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Abstract

For a long time, machining has been an essential tech-
nology; it is crucial for shaping a wide range of high-hard-
ness materials. Artificial intelligence (AI) has grown in 
popularity in recent years owing to advancements in the 
computing power of hardware, development of AI frame-
works in software, and proliferation of data. AI can play a 
significant role in intelligent production, allowing manu-
facturers to improve the efficiency of factory information 
management and effectively reduce production and main-
tenance costs.

In this study, AI techniques are used to predict the ag-
ing trend and determine the remaining useful life (RUL) 
of milling machine tools for prognostics. The proposed 
approach helps to mitigate the financial burden associat-
ed with accidents caused by the aging of machine tools, 
achieve intelligent production, and increase production 
capacity.
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1  Introduction

Machining is a crucial technology that plays a vital 
role in our daily lives because it is essential for shaping 
various products fabricated from high-hardness materials. 
However, over time, the machinery and equipment used in 
this process inevitably deteriorate and fail; this can have 
a direct impact on the reliability, availability, and safety 
of the final product. If these problems are not addressed 
promptly, they can result in machinery damage or even 
accidents involving personnel, as well as loss of processed 
and raw materials.

The development of machine tools can be traced back 
to the 15th century, when the manufacturing requirements, 
particularly for clocks and weapons, led to the creation 
of threaded lathes and gear-type processing machine 
tools used by watchmakers. Water-driven cannon boring 
machines were also used during this period. In the 18th 
century, the Industrial Revolution accelerated the creation 
and improvement of various machine tools, including the 

water-driven cylinder boring machine, which played a role 
in the development of the steam engine. Subsequently, 
steam-engine-driven crankshafts became the primary pow-
er source for machine tools. In the 19th century, driven by 
the production of textiles, transportation tools, and arms, a 
wide range of machine tools emerged, such as the double 
housing planer, horizontal milling machine, cylindrical 
grinding machine, gear hobbing machine, and gear shaping 
machine. Machine tools were initially equipped with elec-
tric motors for centralized driving and later developed for 
single-motor driving. In the early 20th century, various au-
tomatic machine tools, profiling machine tools, combined 
machine tools, and automatic production machines were 
successively developed, including jig boring machines and 
thread grinding machines, to improve machining accuracy 
and meet the requirements of mass production in industries 
such as automobiles and bearings. During the late 19th 
century and early 20th century, the lathe gradually evolved 
into milling machines, planers, grinders, and drillers, 
laying the foundation for future precision machine tools, 
production mechanization, and semi-automation. After 
World War II, in the 1950s, machine tools entered the era 
of automation with the introduction of numerical control, 
group control, and automatic production lines. Computer-
ized numerical control (CNC) machine tools emerged as 
a new type of machine tool that uses computers to control 
and program processing actions, tool changes, and other 
functions, by generating control signals based on input in-
structions.

Traditional methods for detecting faults in CNC ma-
chine tools include the observation and automatic diag-
nosis methods. The observation method relies on human 
sensory systems to detect various phenomena associated 
with machine tool failures, such as sparks, abnormal noise, 
and abnormal heating. By carefully observing the surface 
of circuit boards with a high failure probability, techni-
cians can determine whether any indication of burning or 
damage exists, thus narrowing the scope of inspection. By 
contrast, the automatic diagnosis method utilizes the auto-
matic diagnosis function of the CNC system to collect sig-
nals from potentially failed areas and process them using 
the machine tool’s rapid data-processing ability. Diagnostic 
procedures are then implemented to analyze and determine 
whether or not a system failure occurs. However, regular 
maintenance checks on these methods are required to en-
sure the optimal condition of the machine, regardless of 
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the presence of any current faults. Consequently, the cost 
of regular maintenance, including labor and time, for CNC 
machine tools is considerably high. However, with the 
continuous advancement of technology and the emergence 
of Industry 4.0, numerous factories are now striving to 
systematically and efficiently maintain or even enhance the 
production capacity of their production lines through infor-
mation digitization. They are aiming to leverage computers 
in decision-making processes and achieve intelligent pro-
duction. In contrast to traditional scheduled maintenance, 
the novel approach of predictive maintenance enables 
maintenance actions to be performed only when they are 
required. This approach significantly reduces the expenses 
associated with the operation of machine tools.

In recent years, artificial intelligence (AI) has grown in 
popularity owing to the advancements in computer hard-
ware technology, development of user-friendly software 
frameworks, and exponential growth of big data. Thus, 
the aim of this study is to utilize AI to implement a funda-
mental prognostics method in intelligent production. Spe-
cifically, the method involves learning and predicting the 
future evolution progress of a physically aging system of 
tools.

