified data can be analyzed with Al tech-
niques. The next stage is storage, the valid data is stored in
a permanent cloud drive. When the data is properly stored,
it can be readily accessed for prognostics when needed.
After all of the data is stored, Al models are used to predict
the aging trend and determine the RUL of milling machine
tools.

Figure 34. A data acquisition and prognostics system

4 Experimental Results and Discussion

4.1 Model Evaluation for RUL Prediction Results with

Different Tools

The experimental results are shown in Table 3. Differ-
ent models were used to predict the RUL for different tools
in the test set, and the data for 10 times were recorded and
then averaged as the average performance of each model,;
the bold text in the table represents the best performance
pointer among the three models.

Table 3. Evaluation of the effectiveness of RUL prediction
results for the dataset

Model Metrics c2 c3 c5
Accuracy 0.8618 0.8996 0.8985

Precision 10.36 8.15 6.8
ANN MAPER 19.77 12.76 12.88
Runtime (s) 1020.17 831.66 758.84
Accuracy 0.9564 0.942 0.8958

SVR Precision 4.46 4.05 8.43
MAPER 4.79 12.18 13.65

Runtime (s) 6.08 4.89 4.46
Accuracy 0.9205 0.9491 0.9446

LSTM Precision 5.41 4.19 4.86

MAPER 9.54 5.78 6.62
Runtime (s) 1002.98 833.04 753.44

The aforementioned findings show that both support
vector regression (SVR) and long short-term memory
(LSTM) exhibit satisfactory overall performance. SVR
demonstrates comparable accuracy to LSTM, but with a
concentrated precision and a more stable performance.
On the contrary, LSTM generally achieves the highest
accuracy of the three models, with accuracy levels similar
to SVR. In terms of overall performance LSTM slightly
outperforms SVR when runtime is disregarded. Howev-
er, when considering runtime, SVR is significantly faster
while maintaining comparable performance to LSTM. This
discrepancy in runtime can be attributed to the complexity
of the models. In contrast to LSTM, which incorporates a
greater number of neurons and gates (i.c., input gate, forget
gate, output gate), SVR exhibits a more direct and rapid
data transfer process. Consequently, SVR is preferred in
practical applications that require real-time capabilities.
Conversely, if real-time constraints are not a concern,
LSTM remains a viable option.

4.2 Testing the Applicability of the Prediction Model

Using Simulation Data

The flowchart of the simulation data generation in
this study is shown in Figure 35. First, the parameters are
initialized for the predetermined machining conditions,
followed by listing all possible cases of tooth breakage.
If the tool has n blades, then all possible cases of tooth
breakage are C|'— C,. Therefore, the life cycle is generated
based on the various cases of tooth breakage. First, the
parameters are set with £10% as the upper limit. Then,
the starting and ending amounts of increase in the life
cycle rose diagram and the total processing cycle are
set. For each processing cycle, the aging curve set in the
initialization is used to calculate the length of the current
process rose diagram, and the current-processing-cycle
rose diagram is generated by using the rose diagram
formula.

The initialization of the parameters is presented in
Table 4. Based on the preliminary analysis, several param-
eters that can be set are listed and adjusted appropriately
based on the assumed machining conditions. In Figure 36,
the left figure shows the rose diagram at the first machin-
ing cycle, with a length (center of the circle to the vertex
of the petal) of 20+10%. The middle figure shows the
rose diagram at the last processing cycle, with a length of
20+10%+100+10%. The right figure is the last rose dia-
gram with tooth breakage, where only one tooth breaks,
and the broken tooth is in the upper right. According to the
number of blades set in this case, C} — C% cases of tooth
breakage exist; thus, the life cycle is generated based on
each case. A signal-noise-ratio setting is added to make the
rose diagram more realistic rather than the ideal perfectly
smooth curve. As shown in Figure 37 for the aging curve,
the x-axis represents the processing cycle ratio (0—1) and
the y-axis represents the ratio of the amount of increase in
the rose diagram length (0—1). The current processing cy-
cle is calculated as per the aging curve function after first
dividing it by the total processing cycle and converting it
to a process ratio of 0—1. As shown in Equation (9), the
polar coordinate rose diagram formula is used to draw the
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rose diagram of that processing cycle, where / is the length,
that is, the length from the center of the circle to the vertex
of the petal, and n represents the petal number parameter.
If n is an even number, the rose diagram has 2n petals, and
if n is an odd number, the rose diagram will have # petals.

Initialize relevant parameters

v

Generate a life cycle based on all
combinations of C]* — C}}

N
>
b

Generation

completed? End

Set the starting length of the rose diagram,
the final amount of increase in the rose
diagram length, and the total number of

processing periods of this life cycle

<
y

Attached a rose
diagram of Life cycle
tooth breakage completed?
at the end

Calculate the length of the rose
diagram using the aging curve
based on the current process

v

Generate a rose diagram using
the current length and the rose
diagram formula

Figure 35. Flowchart of simulation data generation

Table 4. Simulation data parameter settings

Parameter name Value
Number of blades (number of teeth) 4
Average processing cycle 100
Initial length of rose diagram 20
Final amount of increase of rose 100
diagram

Processing cycle sampling volume 1000

Signal-noise-ratio 0.1
Aging curve y=¢e""
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Figure 36. Variation in force diagram of simulation data
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Figure 38. Simulation data life cycle
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Figure 39. Simulation data life cycle after pruning and
threshold setting

The convex hull area is used as the HI to observe the
aging trend after generating all the life cycles of the broken
tooth cases of C;'— C;, as shown in Figure 38. The blue
line represents the cases with only one broken tooth, green
line represents the cases with two broken teeth, yellow line
represents the cases with three broken teeth, and red line
represents the cases with all teeth are broken. As depicted
in Figure 39, only information before the failure behavior
is acquired and the appropriate threshold value is set based
on the available information.

Based on the practice of the 2010 PHM Society Con-
ference Data Challenge, 50% of the aging trend in the
middle is used as the training set and the remaining 50%
as the test set; LSTM is employed as the regression predic-
tion model. Figure 40 shows the RUL prediction results for
various tooth breakage cases in the test set.
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Figure 40. RUL prediction results for the test set

5 Conclusion

The aim of this study is to estimate the RUL of milling
tools using publicly available datasets. First, the prepro-
cessing of the raw data involves feature extraction, data
fusion, and convex-hull finding to obtain the HI for pre-
dicting the aging trend. The sliding window method is then
used to feed the HI, which has temporal correlation, into
a trained regression prediction model to predict the tool’s
aging trend and calculate its RUL.

Furthermore, three different models, namely, artificial
neural network (ANN), SVR, and LSTM are compared.
Based on the experimental results, SVR is recommended
in the online environment for real-time applications owing
to its low runtime and comparable performance. By con-
trast, LSTM is suitable for offline applications where time
constraints are not a concern.
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