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Abstract

Multi-view subspace clustering (MSC) has received
widespread attention due to its ability to efficiently
exploit consensus and diversity information from multiple
perspectives. However, existing methods focus more on
inter-view diversity and ignore the consistent associations
and higher-order features among views under different
perspectives. To solve the above problems, an auto-
weighted MSC with consistency learning (AWMSCC)
is proposed. Specifically, this method first integrates the
shared features of all coefficient matrices in a three-factor
decomposition to construct a new shared consistency
matrix. Then, by using the tensor low-rank constraint, the
coefficient matrices and the shared consistency matrix
are stacked into a third-order tensor to achieve effective
propagation of inter-view consistency information. Finally,
the appropriate weights are adaptively assigned to all
matrix information to obtain a high-quality affinity matrix.
Experimental results on four benchmark datasets show that
AWMSCC outperforms seven other advanced clustering
algorithms in terms of performance.

Keywords: Consistency learning, Tensor nuclear norm
(TNN), Adaptive weights, Multi-view subsapce clustering

1 Introduction

With the advancement of technology, the demand for
information extraction and data mining is growing. In
this context, data can be represented in various forms [1-
3], such as mathematical symbols, text, and images; it can
also represent attributes of objective things, quantities,
and relationships between things. These data provide a
comprehensive description of entity features from different
perspectives. Taking images as an example, researchers
refer to sample data that characterize the same entity from
different viewpoints as multi-view data. For instance, in
order to fully understand the overall outline of a building,
it can be viewed from different perspectives such as floor
plans, aerial views and sketches. These different types of
image information can provide a variety of distinguishable
features that help to grasp the overall structural information
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of things. However, these multi-view data usually exist in
high-dimensional space and suffer from problems such as
sparse data volume and susceptibility to noise interference.
Therefore, how to effectively process multi-view data in
high-dimensional spaces has become a hot topic in current
investigations.

In this context, MSC [4-5] is widely used for its ability
to efficiently reduce dimensionality. MSC is based on a
reasonable assumption [6] that high-dimensional data are
usually distributed in multiple low-dimensional subspaces.
By finding the low-dimensional subspace in which the
data resides, high-dimensional data can be effectively
characterized and data dimensionality reduction can be
achieved. Due to its excellent dimensionality reduction
capabilities, researchers have proposed many MSC
methods. For example, Chen et al. [7] proposed a multi-
view low-rank learning method. This method enhances
the model’s ability to learn complementarities between
views by imposing symmetric low-rank constraints on the
coefficient matrices. On this basis, Lan et al. [8] proposed
a low-rank affinity matrix learning method. The method
imposes both symmetry constraints and rank consistency
constraints on the matrices, which fully takes into account
the global structural information of the data. Furthermore,
Tan et al. [9] proposed a sample-level representation
method that effectively captures the topological manifold
information within views by learning the manifold
structure between views and the topological information
within each view. Duan et al. [10] introduced a one-step
MSC method that directly generates clustering results by
integrating self-representation learning, information fusion,
and rank equality constraints into a unified framework.

However, the above methods focus more on the
structural information within the view and the diversity
between views. They often ignore the inherent consistency
information between views when multi-view data describes
the same sample, which is also crucial for clustering
performance. In addition, most of the current methods
construct affinity matrices by simply stacking matrices,
without considering that the contributions of different
views may be different.

To address the above challenges, the authors propose
an auto-weighted MSC with consistency learning method,
the flowchart is shown in Figure 1. This method not only
fully learns the shared features between views but also
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adaptively assigns appropriate weight information to the
views. Firstly, the rank equality constraint is applied to
all coefficient matrices, and the shared consistency matrix
is further generated by the three-factor decomposition
method. On this basis, the coefficient matrices and shared
consistency matrix are stacked into a third-order tensor
and TNN constraints are used to facilitate the mutual
propagation of shared and higher-order information
among views, thereby effectively mining consistency