The paper is structured into five sections. Section 1 in-
troduces the motivation and purpose of the study. Section 
2 presents the relevant background knowledge and related 
studies. Section 3 provides a detailed description of the 
method for estimating the remaining useful life (RUL) of 
CNC milling machine tools. Section 4 presents the experi-
mental results. Finally, Section 5 concludes the paper.

2  Relevant Research Background and 
Methods

2.1 Overview of Machining and Intelligent Manufac-
turing
Machining is a manufacturing process that involves 

altering the shape and dimensions of a workpiece using 
machine tools or processing machines. This process can 
be categorized into cold and hot machining, depending on 
the temperature at which the workpiece is processed. Cold 
machining is characterized by processing at room tempera-
ture, thereby avoiding any chemical or physical reactions 
in the workpiece. Examples of cold machining include 
pressure processing and cutting processing. By contrast, 
hot machining involves processing the workpiece at high 
temperatures, thus increasing the likelihood of chemical or 
physical reactions occurring. Examples of hot machining 
include heat treatment, welding, and forging. This type of 
machining, which involves removing excess material, is 
also referred to as subtractive manufacturing.

In the process of cutting, tool condition monitoring 
(TCM) plays a crucial role in monitoring a tool’s perfor-
mance and ensuring the desired surface finish of the work-
piece [1]. The deterioration of the tool during cutting can 
have direct implications on the reliability, availability, and 
safety of the final product, resulting in lower quality and a 
rougher surface of the workpiece. Failure to detect tool de-
terioration in real time can result in machine damage, acci-

dents involving personnel, and loss of processed materials 
and raw materials. To avoid such risks, an effective mon-
itoring system should be implemented, with prognostics 
and health management (PHM) being one of the methods 
used [2-4].

According to the onset of the 4th industrial revolution, 
the digital transformation with AI technology has led to 
tremendous developments. PHM technology plays a cru-
cial role in assessing and predicting system degradation [5]. 
Furthermore, due to the continuous evolution of hardware 
computational capabilities and deep learning models, RUL 
prediction relies on tracking the health status of the system. 
Therefore, its accuracy and efficiency have significantly 
enhanced. To avoid irreversible losses caused by accidental 
failure, the reliability and safety of the PHM methods are 
validated in numerous research works [6-7].

The PHM process mainly consists of the following 
steps: data acquisition, data processing, condition 
assessment, diagnosis, prognostics, and decision-making 
assistance. Condition assessment and prognostics can be 
employed to continuously assess and predict the tool wear. 
The purpose of prognostics [8-9] is to estimate the RUL 
of components, sub-systems, and the system [10]; thus, 
prognostics can be applied in TCM to estimate the RUL. 
Figure 1 shows the RUL, where the x-axis represents the 
system runtime and y-axis represents the system efficiency. 
The full line represents the historical system efficiency, 
whereas the dashed line represents the actual future trend 
of the system efficiency. The system efficiency decreases 
over time until it fails at a certain point. The dashed line 
indicates the RUL before failure.

Figure 1. Schematic diagram of RUL

As shown in Figure 2, prognostics can be approached 
through three different methods: model-based, data-driven, 
and hybrid. The model-based method [11-12] involves de-
veloping a mathematical model that represents the physical 
behavior of the system, including the aging process. This 
derived model can then be used to simulate the system’s 
future evolution, allowing for the observation of aging 
trends and estimation of RUL. The main advantage of this 
method is its high accuracy, because the mathematical 
model directly reflects the system’s actual performance. 
However, it is limited in its applicability to specific situa-
tions and is not applicable to most situations; it can also be 
challenging and expensive to implement in practical opera-
tions. The data-driven method [13] relies on data collected 
from sensors, which are processed and transformed into 
a health index (HI) that represents the state of the system 
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and allows for the estimation of future aging trends. This 
method offers high applicability, low operational costs, and 
ease of implementation. However, it is not as accurate as 
the model-based method. The hybrid method combines el-
ements of both the model-based and data-driven methods, 
depending on the specific requirements of the situation. 
A comparison between the model-based and data-driven 
methods is presented in Table 1, and the data-driven meth-
od is adopted in this study.

