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Abstract

In practical street vehicle detection applications, models
may require a large amount of data due to varying street
conditions across different regions, influenced by factors
such as shooting angles and weather changes. Even with a
high-precision detection model, applying it to a new urban
area requires incorporating data from the new domain
into the training process. To leverage the knowledge of an
existing model for a new task, transfer learning models are
utilized to prevent over-reliance on previous knowledge
during training, which might result in the inability to
detect target samples in the new task. Common research
and application methods include knowledge distillation
and cross-domain adaptation. This paper introduces a
training paradigm that involves incorporating a small
amount of source-approximate samples from the old task
into the new task, followed by fine-tuning to experiment
with cross-domain learning applications. Experimental
results demonstrate that our paradigm, when augmented
with source-approximate data—samples with similar scene
or weather characteristics to the source domain—exhibits
higher adaptability for detecting vehicle objects in the
target domain compared to models utilizing knowledge
distillation.

Keywords: Street vehicle detection, Transfer learning,
Cross-domain adaptation, Training paradigm, Fine-tuning
training

1 Introduction

In deep learning, choosing the right dataset and
model for different tasks is really important. In real-world
applications, changes in scenes and object appearances
often cause models to struggle with adapting to new
domains. This issue is known as “domain shift.” Domain
shift means that the model might not perform well in the
new domain or could lose its ability to recognize features
in the original domain.

For street vehicle detection, a large number of samples
are needed for annotation and training so the model can
learn how vehicles look in urban areas. However, in

practice, even if a vehicle detection model works well for
one urban area (domain A), it might face problems when
used in a different urban area (domain B). Training the
model directly with data from domain B can lead to it
being overly influenced by what it learned from domain A,
making it hard for the model to accurately learn the vehicle
features specific to domain B. This can result in decreased
detection capability due to domain shift issues.

In transfer learning, the concept of “domain” involves
the differences between the source domain and the target
domain, which can include sample features or model
scales. “Cross-domain learning” builds on this idea.
For instance, in street detection tasks, different weather
conditions or backgrounds represent domain changes.
These changes present challenges for practical applications
like vehicle detection, including variations in lighting,
monitoring angles, or extreme weather conditions.
BDD100k is selected as the target domain in this study
due to its rich diversity in urban scenes, which differ
significantly from the structured city layouts and foggy
conditions found in the Cityscapes and Foggy Cityscapes
datasets. This allows for a more realistic evaluation of
cross-domain adaptability.

The goal of cross-domain detection models is to learn
features from different domains while keeping the original
detection capabilities intact, thus enhancing generalization.
This approach helps models adapt better and handle
various changes in new environments, improving their
stability and accuracy across different scenes.

To tackle this problem, it’s necessary to update the
model’s criteria for identifying vehicle features during
training. Common methods include knowledge distillation
and domain adaptation models. Knowledge distillation
involves setting parameters during training to ensure the
model isn’t affected by domain shift during the transfer
process. Domain adaptation models update the model’s
ability to recognize object features by learning consistent
features across different domains. These methods all
involve tweaking the model’s standards for object features.

This study introduces a new training paradigm inspired
by SSDA-YOLO [4], aimed at improving object detection
across different domains. Unlike SSDA-YOLO, which
uses a teacher-student model with differing backbone
sizes, the proposed method employs two YOLO models
of the same size. The key innovation is transferring
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knowledge (weights) from a model trained on a source
domain to another model trained with samples from a
new domain. This approach generates “source-similar
samples” and “pseudo-target samples” based on scene and
weather features. Unlike SSDA-YOLO, which requires
equal samples from both domains, the new method needs
fewer target domain samples. Experiments show superior
detection in target domains, though detection in the
source domain may suffer due to the lack of parameter
adjustments. Future research may explore pre-processing
the source domain model to reduce the sample size needed
for training.

2 Related Works

2.1 Using Object Detection Model to Vehicle Detection

Vehicle detection models initially relied on hand-
crafted features or traditional machine learning models
for feature learning [5-7]. Influenced by the features of the
trained samples and the inference capability of the model,
these detection models faced limitations in widespread
application across different street scenes, resulting in lower
detection performance. Since 2010, with the introduction
of deep learning models and Convolutional Neural
Networks (CNNs), many researchers have proposed
higher-performing detection models.