and higher-order correlations. Additionally, considering
that the contribution of different views may be different,
an adaptive weight strategy is employed to assign
suitable weight information to all resulting in a higher
quality affinity matrix. This article integrates consensus
constraints, higher-order information fusion and adaptive
weight learning are integrated into a unified framework
and optimized by an iterative optimization method to
achieve better clustering performance.
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(A) Self-representation learning and rank consistency learning. The coefficient matrices are obtained through self-
representation of the original matrices, and a shared consistency matrix is derived by applying consistency constraints to
the coefficient matrices. (B) View weight learning. Adaptively learns the weight information between different views. (C)
Higher-order tensor consistency learning. Concatenates the coefficient matrices and the shared consistency matrix into a
third-order tensor and fully learns the higher-order consistency information between views through TNN constraints and

t-SVD decomposition.

Figure 1. The flowchart of AWMSCC

Main contribution points of this paper are as follows:

*  This paper proposes a new MSC method, namely
the Auto-weighted MSC with consistency learning
(AWMSCC). This method generates a shared
consensus matrix through rank equality constraints
and learns higher-order consistency information
among views by integrating the coefficient
matrices with the shared consensus matrix into a
third-order tensor.

* The method can adaptively obtain the weight
information of each view and effectively solve the
problem of contribution imbalance between views.

* An efficient an augmented Lagrange multiplier
method (ALM) is designed to solve AWMSCC.
Experimental results indicate that AWMSCC
outperforms the other seven most advanced
algorithms of the species.

2 Related Work

Existing multi-view learning methods can be divided
into the following four types [11]: (1) Multi-kernel
based methods [12], (2) Co-training based methods
[13], (3) Graph based methods [14], and (4) Subspace
based methods [15]. In the following sections, these
four categories of multi-view learning methods will be
introduced in detail.

(1) Multi-kernel methods utilize kernel function
mapping to make linearly inseparable data separable.
Additionally, by learning different kernel functions, diverse
feature information can be obtained. For instance, Zhou
et al. [16] proposed a multi-kernel graph fusion method.
This method obtains multiple base kernels through kernel
function mapping, and uses the max-min strategy to
adaptively apply weights to the base kernels. Then all
basic kernels with weight information are combined into
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a composite kernel, and the clustering results are directly
obtained through regularization constraints.

(2) Co-training based methods share inter-view consis-
tency information by training a classifier independently
for each view and inducing these classifiers to learn
from each other. For example, Kumar et al. [17] based
on the complementary assumption of spectral clustering,
employed an iterative idea where trainers interact to make
the clustering results from different views consistent.

(3) Graph-based methods construct a similarity graph
matrix by learning the distance between data points, and
generate a unified graph matrix by fusing all graph matrix
information, which can effectively learn the structural
information inside the view. For instance, Nie et al. [18]
proposed a completely self-weighting method that uses
Laplacian rank constraints to assign appropriate weight
information to views to enhance the ability of the model
to discriminate the importance of views. Zhan et al. [19]
directly generated clustering results by preprocessing all
similarity matrices to ensure that high quality initial graphs
are obtained, and by imposing rank constraints on the
initial graphs.

(4) Subspace-based methods effectively reduce the
dimensionality of data by mapping high-dimensional data
into low-dimensional subspaces. For instance, Zheng
et al. [20] proposed a feature collocation MSC method.
The method introduces the concept of cluster-specific
corruption and uses dual self-representation to efficiently
splice feature information from different views. Zhang
et al. [21] proposed a low-rank tensor constraint method,
which integrates all the coefficient matrices into a third-
order tensor and explains the complementary structural
information among different views through tensor low-
rank constraints. However, the method cannot adequately
explain the structural information of the tensor. On
this basis, Xie et al. [22] proposed the tensor singular
value decomposition (t-SVD) method, which explicitly
characterizes the structural information of the tensor by
using the TNN constraint. Since then, tensor learning
methods have been widely used in MSC. For example,
Du et al. [23] argue that noise in views is diverse. Only
by removing both Laplacian and Gaussian noise can we
obtain clean affinity matrices and use TNN constraints
to fully explore the higher-order structural information
of the view. Gao et al. [24] proposed a nuclear norm
minimization method, which aims to assign appropriate
weight information to singular values according to their
sizes.