Figure 2. Prognostics methods

Table 1. Comparison between prognostics methods

Model-
based

Data- 
driven

Applicability low high
Accuracy high low

Cost of practical operation high low
Practical operation complexity high low

2.2 Introduction to Dataset
The dataset used in this study is from the 2010 PHM 

Society Conference Data Challenge [14]; it is suitable for 
estimating the RUL of CNC milling machine tools. The 
data for force, vibration, and acoustic emission (AE)-root 
mean square (RMS) are collected using a dynamometer, an 
accelerometer, and an acoustic emission sensor, respective-
ly. Six tools, namely, c1, c2, c3, c4, c5, and c6, are used, 
and each tool begins collecting data when it is completely 
new. Data from 315 machining cycles are used, where c1, 
c4, and c6 are used to train the model and c2, c3, and c5 
are used to test the training effect.
2.2.1 Operating Conditions

Figure 3. Y depth of cut (left) and X depth of cut (right)

Some of the parameters set during machining can be 
used to describe the machine operating conditions when 
running. The spindle speed is 10400 RPM, feed rate is 
1555 mm/min, Y depth of cut (radial) is 0.125 mm, Z 

depth of cut (axial) is 0.2 mm, and sample rate is 50k Hz. 
The horizontal and vertical depths of cut are shown in 
Figure 3. These parameters include the material, type, and 
cutting path of the tool and the object to be machined, all 
of which affect the final data collection results. This dataset 
is collected from the six tools in the same environment.
2.2.2 Data Collection

Data for force, vibration, and AE-RMS are acquired by 
using a dynamometer, an accelerometer, and an acoustic 
emission sensor, respectively. The signals of force and vi-
bration can be further subdivided into x-, y-, and z-axis di-
rections. Each tool is completely new before use, and 315 
machining cycles are implemented.
2.2.3 Equipment Setup

The equipment used in this dataset is listed in Table 2. 
A Röders Tech RFM 760 high-speed CNC machine is used, 
and the material to be machined is stainless steel HRC52. 
As shown in Figure 4, the tool is a 2-flute ball nose cutter, 
where 2-flute indicates that this tool has two blades and 
ball nose indicates that the cutter head is rounded. The 
three sensors used are all from Kistler. The dynamometer 
is mounted between the machining table and the object to 
be machined, and the accelerometer and acoustic emission 
sensor are mounted on the object to be machined.

Table 2. Table of equipment used for the dataset

Equipment name Related specifications
High-speed CNC machine Röders Tech RFM 760
Material to be machined stainless steel (HRC52)
Tool 2-flute ball nose cutter

Dynamometer
Kistler quartz 
3-component platform 
dynamometer

Accelerometer Kistler piezo

Acoustic emission sensor Kistler acoustic emission 
(AE) sensor

Data collection adapter NI DAQ PCI 1200 board 
with 12KHz

Figure 4. Tool appearance

3  Research Method

In this study, the experimental results of German sensor 
companies are utilized, a graphical method is employed to 
analyze the raw data, the HI is determined by using graphi-
cal features, and different models and a sliding window are 
used to estimate the future aging trend of the tool. Finally, 
the RUL of the tool is calculated.

The flow structure of the research method is shown in 
Figure 5. First, the data are pre-processed. Then, feature 
acquisition is performed based on the original data col-
lected, followed by data fusion using the collected data. 
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The corresponding force diagrams are created based on 
the fusion results of each machining cycle, followed by 
the identification of convex hull for each machining cycle. 
Finally, the appropriate shape features of the convex hull 
are obtained based on each force diagram; these features 
represent the tool’s health status, that is, the HI. Obtained 
through a series of pre-processing steps, the HI is fed into 
the trained regression prediction model for aging trend 
projection, and then, the RUL is calculated using the de-
rived aging system evolution process.

Figure 5. Flow structure of the research method

3.1 Data Pre-Processing
The prognostics method, whether model-based or da-

ta-driven, requires first determining the HI that represents 
the system state, and then using regression method to pre-
dict the future trend. Therefore, the main goal of pre-pro-
cessing data is to run a series of processes on the raw data 
to obtain a HI that effectively represents the state of the 
system. The data pre-processing of this study is shown in 
Figure 6. First, the features are acquired from the collected 
raw data, then the data are fused and the force diagrams 
are generated based on each machining cycle. The force 
diagrams are then used to find the convex hull. Finally, 
according to the convex hull of the force diagrams, the ap-
propriate shape features are identified, which represent the 
health status of the tool.