Object detection models can be categorized based
on their architecture into: 1. Second-stage models based
on Fast R-CNN [8-11], and 2. First-stage models based
on YOLO (You Only Look Once) [12-15]. For the task
of vehicle object detection, models need to possess real-
time detection capabilities. As second-stage models
require more time for inference, subsequent researchers
have predominantly focused on using first-stage models
to construct street vehicle detection models. Notably,
YOLOv4 was proposed by researchers including Alexey
Bochkovskiy and collaborators from the United States
Institute of Research [15]. This model integrates the Cross
Stage Partial Network (CSPNet) [16], providing efficient
detection results suitable for tasks such as autonomous
vehicle driving and traffic flow management in vehicle
detection.

2.2 Domain Adaptation in Transfer Learning

Domain adaptation [17-18] is one of the methods
in transfer learning [19-22]. Since 2014, many scholars
have proposed various approaches, starting from initially
incorporating loss functions into neural networks to
update object feature parameters and enhance the
model’s detection capabilities across different domains.
Subsequently, researchers explored alternative methods,
such as style transfer on source domain samples and
extraction of object features from different domains, to
adapt the features of objects in diverse domains [23-27].
Additionally, to reduce the training cost of the model in
the target domain, some scholars utilized Teacher-Student
Models [28-31] for domain adaptation. Among them, [4]
introduced the SSDA-YOLO model, using YOLOVS as the
model framework and employing semi-supervised learning

methods for knowledge distillation training, thus enhancing
the detection capabilities of the domain adaptation object
detection model.

3 Problem Formulation and Problem
Solution

The main objective of this paper is to propose a
training method for a street vehicle detection model
applicable to real-world cross-domain scenarios. To create
an environment suitable for cross-domain applications,
considerations include defining “different domains” in the
street task and obtaining similar scenes. For experimental
verification, three publicly available datasets, namely
Foggy Cityscapes [1], Cityscapes [2], and BDD100k [3],
were chosen as experimental samples for the following
reasons.

Foggy Cityscapes are generated from synthetic foggy
samples from the Cityscapes dataset and are commonly
used in vehicle detection tasks as both source and target
domain samples. Since this paper explores whether
incorporating similar samples after model transfer can assist
in fine-tuning for adaptation to different environments,
both datasets are defined as source domain scenes. The
target domain scenes are selected from BDD100k, offering
diverse street views from different cities at various times,
providing the model with a variety of target domain scenes
rather than being restricted to a specific street. Additionally,
the training set samples in BDD100k are augmented with
artificially generated foggy images, aligning them with
the source domain scenes. BDD100k offers more diverse
street scenes than Cityscapes, including variations in
lighting, weather, and urban environments, making it ideal
for evaluating model adaptability in realistic cross-domain
scenarios. The experimental samples thus include real
sunny scenes and artificially generated foggy scenes from
both source and target domains.

The Cityscapes dataset is a widely used public dataset
for vehicle detection research, containing street view
images from 50 cities, covering different times of day
and weather conditions, with tens of thousands of images
divided into 30 categories. These richly annotated images
make it suitable for various computer vision tasks such as
object detection, classification, and instance segmentation.
Classic papers like Mask R-CNN have used this dataset to
validate model capabilities in street scene detection.

Foggy Cityscapes extends the Cityscapes dataset by
simulating foggy street scenes through a fogging model
applied to Cityscapes samples. Many researchers use these
two datasets to simulate cross-domain vehicle detection
experiments, validating the adaptability of detection
models in different street scenes.