The four multi-view learning methods mentioned
above are specific manifestations in the field of multi-
view learning. However, most of these methods fail to
fully utilize the inherent structural information between
views: some overlook the high-dimensional features of the
views, while others do not explore the shared consistency
among views. In fact, each view contains information
consistent with other views. Therefore, how to effectively
utilize the inherent consistency information has become
the focus of our research. For our work, by simultaneously
applying consistency constraints to all coefficient matrices,

we obtain a shared matrix that contains consistency
information from all views. This matrix encapsulates the
shared information of all views, and combining it with the
original coefficient matrices helps us to explore at a higher
dimensional level.

Table 1. Notations and related descriptions

Notations Description
A Matrix
|4« The nuclear norm
[14]]+2.1 The /,, -norm,
"A"Z,I = Zi\/ jajz',i
14| The Frobenius norm
<4, B> Inner product of A and B
A 3rd-order tensor
1Al 7w Tensor norm based on t-SVD
A*B t-product of A and 3

3 The Proposed Approach

This section describes in detail the proposed algorithm,
i.e., AWMSCC. In addition, it shows how to integrate
consistency learning, high-order feature fusion, and
self-weighting strategy into a unified framework. The
commonly used symbols and definitions in this article are
shown in Table 1.

3.1 Objective of AWMSCC

Given data A€R"", where m denotes the number of
samples and 7 is the number of features. In this paper, we
make different data points linearly correlated with each
other by self-expression of the multi-view data, which is
formulated as follows:

Ev

4 v
min Y x| +aX |2, o
st. A" =A"X"+E",v=12,...V

where | |, denotes the nuclear norm constraint on the

coefficient matrices X" to promote effective approximation
of the original rank function information. " "2‘1 is used for

processing the noise matrices to achieve sparse handling of
noise information in the data, thereby effectively removing
noise. In addition, a is the regularization term to increase
the generalization ability of the model.

Although self-expression methods can effectively learn
the complementary structure between views, they often
overlook the inherent consistency information between
views. Since different views describe the same samples,
the consistency information between views reveals
the basic properties shared by the data across different
views, meaning that all views should have the same
representational structure. Therefore, a rank consistency
constraint is applied to all coefficient matrices to maximize
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the preservation of consensus information among views.
The specific formula is as follows:

4

Vv
min 3], + a2 £,
st A = AX +E v=1,2,..V @)

rank(X") = rank(X*) =--- = rank(X" )< k

where k denotes the natural upper bound of the coefficient
matrices X, which more accurately approximates the
original rank function information. However, this is
essentially a soft fixed-rank [25] learning model, and the
natural upper bound of the coefficient matrices may be
different for different samples, which makes optimization
very difficult. Inspired by Lan et al. [8], the problem is
effectively solved by further decomposing the coefficient
matrix into a three-factor form:

Ev

2,1

v |4
min > X[ +a 2
st. A" =A'X" +E v=12,.V A
X' =C'LR",C’'C"" =ILR'R" =1

where C*, R"eR"™* can be considered as the basis vectors
in two extended dimensions of coefficient matrices X"
Imposing orthogonal constraints on C" and R" respectively
can ensure the uniqueness of the solution. LeR"* denotes
the shared consistency matrix. It can make all coefficient
matrices share the structure information, which effectively
retains the most essential structural features inside the
view. In addition, different datasets often require different
parameters k to be adjusted for Eq. (3), which can
significantly reduce the running efficiency of the algorithm.
To avoid this situation, a larger value k is needed, which
should at least be greater than the original rank of the
matrix. To simplify the parameter selection process, one
can directly use the number of samples m instead of k. At
this point, matrices C*, R” and LeR™" are involved.

After obtaining the consistency matrix, in order to
ensure that all the coefficient matrices can learn the shared
information among views, the coefficient matrices can be
spliced with the shared consistency matrix into a tensor.
By applying the TNN constraints to the tensor not only
promotes the mutual transfer of consistent information
between views, but also enables the mining of higher-order
correlations between views at a higher level. The specific
formula is as follows:

4
Juin @3], + A,
stA =AX +E v=12..V.H={X"L| )

X" =C'LR",C’C" =LLR'R" =1

V+1

where S is the balance parameter. HeR" ™ is formed by

stacking the coefficient matrix with the shared consistency
matrix.