Figure 6. Flowchart of data pre-processing

3.1.1 Feature Acquisition
Feature acquisition refers to the results of a force visu-

alization experiment conducted by Pro-micron [15], a Ger-
man sensor company, as shown in Figure 7. The bottom 
part of the image shows three different tool conditions: 
new, worn, and broken, from left to right. The top of the 
image is the corresponding force diagram, with the x and y 
axes representing the horizontal forces in the x and y direc-
tions, respectively. The size of the force diagram formed 
by the new tool is relatively small compared with those 
by the other two, indicating that the sharpness of the tool 
surface is sufficiently high; therefore, the force required 
during the machining process is smaller. When the tool 
starts to wear gradually, the force diagram becomes larger, 
which indicates that the tool gradually wears, resulting 
in the decline in the sharpness of the tool surface and in-

creasing the force required during the machining process. 
A significant change can be observed in the force diagram 
when the tool breaks. Therefore, the experimental force 
visualization result can be used to estimate that the tool’s x 
and y forces gradually increase with the hours of use until 
failure behavior occurs. As a result, in terms of feature ac-
quisition, the x and y forces are obtained as features for the 
prediction of the aging trend.

Figure 7. Experimental results of force pro-micron spike®

3.1.2 Data Fusion
As shown in Figure 8, after the x and y forces are ex-

tracted, each corresponding x and y force is combined into 
a (x, y) coordinate point. As the data are collected at a rate 
of 50 kHz, several x and y force data are present in each 
machining cycle; thus, the x and y forces of each machin-
ing cycle can form a 2D force diagram of that machining 
cycle, where x and y axes are the forces in the x and y di-
rections, respectively.

Figure 8. Data fusion diagram for the first machining cy-
cle of the c1 tool

3.1.3 Finding Convex Hull
After the complex 2D force diagram was obtained for 

each machining cycle, it needed to be simplified and the 
aging trend of the tool predicted; the results of Pro-micron 
force visualization experiment indicated that the force 
would continue to increase with the increase of hours of 
use, that is, the convex hull of the 2D force diagram would 
become larger. Therefore, as shown in Figure 9, the Gra-
ham Scan [16] algorithm is used to find the convex hull 
part, that is, the convex hull that can cover all coordinate 
points in the force diagram.

As shown in Figure 10, the first step is to find the coor-
dinate point with the smallest y-value as the starting point, 
S, in a plane full of coordinate points. If several coordinate 
points with the smallest y-value exist, the one with the 
smallest x-value (the leftmost one) is considered.

In the second step, as shown in Figure 11, the remain-
ing coordinate points are sorted according to the polar 
angle, where the polar angle is the polar coordinate angle 
formed by the line segment between the point and starting 
point (S), beginning from the right side and visiting coun-
terclockwise.
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Find the starting point 

Calculate the polar angle between the lines 
connecting each coordinate point and starting 
point, and rank them from smallest to largest 

 

 

Let the coordinate point at the top of 
the stack be x, and the coordinate 

point of the current visit be y 

End 
Add this 

coordinate point 
to the stack 

No 

Visit all coordinate points in order 

The number of stacks is 
less than 2? 

 Is x to y a left turn or
straight ahead? 

Remove the coordinate point 
from the top of the stack 

Yes All coordinates 
visited? 

No 

Yes 

No 

Yes 

Det

Figure 9. Graham Scan flowchart

Figure 10. Finding the starting point in Graham Scan

Figure 11. Determining the order of visits in Graham Scan

Figure 12. Visiting coordinate point 1 in Graham Scan

In the third step, a stack must be established to store all 
the current convex hull coordinates, and these coordinates 
must then visited and added to the stack in the order of 
the second step. If the direction of movement is to the left, 
then the coordinates are added to the stack. If the direction 
of movement is to the right, the coordinates at the top of 
the stack are removed until all coordinates have been visit-
ed. See the following example for further explanation. As 
shown in Figure 12, the first visit is to coordinate point 1, 
which is added to the stack directly because no record of 
the previous direction of movement is present.

As shown in Figure 13, coordinate point 2 is visited 
and compared with the previous direction of movement, 
which is to the left; thus, this coordinate point is added to 
the stack.

Figure 13. Visiting coordinate point 2 in Graham Scan

As shown in Figure 14, coordinate point 3 is visited 
and compared with the previous direction of movement, 
which is to the left; thus, this coordinate point is added to 
the stack.

Figure 14. Visiting coordinate point 3 in Graham Scan
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Figure 15. Visiting coordinate point 4 in Graham Scan 
(before adjustment)

Figure 16. Visiting coordinate point 4 in Graham Scan (af-
ter adjustment)

As shown in Figure 15, coordinate point 4 is visited 
and compared with the previous direction of movement, 
which is to the right; thus, coordinate point 3 should be 
removed from the stack. If coordinate point 2 is linked 
to coordinate point 4, coordinate point 3 will be included 
in the area of the convex pull polygon. Subsequently, 
the direction of movement from coordinate point 2 to 
coordinate point 4 will be determined. If it is still to the 
right, then coordinate point 2 should be removed from the 
stack, and so on. In this case, the direction of movement 
from coordinate point 2 to coordinate point 4 is to the 
left; therefore, coordinate point 4 is added to the stack. 
The result of the visit up to coordinate point 4 is shown in 
Figure 16.