In practical applications, acquiring street images with
specific weather conditions can be challenging. Even if a
successful object detection model is trained, re-training it
for special weather conditions, compared to sunny street
scenes, may lack a sufficient number of samples. Therefore,
this paper investigates whether transferring the source
model trained on Foggy Cityscapes and subsequently fine-
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tuning it with sunny images from Cityscapes can train the of special weather scene images.
target model without the need for an extensive collection
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Experiments were conducted with three models:

1. Model 1: Transferred the model and retrained
without any additional samples.

2. Model 2: Transferred the model and utilized
knowledge distillation to train on cross-domain
data [4].

3. Model 3: Transferred the model and retrained by
combining source-approximate with target domain
street images.

The detection capabilities of the three methods for
vehicle objects in the target domain were compared. The
experimental results indicate that direct model transfer
(Model 1) without fine-tuning is significantly impacted
by domain shift, resulting in a substantial decrease in
detection capabilities. However, fine-tuning the model
after transfer with a small number of source-approximate
data (Model 3) mitigates the effects of domain shift and
exhibits higher adaptability compared to the knowledge
distillation model (Model 2) applied to cross-domain tasks.

During training, samples are categorized into four
types:

*  Source data: Foggy street scenes from Foggy

Cityscapes.

e Source-approximate data: Sunny street scenes
from Cityscapes that share similar scene layouts
with the foggy source domain.

*  Target data: Real sunny scenes from BDD100k.

e Target fake data: Foggy images artificially
generated from BDD 100k samples.

“Target fake” refers to generated street scenes meant
for target data, while “source-approximate” refers to
street scenes similar to the source domain, helping to
train the target model. As shown in Figure 1, the overall
training process consists of source-model training and
target-domain adaptation using the four types of samples
described above. Here’s how the training process works:

Model 1: Trained with 1700 images of foggy street

scenes from the Foggy Cityscapes dataset. This helps
the YOLOvVS model learn vehicle features in extreme
weather conditions found in the source domain (Domain
A). Consequently, the model becomes adept at identifying
traffic objects in such challenging conditions.

Model 3: Uses the knowledge (weights) from
Model 1 and trains with 800 images from Cityscapes as
source-approximate data, 1700 sunny street scenes from
BDD100k as target data, and 1700 foggy street scenes
generated from BDD100k images as target fake data. This
allows the model to learn vehicle features under different
weather conditions in BDD100k street scenes.

During the testing phase (highlighted in green),
validation set samples from the target domain (Domain B),
including street scenes under various weather conditions,
are used to evaluate the Target Model. This step checks the
model’s ability to detect traffic objects in Domain B. As
shown in Figure 2, the overall training paradigm consists
of three stages: building the source model, adapting it
to the target domain using mixed-domain samples, and
evaluating the final detection performance on the target
domain.

4 Experiment Result

To validate the proposed training method in this paper,
we employed Foggy Cityscapes as the source domain
scene and BDD100k as the target domain scene. The
experiment compared the detection capabilities of three
methods in cross-domain street vehicle detection tasks: (1)
SSDA-YOLO model, (2) base object detection model and
(3) our training paradigm. The primary differences among
these models lie in how training samples are introduced
and what type of samples are included (Figure 3). Each
model was trained for 300 epochs, and the BDD100k
validation set was used for testing. The actual training
process is outlined below:

Foggy Cityscapes
(1700 source data)

base object detection model
Trainng Source Model

Foggy Cityscapes
(1700 source data)

Cityscapes

SSDA-YOLO
Trainng Teacher model
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Figure 3. SSDA-YOLO with our training paradigm using the provided data
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1. The SSDA-YOLO model consists of a teacher
model and a student model, utilizing a total of
6800 street scenes for training.

2. The teacher model is trained with 1700 street
scenes from Cityscapes (real sunny) and Foggy
Cityscapes (generated foggy).

3. The student model is trained with 3400 street
scenes from BDD100k (real sunny and generated
foggy).

4. The base object detection model used is the
YOLOVS5 model, and it is divided into source data,
target data and target fake for training model,
incorporating a total of 5100 street scenes. The
training configuration of YOLOvVS followed
standard practices with default parameters; image
resolution, batch size, and threshold values were
consistent across all experiments to ensure fairness
in comparison.

5. The source model is trained with 1700 street
scenes from Foggy Cityscapes.

6. The target model is trained with 1700 street scenes
from BDD100k, including real sunny scenes and
generated foggy scenes.

7. The training paradigm we proposed utilizes the
YOLOvVS5 model and is divided into source data,
source-approximate data, target data and target
fake for training model, incorporating a total of
4700 street scenes.