Additionally, while Eq. (4) adequately exploits the
consensus information between views, the final affinity
matrix is generated through simple stacking, which does
not consider that different views have varying importance
to the final clustering results. For example, for a face
image, the view generated by the front face often contains
more feature information than the image generated by the
side face. Therefore, it is necessary to adaptively assign
appropriate weight information to different views in order
to fully utilize the advantages of the model:

14
] 2
o min X [E], + A1, el
V+1 5
+ 7/2 o' ||S-H" .
v=1

)
sLA =X +E v=12.. V. H={X" L}
=1,

X" =C'LR" ,C’C"" =LLR'R"

o' 1=Lw 20.

where " is the weight information of the vth view, ||

is the smoothing weight constraint, and y is the balancing
parameter.

For the AWMSCC algorithm, the first term applies /, ;-
norm constraint to the noise matrices, effectively removing
noise information from the data. The second term is high-
order consistency learning, which enables each view to
more effectively capture high-order shared information
in the data. The third term is a regularization term used
to avoid trivial solutions. The fourth term involves view
weight learning, which helps better understand the varying
impact of different views on clustering performance.

3.2 Optimization

Since Eq. (5) is non-convex, it can be solved by
constructing the ALM method. The reconstructed objective
function is:

L(X".S.E'.C".R",L.G.00) = aZV:|E
v=1

2.1

s, +ol;

V+1
Y
y=

o a-ax —EV>+§|AV —AX—E

2

r(6)

+<Q2”,X” _C'LR” >+EHXV _C'LR”
2

2
F

U >
(0. H=G)+ 2~
st. C'C” =LRR" =Lo'1=1,0" >0
In this context, u is the penalty parameter, O}, Q,, Q,

are the Lagrange multipliers. G is an auxiliary variable to
separate the tensor H, which facilitates easier updating of
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Eq. (6). In addition, X", S, E", C", R', L, G, w are updated
separately by an alternating minimization strategy, i.e.,
fixing other unrelated variables and updating one variable
in sequence.

(1) Update X", Eq. (6) can be expressed as:

S-X

2
F

Vv
min )/Z "
X v=1

o a-ax —EV>+§|AV —AX'—E

2
F

+<Q2”,XV _C'LR” >+£”Xv _CLR"
2

2
r

+<Q;,X“—GV>+§||X”—G”

2
F

By directly taking the partial derivative of X* and
making Eq. (7) zero, a closed-form solution can be
obtained:

. -1
X' = (2a)vy1+,uAv A’ +2/11)

Qa'yS+ud" A" — A" E' ®)
40! =01 -0} + uC'LR” + uG")

(2) Update S, Eq. (6) can be expressed as:

. r+l1 . L2
mSmVZ:l:a) S-H"| )

Take the partial derivative of parameter S and make
Eq. (9) approach zero. The obtained solution is as follows:

V+1

S=> w'H (10)
v=1

(3) Update E", Eq. (6) can be expressed as:

min aZV;| E||, +<Q1”,A” —AXY —EV>
" (1m)
+E|a-ax-E[
2 F

Let ® =4"-A"X"+Q,/ u, according to [26], we can get:

o.],-> "
B ={To & o> a2
0 s otherwise

(4) Update C", Eq. (6) can be expressed as:

min<Q2“,XV _C'LR" >+§“X —C'LR" a3)
ni

2
F

First, we need to find the partial derivative of C” and
get the following form:

. v ~V 2
min |C -C . 14)
c'c” =1

where C* = (Q%(1/ 1) + X") R’L". Eq (14) is an orthogonal
Procrustes problem, whose closed-form solution can be
obtained according to the [27] as:

A

C'=N"'M" 1s)

where N' and A7" are the left and the right singular

value matrices obtained after performing SVD on C",
respectively.