As shown in Figure 17, coordinate point 5 is visited 
and compared with the previous direction of movement, 
which is to the left; thus, this coordinate point is added to 
the stack. All coordinate points are now visited, and the 
whole process is completed.

Figure 17. Visiting coordinate point 5 in Graham Scan

As shown in Figure 18, the 2D force diagram convex 
hull of the c1 tool in the dataset changes at different 
time points in the 1st machining cycle (brand new), 150th 

machining cycle (gradual wear), and 315th machining cycle 
(later period), and a trend of gradual increase in the size of 
its convex hull shape can be observed.

Figure 18. Changes in the force diagram of the convex 
hull for different machining cycles of the c1 tool

3.1.4 Determining HI
As the hours of using the tools increases, the amount 

of change in the convex hull of the force diagram varies; 
thus, it can represent the health condition of the tool. In 
this study, the following five shape characteristics of the 
convex hull are considered as candidates for the HI: the 
longest distance of the convex hull, amount of change in 
the longest distance from the previous convex hull, area 
of the convex hull, amount of change from the area of 
the previous convex hull, and sum of the changes in the 
maximum distance and area of the convex hull; the most 
suitable one among these is selected as the HI. Based on 
all the tools in the 2010 PHM Society Conference Data 
Challenge dataset, that is, tools c1 to c6, the analysis 
graphics of different shape features of the convex hull 
during the machining cycle are shown in Figure 19 to 
Figure 24; the x-axis represents the machining cycle, 
the y-axis represents the value of the feature using this 
graphic, and Δ represents the amount of change from the 
previous machining cycle time point.

Figure 19. Changes in convex hull characteristics of the 
force diagram for all machining cycles of the c1 tool
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Figure 20. Changes in convex hull characteristics of the 
force diagram for all machining cycles of the c2 tool

Figure 21. Changes in convex hull characteristics of the 
force diagram for all machining cycles of the c3 tool

Figure 22. Changes in convex hull characteristics of the 
force diagram for all machining cycles of the c4 tool

Figure 23. Changes in convex hull characteristics of the 
force diagram for all machining cycles of the c5 tool

Figure 24. Changes in convex hull characteristics of the 
force diagram for all machining cycles of the c6 tool

These results reveal that the longest distance of the 
convex hull and the area of the convex hull clearly increase 
with increasing hours of use, which is more in line with the 
HI of this study than other characteristics. Based on this 
characteristic, the tool is assumed to be completely new at 
the beginning with the lowest characteristic value, and as 
the tool ages with increased hours of use, the characteristic 
value gradually increases until a potential failure behavior 
occurs; therefore, the final selection is made from the 
longest distance of the convex hull and the area of the 
convex hull. In this study, the first predicted time (FPT) 
represents the time point when significant decline begins to 
occur, as shown in Equation (1), where x(tj) represents the 
RMS value at time point tj , u is the mean value of RMS 
from the beginning to time point tj , and σ is the standard 
deviation of RMS values from the beginning to time 
point tj . The concept behind this method is to determine 
whether or not it is the extreme value. Most of the data 
from a normal distribution are concentrated in the range 
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of 1–2 times the standard deviation from the mean value, 
with a few exceptions concentrated in 3 times the standard 
deviation. Three times the standard deviation indicates that 
the value is an extreme value, implying that abnormalities 
may occur for the tool at that time point, causing the value 
at that time point to be more different from the previous 
value. Therefore, this method can be used to find the time 
point at which a significant decline begins to occur. In 
addition, from the time point where the condition is met, 
five consecutive time points must meet the condition 
before the time point is considered to be the starting point 
of significant decline we are searching.

Figure 25 to Figure 30 show the comparison results 
of the longest distance of each tool using the convex hull 
of the force diagram and the calculation of the FPT of the 
convex hull area.