8. The source domain model is trained with 1700
source data (foggy street scenes from Foggy
Cityscapes).

9. The target domain model is trained with 500
source-approximate data (sunny street scenes from
Cityscapes), 800 target data (real sunny street
scenes from BDD100k), and 1700 target fake
(generated foggy street scenes from BDD100k).

Table 1 and Table 2 present the testing results

of different models in the target domain. This study
investigates whether a model trained on a single domain
(Foggy Cityscapes) can adapt to another (BDD100k) by
incorporating visually similar samples during fine-tuning.

The aim is to enhance cross-domain detection performance
without requiring large-scale retraining.

As shown in Table 1, when the model is directly
applied to the target domain (BDD100k dataset) without
any additional training, its detection performance in most
categories is generally inferior to that of the model trained
using the SSDA-YOLO teacher-student architecture and
the proposed training paradigm. The base object detection
model, which relies on original single-domain knowledge,
exhibits relatively poor performance in most categories,
showing unstable detection capabilities and often resulting
in the lowest values.

Table 2 compares the detection results of SSDA-YOLO
and the proposed training paradigm on the BDD100k
dataset validation set. It can be observed that our training
paradigm provides more accurate results in various street
scenes compared to SSDA-YOLO. Under conditions such
as daytime (with different lighting angles) and night-time
(where vehicle objects are less visible), our method is
more sensitive to the positions of vehicles and pedestrians,
offering more precise detection results. This demonstrates
the cross-domain adaptability advantage of the proposed
method. By incorporating samples with similar scene
features or weather conditions (one or the other) from
the source domain into the training of the target domain
samples, the detection model achieves higher adaptability
to the visual features of vehicle objects during the training
process.

This study demonstrates that by incorporating a small
number of source-similar samples into the model and
combining transfer learning with target domain fine-
tuning, the trained model can achieve high mean Average
Precision (mAP) across multiple categories, particularly
in the vehicle and pedestrian categories (see Table 1).
Additionally, this detection capability is unaffected by
weather conditions (sunny, night-time, rainy), maintaining
good detection performance even in low-light or low-
visibility environments. The detection results validate
the practicality of the proposed method for cross-domain
applications.

Table 1. Compare the precision of different architectures for street detection

(Bold indicates the highest value; underline indicates the second highest value.)

Source domain: Foggy Cityscape -> Target domain: BDD100k

Model SSDA-YOLO Base object detection model * The proposed training paradigm
category mAP@.5 mAP@.5-.95 mAP@.5 mAP@.5-.95 mAP@.5 mAP@.5-.95
car 0.476 0.249 0.650 0.370 0.670 0.392

truck 0.129 0.063 0.294 0.177 0.318 0.207
person 0.381 0.166 0.333 0.124 0.419 0.178
bycycle 0.209 0.093 0.108 0.376 0.223 0.098
rider 0.228 0.106 0.132 0.048 0.228 0.100
motorcycle 0.029 0.117 0.022 0.007 0.110 0.046
bus 0.100 0.058 0.260 0.167 0.292 0.204

all 0.222 0.107 0.257 0.133 0.323 0.175

* After training the source model using Foggy Cityscapes, the model is directly transferred to the target domain for
training without incorporating Cityscapes (source-approximate).
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Table 2. The detection results of SSDA-YOLO and our training paradigm in the BDD100k validation set

Image

SSDA-YOLO The proposed training paradigm

| i i
tcar 0:89 9" 9'?‘ 3

5 Conclusion

This study uses three publicly available datasets—
Foggy Cityscapes, Cityscapes, and BDD100k—to simulate
cross-domain vehicle detection scenarios. The goal is
to verify whether adding source-approximate samples
during training helps the model adapt to the target domain.

Experiments evaluated three methods under various
weather conditions and vehicle categories. Results show
that our proposed training paradigm achieved the highest
adaptability, followed by SSDA-YOLO, while the base
detection model performed the worst. These findings
confirm that integrating a small number of source-similar
samples can enhance cross-domain detection performance
without requiring complex knowledge distillation training.
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