Similarly, R" is solved similarly to C". The subproblem
with respect to R" can be expressed as:

. v S|
min |R -R R (16)
R'R" =1

where R" = (0 (1/ 1) + X")" C'L. In the same way as Eq.
(14), its closed-form solution can be obtained as:

R =N'M" 17

where N* and A" are the left and the right singular

value matrices obtained after performing SVD on R’,
respectively.
(5) Update L, Eq. (6) can be expressed as:

min yo|ls - L, +(03, X" - C'LR")

H v vy o [P V4 v+l
+EHX —-C"LR F+< L, L-G > 18)

+ﬁ||L -G
2

2
F

Directly taking the partial derivative of L and setting
Eq. (18) to zero, we can obtain the closed-form solution:

L=(2yol +2ul)’
Be- (2;/0)S+C”TQ2”R” + yC“’X"R"—Q;“J 19)

14 v=l +/UGV+1

(6) Update G, Eq. (6) can be expressed as:
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min ], +(Q.1-6)+ JIH-¢l, @0
The solution of Eq. (20) can be obtained from [28].
(7) Update w, Eq. (6) can be expressed as:

. V+1 ) ) 2 )
m”}nyvzz;a) ”S—H . +||a)||2 an

st.o'l=L0" 20

Eq. (21) can be solved using the quadprog function in
the MATLARB toolbox.

(8) Update 0, 0, Q, u:

o’ =Q1v+ﬂ(Av_AVXV_EV)
o =0+ ,u(X” ~C'LR" )
Q=9+u(H-9)

= min(ri, f,, )

(22)

Algorithm 1 summarizes the complete optimization
process of AWMSCC.

Algorithm 1. AWMSCC

Input: Multi-view data A", parameter «, f§ and y.
Output: Clustering result.

Initialized: 0’ = 0= Q,=X"=C"=E'=R'=0,
L=G=0,0"=1/(V+1),u=10", gy, = 10",
n=2,¢=0.001.

1 While not converged do

2 Update X" by Eq. (8);

3 Update S by Eq. (10);

4 Update E" by Eq. (12);

5 Update C” and R" by Eq. (15) and (17);
6

7

8

9

Update L by Eq. (19);

Update G by Eq. (20);

Update w by Eq.(21);

Update 0, 0%, Q; by Eq. (22);
10 end while

11 Update x by Eq. (22);

12 Perform spectral clustering on S.

Table 2. Dataset description

4 Experiment

4.1 Datasets

This article selects four public datasets, Table 2
provides a visual summary of the four datasets. Here is a
brief overview of each dataset:

BBCSport: This dataset comes from the BBC and
contains 544 sports news documents. Two different angles
are extracted as view information.

BBC4VIEW: This dataset also comes from the
BBC and includes 685 subject documents. Four different
features are extracted for each document.

NGs: This dataset contains 500 newsgroup samples
and has information from three different views of the
samples collected through three distinct collection
methods.

ORL: This dataset collects facial images of 40
different individuals. Each person has 10 faces, totaling
400 images. Three distinct features are extracted as view
information.

4.2 Comparison Methods

To demonstrate the superiority of the AWMSCC
algorithm, it will be compared with seven other advanced
multi-view clustering algorithms. Additionally, parameter
tuning will be performed for each clustering algorithm
to achieve optimal performance. The following is a brief
description of the compared algorithms:

SMVSC [29]: This algorithm constructs a unified
framework by integrating anchor points and graph learning
methods, more accurately describing the true distribution
of view data.

LT-MSC [21]: LT-MSC learns higher-order corre-
lations between views through low-rank tensor constraints.

ETLMSC [30]: This method introduces probabilistic
transfer tensor to subspace learning for the first time, which
effectively reduces the running time of the algorithm.

t-SVD-MSC [22]: This method applies t-SVD method,
providing a more intuitive way to learn higher-order
information between views.

LSGMC [8]: This method explores view consistency
through symmetric constraints and rank consistency
constraint method.

HLR-MVS [31]: This method uses hypergraphs to
capture view correlations and local flow structures.

DV-MSC [11]: This method divides the view features
into two dimensions and learns the complementarity and
high-order consistency information of views from low to
high at two different levels.