( ) 3 , , 1,..., 1jx t u t i i i vσ− ≥ = + + − (1)

Figure 25. Comparison of the c1 tool’s longest distance 
(left) and area (right) FPT

Figure 26. Comparison of the c2 tool’s longest distance 
(left) and area (right) FPT

Figure 27. Comparison of the c3 tool’s longest distance 
(left) and area (right) FPT

Figure 28. Comparison of the c4 tool’s longest distance 
(left) and area (right) FPT

Figure 29. Comparison of the c5 tool’s longest distance 
(left) and area (right) FPT

Figure 30. Comparison of the c6 tool’s longest distance 
(left) and area (right) FPT

A combination of these results reveals that the FPT of 
the convex hull area is reached earlier than the convex hull 
longest distance, that is, the convex hull area reflects the 
aging phenomenon earlier than the longest distance of the 
convex hull; thus, the convex hull area is finally selected 
as the HI to reflect to the tool aging condition.
3.1.5 Data Pruning and Threshold Setting

Tools fail as the hours of use increase. To predict the 
aging trend of tools, this study only collects data before the 
failure behavior occurs and sets a threshold value based on 
the degree of wear to stop using the tool. Figure 31 shows 
the comparison before and after data pruning and threshold 
value setting. The end part of the c1 tool (cyan line) clearly 
shows oscillation, which is an abnormal phenomenon that 
can lead to a potential failure behavior and must be re-
moved. Subsequently, for the last degree of wear, all tools 
are examined and the threshold value is set at the corre-
sponding position; the threshold value will vary depending 
on the decision.

Figure 31. Comparison before and after data pruning and 
threshold setting

3.2 Aging Trend Projection and RUL Estimation
The sliding window method is used to project the trend 

of aging. As shown in Equation (2), where input end x 
and output end y are HIs, t represents the present time, n 
represents the length of time, and f represents the trained 
regression prediction model, the health pointers for the 
present and previous n time units are fed into the trained 
regression prediction model and the model outputs the HI 
for the next time point. The new HI is then considered as 
inputs, and the oldest input is replaced to form new input, 
which is fed into the model again to obtain the HI for the 
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next time point. This process is repeated again and again 
to form a sequence diagram of the HI related to each time 
point, which can be used to project the future aging trend 
of the tool at that time point.

( )( ) +11 , , t tt nf x x y− −
  =  (2)

Figure 32 displays the c3 tool in the dataset. The left 
graph shows the aging trend projection, where the x-axis 
represents the machining cycle and y-axis represents the 
HI or tool wear. The right graph depicts RUL estimation, 
where the x-axis represents the machining cycle and 
y-axis represents the RUL at that time point. Based on the 
assumption that the present time is at the 50th machining 
cycle, the sliding window method is used to project the 
future aging trend (shown as the red line) and the actual 
future trend (shown as the black dashed line). The actual 
RUL is the time when the black dashed line reaches the 
threshold value from the 50th machining cycle, whereas 
the estimated RUL is the time when the red line reaches 
the threshold value from the 50th machining cycle. For 
the graph on the right, the black dashed line indicates the 
actual RUL and the red solid line indicates the estimated 
RUL. The estimated RUL is higher than the actual RUL at 
the 50th machining cycle. In addition, the tool wear level 
does not increase significantly at the beginning, resulting 
in an inaccurate RUL prediction. After the tool is used for 
a certain period and the wear level starts to increase, the 
RUL prediction accuracy increases.

Figure 32. Aging trend projection and RUL estimation 
graph

Figure 33. Schematic diagram of piece-wise RUL

As the initial RUL prediction is not sufficiently accu-
rate, the piece-wise RUL [17-18] method is used in the 
effectiveness evaluation in this study. When an initial error 
occurs to the system at a certain time point, that is, when 

the HI starts to change significantly, the RUL decreases 
with the hours of use and no indication exists prior to the 
initial error; thus, the predicted result is not very satisfac-
tory. As shown in Figure 33, the x-axis represents the time 
and y-axis represents the RUL at that point of time. The 
actual RUL is represented by the solid blue line, which de-
creases linearly with the hour of use, step by step, towards 
the time point of failure.

3.3 Performance Indicators
The first is accuracy [19], which shows the average 

accuracy of the RUL prediction. The value closer to 1 in-
dicates higher accuracy, while a value further from 1 indi-
cates poorer accuracy. Equation (3) shows that T represents 
total time and t represents each processing cycle time 
point. Equation (3) sums and averages the negative power 
of the exponential for each time point, where x represents 
the proportion of the estimated error that is accounted for 
by the actual. A value of 1 indicates agreement between 
the estimated and actual values, when the error is 0; while 
a larger error value yields a smaller value.