Datasets Objective Size Clusters Dimensions

BBCSport Text 544 5 [3183, 3203]

BBC4View Text 685 5 [4659, 4633, 4665, 4684]
NGs Text 500 5 [2000, 2000, 2000]

ORL Face 400 40 [4096, 3304, 6750]
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4.3 Evaluation Metrics

To comprehensively assess the performance of
AWMSCC, six evaluation metrics are selected to measure
the model. These six metrics are ACC, NMI, F-Score,
Precision, AR and Recall.

Table 3. Experimental results on four datasets

4.4 Performance Comparison

During the experimental stage, optimal parameters
were selected for each algorithm. The clustering perfor-
mance comparison results of AWMSCC with the other
seven algorithms are detailed in Table 3. In these tables, the
bold values indicate optimal performance, the underlined
values suboptimal performance.

Dataset Methods NMI ACC AR F-score Precision Recall
BBCSport SMVSC 0.7072 0.8768 0.7118 0.7789 0.7978 0.7609
LT-MSC 0.3223 0.5638 0.2511 0.4905 0.3657 0.7775
ETLMSC 0.9688 0.9890 0.9803 0.9850 0.9895 0.9806
t-SVD-MSC  0.9049 0.9706 0.9172 0.9371 0.9313 0.9429
LSGMC 0.9171 0.9761 0.9378 0.9525 0.9602 0.9449
HLR-MVS 0.9158 0.9743 0.9334 0.9492 0.9504 0.9481
DV-MSC 0.9884 0.9963 0.9932 0.9948 0.9965 0.9921
AWMSCC 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
BBC4View SMVSC 0.6939 0.8759 0.7198 0.7855 0.7854 0.7855
LT-MSC 0.7566 0.9109 0.7913 0.8404 0.8381 0.8427
ETLMSC 0.5412 0.6623 0.4031 0.5338 0.5717 0.5006
t-SVD-MSC  0.9233 0.9635 0.9150 0.9344 0.9609 0.9093
LSGMC 0.9275 0.8380 0.7807 0.7860 0.7391 0.8396
HLR-MVS 0.9041 0.9504 0.9002 0.9229 0.9508 0.8967
DV-MSC 0.8858 0.9650 0.9140 0.9340 0.9406 0.9275
AWMSCC 0.9539 0.9810 0.9628 0.9714 0.9826 0.9605
NGs SMVSC 0.7358 0.8680 0.7208 0.7771 0.7645 0.8442
LT-MSC 0.9652 0.9900 0.9750 0.9799 0.9798 0.9801
ETLMSC 0.3920 0.5190 0.2671 0.4374 0.3734 0.5280
t-SVD-MSC  0.9722 0.9920 0.9800 0.9840 0.9838 0.9841
LSGMC 0.8507 0.9460 0.8705 0.8962 0.8954 0.8971
HLR-MVS 0.9780 0.9371 0.9465 0.9571 0.9569 0.9573
DV-MSC 0.9686 0.9900 0.9750 0.9799 0.9797 0.9802
AWMSCC 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
ORL SMVSC 0.9204 0.8075 0.7603 0.7661 0.7197 0.8188
LT-MSC 0.9151 0.8130 0.7518 0.7578 0.7147 0.8067
ETLMSC 0.9868 0.9503 0.9467 0.9479 0.9242 0.9731
t-SVD-MSC  0.9671 0.9150 0.8979 0.9002 0.8792 0.9222
LSGMC 0.9322 0.7980 0.7578 0.7639 0.6873 0.8611
HLR-MVS 0.9839 0.9300 0.9280 0.9297 0.8926 0.9700
DV-MSC 0.9797 0.9175 0.9123 0.9144 0.8743 0.9583
AWMSCC 0.9929 0.9625 0.9652 0.9660 0.9467 0.9861

AWMSCC achieved the best performance across
all four benchmark datasets, showing a significant
improvement compared to other algorithms. Specifically,
on the BBCSport and NGs datasets, all clustering
performance metrics of AWMSCC were 1, indicating
exceptional performance without any misclassified
points. On the ORL dataset, the clustering performance
of AWMSCC is close to that of ETLMSC and HLR-
MVS. This may be because the dataset contains less
feature information and is relatively easy to process. On
the BBC4View dataset, AWMSCC achieved excellent
performance, and compared with the second best t-SVD-

MSC, the clustering performance was improved by 3.31%,
1.81%, 5.22%, 4.07%, 2.25%, and 5.6%, respectively.

The matrix-based methods, LSGMC and SMVSC,
performed poorly on the four datasets. The primary
reason is that they only utilized the matrix nuclear norm
to capture the structural information of views, without
fully considering the higher-order correlations between
views. HLR-MVS learns view structure information
by hyper-Laplace regularization, but its clustering
performance is average. This is because while it learns
local structural information within views, it ignores the
inherent consistency information between views. DV-
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MSC is a recently proposed dual-view structure learning
method that performs better on most datasets, but still
lagged behind AWMSCC. This is mainly because DV-
MSC takes into account both the consistency and high-
order correlation between views, but ignores the different
effects of different views on the final result. ETLMSC,
t-SVD-MSC and the proposed AWMSCC are all tensor-
based methods, but AWMSCC outperforms these two
methods on all datasets. This is because AWMSCC not
only learns the high-order structural information between
views through TNN constraints, but also fully considers
the inherent consistency information between views and
the difference in the contribution of each view to clustering
performance. AWMSCC effectively solves the problems
of the above methods by simultaneously learning the high-
order consistency between views and the problem of view
contribution mismatch, and achieves the best performance
in the experiment.

4.5 Performance Comparison

The AWMSCC algorithm requires manual adjustment
of three parameters: a, f, and y. These parameters are
all selected within the range [0.00001, 0.0001, ..., 100].
Figure 2 illustrates the sensitivity of parameters o and f in
AWMSCC, where y is fixed as the optimal value. As can
be seen from Figure 2, selecting different values for a and

ACC (%)

ACC (%)

f can maintain stable clustering performance, indicating
that the algorithm has a certain robustness. In Figure 3,
the effect of y on the clustering performance is explored
by keeping the values of parameters o and f§ constant.
From Figure 3, it can be seen that different values of y
have a greater impact on the clustering performance,
which implies that the contribution of views is crucial
for clustering performance. Additionally, the optimal
parameters corresponding to a, f and y for datasets
BBCSport, BBC4View, NGs and ORL are as follows:
(0.0001,0.01,0.00001), (0.0001,0.01,0.1), (0.0001,0.01,0.1)
and (0.00001,0.001,0.01).

4.6 Convergence Analysis

The convergence of AWMSCC is discussed in
this section. Figure 4 shows the convergence plots of
AWMSCC on four different datasets. Reconstruction error
is defined as follows:

errorl = %ZV‘J A" —A"X"-FE" B
v=1
max q error2 = li X' -C'LR" (23)
v=1 *
error3 = ||H - g||w
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Figure 2. Parameter analysis on all dataset
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As can be seen in Figure 4, after about 40-45 iterations,
the error converges to 0. Based on these observations, it is
shown that AWMSCC has excellent convergence.

5 Conclusion

In this paper, we propose a new MSC method,
namely AWMSCC, which not only learns the consensus
information among views at a high-dimensional level, but
also fully takes into account the difference in importance
of different views for clustering. First, coefficient matrices
are obtained by self-representing all original matrices.
Next, rank consistency constraints are imposed on these
coefficient matrices and a three-factor decomposition is
performed to generate shared consistency matrices. To
ensure that all coefficient matrices learn the consistency
information between views, the coefficient matrices are
further spliced into a tensor with the shared consistency
matrix and TNN constraints are imposed so that the
consistency information can be propagated to each other
at a high dimensional level. Additionally, a self-weighting
strategy among views assigns appropriate weights to
each view. Although AWMSCC performs well in terms
of clustering performance, the higher computational
complexity and longer runtime are issues that cannot
be ignored. In the future, we plan to adopt the Markov
chain method to replace self-representation learning in
order to reduce the overall computational complexity of
the algorithm. In addition, we also intend to incorporate
the concept of one-step learning into AWMSCC with the
aim of directly generating the final clustering results, thus
further improving the efficiency.
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