( ) ( )

1

1 real

real

RUL t RUL t
T RUL
t

Accuracy e
T

−
−

=
= ∑ (3)

The second is precision [19], which represents the 
average accuracy of the prediction. A lower value indicates 
better concentration, while a higher value indicates less 
concentration. This is calculated using Equation (4), where 
T represents the total time and t represents each processing 
cycle time point. ε represents the predicted error, as shown 
in Equation (5), and ε− represents the average value of the 
error, as shown in Equation (6).

( )( )2

1

T

t

T
P c

t
re ision

ε ε
=

−
= ∑ (4)

( ) ( ) ( )realt RUL t RUL tε = − (5)

1

1 T

tT
ε ε

=
= ∑ (6)

The third is mean absolute percentage error (MAPER) 
[19], which represents the percentage of the prediction 
average error. A lower MAPER value is better, as shown 
in Equation (7), where ε represents the predicted error. 
As shown in Equation (5), all time points calculated in 
Equation (7) are summed and averaged. The proportion 
of predicted errors on the actual at each time point is 
calculated, followed by multiplying by 100 into percentage 
and considering the absolute value.

( )
( )
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1001 T

t
real t

t
MAPER

T RUL
ε

=

⋅
= ∑ (7)
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The fourth is runtime, which indicates the running 
time. A lower runtime is better, as shown in Equation (8), 
where C represents the time spent to project the aging 
trend. This equation is applied to calculate the total sum 
of the time spent on projecting the aging trend at all time 
points.

( )1

T

t
Runtime C t

=
= ∑ (8)

3.4 Data Acquisition and Prognostics
To predict the aging trend of CNC milling machine 

tools, there are three key stages required to process the data 
collection. As illustrated in Figure 34, the first phase is to 
collect data from a CNC milling machine. It is important 
to ensure the data collected is effective and trustworthy, 
therefore the qualified data can be analyzed with AI tech-
niques. The next stage is storage, the valid data is stored in 
a permanent cloud drive. When the data is properly stored, 
it can be readily accessed for prognostics when needed. 
After all of the data is stored, AI models are used to predict 
the aging trend and determine the RUL of milling machine 
tools.

CNC
AI

Figure 34. A data acquisition and prognostics system

4  Experimental Results and Discussion
4.1 Model Evaluation for RUL Prediction Results with 

Different Tools
The experimental results are shown in Table 3. Differ-

ent models were used to predict the RUL for different tools 
in the test set, and the data for 10 times were recorded and 
then averaged as the average performance of each model; 
the bold text in the table represents the best performance 
pointer among the three models.

Table 3. Evaluation of the effectiveness of RUL prediction 
results for the dataset

Model Metrics c2 c3 c5

ANN

Accuracy 0.8618 0.8996 0.8985
Precision 10.36 8.15 6.8
MAPER 19.77 12.76 12.88

Runtime (s) 1020.17 831.66 758.84

SVR

Accuracy 0.9564 0.942 0.8958
Precision 4.46 4.05 8.43
MAPER 4.79 12.18 13.65

Runtime (s) 6.08 4.89 4.46

LSTM

Accuracy 0.9205 0.9491 0.9446
Precision 5.41 4.19 4.86
MAPER 9.54 5.78 6.62

Runtime (s) 1002.98 833.04 753.44

The aforementioned findings show that both support 
vector regression (SVR) and long short-term memory 
(LSTM) exhibit satisfactory overall performance. SVR 
demonstrates comparable accuracy to LSTM, but with a 
concentrated precision and a more stable performance. 
On the contrary, LSTM generally achieves the highest 
accuracy of the three models, with accuracy levels similar 
to SVR. In terms of overall performance LSTM slightly 
outperforms SVR when runtime is disregarded. Howev-
er, when considering runtime, SVR is significantly faster 
while maintaining comparable performance to LSTM. This 
discrepancy in runtime can be attributed to the complexity 
of the models. In contrast to LSTM, which incorporates a 
greater number of neurons and gates (i.e., input gate, forget 
gate, output gate), SVR exhibits a more direct and rapid 
data transfer process. Consequently, SVR is preferred in 
practical applications that require real-time capabilities. 
Conversely, if real-time constraints are not a concern, 
LSTM remains a viable option.

4.2 Testing the Applicability of the Prediction Model 
Using Simulation Data
The flowchart of the simulation data generation in 

this study is shown in Figure 35. First, the parameters are 
initialized for the predetermined machining conditions, 
followed by listing all possible cases of tooth breakage. 
If the tool has n blades, then all possible cases of tooth 
breakage are C1

n − Cn
n . Therefore, the life cycle is generated 

based on the various cases of tooth breakage. First, the 
parameters are set with ±10% as the upper limit. Then, 
the starting and ending amounts of increase in the life 
cycle rose diagram and the total processing cycle are 
set. For each processing cycle, the aging curve set in the 
initialization is used to calculate the length of the current 
process rose diagram, and the current-processing-cycle 
rose diagram is generated by using the rose diagram 
formula.

The initialization of the parameters is presented in 
Table 4. Based on the preliminary analysis, several param-
eters that can be set are listed and adjusted appropriately 
based on the assumed machining conditions. In Figure 36, 
the left figure shows the rose diagram at the first machin-
ing cycle, with a length (center of the circle to the vertex 
of the petal) of 20±10%. The middle figure shows the 
rose diagram at the last processing cycle, with a length of 
20±10%+100±10%. The right figure is the last rose dia-
gram with tooth breakage, where only one tooth breaks, 
and the broken tooth is in the upper right. According to the 
number of blades set in this case, C4

1 − C4
4  cases of tooth 

breakage exist; thus, the life cycle is generated based on 
each case. A signal-noise-ratio setting is added to make the 
rose diagram more realistic rather than the ideal perfectly 
smooth curve. As shown in Figure 37 for the aging curve, 
the x-axis represents the processing cycle ratio (0–1) and 
the y-axis represents the ratio of the amount of increase in 
the rose diagram length (0–1). The current processing cy-
cle is calculated as per the aging curve function after first 
dividing it by the total processing cycle and converting it 
to a process ratio of 0–1. As shown in Equation (9), the 
polar coordinate rose diagram formula is used to draw the 
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rose diagram of that processing cycle, where l is the length, 
that is, the length from the center of the circle to the vertex 
of the petal, and n represents the petal number parameter. 
If n is an even number, the rose diagram has 2n petals, and 
if n is an odd number, the rose diagram will have n petals.

Initialize relevant parameters 

Generate a life cycle based on all 
combinations of 𝐶𝐶1𝑛𝑛 − 𝐶𝐶𝑛𝑛𝑛𝑛

Set the starting length of the rose diagram, 
the final amount of increase in the rose 
diagram length, and the total number of 

processing periods of this life cycle 

Calculate the length of the rose 
diagram using the aging curve 
based on the current process 

Generate a rose diagram using 
the current length and the rose 

diagram formula 

Attached a rose 
diagram of 

tooth breakage 
at the end 

End 
Generation 
completed? 

Life cycle 
completed? 

Yes

No

No

Yes

Figure 35. Flowchart of simulation data generation

Table 4. Simulation data parameter settings

Parameter name Value
Number of blades (number of teeth) 4

Average processing cycle 100
Initial length of rose diagram 20

Final amount of increase of rose 
diagram

100

Processing cycle sampling volume 1000
Signal-noise-ratio 0.1

Aging curve y = e4(x−1)

Figure 36. Variation in force diagram of simulation data

Figure 37. y = e4(x−1) aging curve

( )1 sinr n θ= × × (9)

Figure 38. Simulation data life cycle

Figure 39. Simulation data life cycle after pruning and 
threshold setting

The convex hull area is used as the HI to observe the 
aging trend after generating all the life cycles of the broken 
tooth cases of C1

n − Cn
n , as shown in Figure 38. The blue 

line represents the cases with only one broken tooth, green 
line represents the cases with two broken teeth, yellow line 
represents the cases with three broken teeth, and red line 
represents the cases with all teeth are broken. As depicted 
in Figure 39, only information before the failure behavior 
is acquired and the appropriate threshold value is set based 
on the available information.

Based on the practice of the 2010 PHM Society Con-
ference Data Challenge, 50% of the aging trend in the 
middle is used as the training set and the remaining 50% 
as the test set; LSTM is employed as the regression predic-
tion model. Figure 40 shows the RUL prediction results for 
various tooth breakage cases in the test set.
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Figure 40. RUL prediction results for the test set

5  Conclusion

The aim of this study is to estimate the RUL of milling 
tools using publicly available datasets. First, the prepro-
cessing of the raw data involves feature extraction, data 
fusion, and convex-hull finding to obtain the HI for pre-
dicting the aging trend. The sliding window method is then 
used to feed the HI, which has temporal correlation, into 
a trained regression prediction model to predict the tool’s 
aging trend and calculate its RUL.

Furthermore, three different models, namely, artificial 
neural network (ANN), SVR, and LSTM are compared. 
Based on the experimental results, SVR is recommended 
in the online environment for real-time applications owing 
to its low runtime and comparable performance. By con-
trast, LSTM is suitable for offline applications where time 
constraints are not a concern.
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