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Abstract

Unmanned aerial vehicle (UAV) cross-view object
localization is widely used in applications such as field
rescue, disaster detection, and express delivery. The
feature-matching method, which locates the object position
by matching the UAV object image and satellite image, is
a key technology for UAV cross-view object localization.
This study proposes a feature-matching method optimized
using a rolling-guided filter. First, a rolling-guided filter is
introduced to calculate the keypoint respondence, which
addresses the problem of scale difference between the
two images; then, we introduce the phase congruency
information for feature description. By obtaining candidate
corresponding keypoint sets through feature matching,
the problem of gray level differences between images can
be solved; Finally, we use the respondence of candidate
keypoints to calculate the network loss, which addresses
the problem of viewing angle differences between images.
The experimental results demonstrate that the proposed
method can effectively improve the feature-matching
performance.

Keywords: Image matching, Point matching, Set
matching, Diffeomorphic, Phase congruency

1 Introduction

Unmanned aerial vehicles (UAVs) have become a
research hotspot in many countries because of their small
size, high flexibility, and low cost. Currently, drones are
being widely used in field rescues [1], disaster detection
[2], precision agriculture [3], surveying and mapping
[4], and express delivery [5]. Most UAV applications
require precise localization of objects; therefore, object-
localization technology is the basis for many applications.
Object localization method based on feature matching is
an autonomous positioning technique. In this method, the
given satellite reference image is matched to the object
image captured by a UAV, which is also known as cross-
view object localization. As the satellite reference image
and UAV object image contain an obvious differences, this
method is also called cross-view object localization [6-9].
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With the development of computer vision, several methods
have been proposed by scholars. Zhang et al. proposed a
3D reconstruction algorithm for small indoor scenes, which
improved the matching algorithm and matching strategy,
and advanced the real-time property of motion recovery
algorithm [10]. Duan et al. proposed a UAV image
stitching algorithm based on image segmentation and
generalized Hough transform based on the existing image
stitching algorithm. [11]. Li et al. accomplished large-
scale intelligent driving scene reconstruction by combining
stereo matching, depth-value calculation, triangulation, and
texture mapping algorithms [12]. Liu et al. proposed the
construction and matching of thermal feature description
method based on image retrieval, that solved the problem
of mismatches caused by highly similar local descriptors in
different regions during the feature matching process [13].
Zou et al. proposed a fully automatic stitching method
for UAV images based on 3D reconstruction to obtain
geometrically consistent stitching images [14]. However,
these methods cannot solve the problems of viewing
angle differences and large-scale deformations between
satellite reference and object images. To address these
two problems, this study analyses the research status from
three perspectives: Region-, feature-, and learning-based
matching.

The region-based matching method defines a similarity
measure criterion (such as a normalized cross correlation
[15], mutual information [16], and cross cumulative
residual entropy [17] , etc.), the similarity is calculated
using the sliding window method according to the
comparation of current window and the template image,
and the matching is successful when the similarity is the
largest. Wu proposed a fast NCC matching method based
on wavelet pyramid search strategy [18]. Yu et al. proposed
a secondary matching method based on image edge
features [19]. Fu proposed a fast anti-rotation matching
algorithm based on covariance matrix [20]. Owing to the
need to traverse all possible transformation relationships
between images, the calculation of the region-based
matching method is time-consuming. Therefore, in case
of large gray-scale differences, scale changes, and rotation
changes between images, the matching is likely to fail.

Feature-based matching is the algorithm most widely
used for this purpose. This method first extracts salient
features of the image (such as point feature [21-22], line
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feature [23], surface feature [24] and optimizing feature
[25], and then determines the matching feature point
pair by calculating the distance of the features in the two
images, and then finally selects the appropriate spatial
transformation model. The traditional scale invariant
feature transform (SIFT) algorithm is proposed by Lowe
et al. [26]. Ke et al. combined the principal components
analysis (PCA) method with the SIFT algorithm to
improve its efficiency [27]. Bay et al. proposed Speeded
Up Robust features (SURF) and Kova et al. applied
it to finger vein recognition, which uses box filters
to approximate the differential Gaussian of SIFT and
performs feature detection on a fast Hessian matrix [28].
Gao et al. proposed an optimized affine invariant SIFT
algorithm [29]. Wang et al. applied the SURF algorithm
to match UAV images with the satellite images [25]. Niu
et al. proposed a fast feature matching method based on
a scale-invariant feature transformation [30]. Zhang et
al proposed a UAV feature matching algorithm based on
CenSurE-star [31]. The feature-based matching method has
a high computational efficiency, and good anti-occlusion
and anti-geometric distortion. However, no method can
perfectly solve this complex problem of matching satellite
reference images and UAV object images for UAV cross-
view object localization.

With the rise of artificial intelligence, feature matching
methods based on deep learning have achieved significant
progress. Yi et al. proposed a learning-based invariant
feature transformation called LIFT [32] which is a
pioneering method that implements a complete feature
matching process. Yuan et al. used VGG16 convolution
features as keypoint descriptors to improve the matching
performance between UAV and satellite images [33]. A
part of this study also aims at obtaining a feature extraction
model by training a deep convolutional neural network
(CNN) [34-36]. Choi et al. segmented an image through a
neural network to obtain the building area and circular area
and used the ratio of the building area to a circular area
as a feature for complete matching [37]. Nassar proposed
deep CNN-based registration boxes for the UAV images
[38]. Xu et al. proposed a joint description network [39].
These methods are more effective than traditional feature-
based matching methods; however, it required a large
amount of data, which limits its application to UAV cross-
view object localization.

According to the above analysis, the following
problems exist in UAV cross-view object localization.
First, traditional approach cannot solve the problems of
viewing angle difference and large-scale deformation
between the satellite reference image and the object
image. Second, the traditional feature matching method
is prone to failure when large grayscale differences exist.
Last, the he state-of-the-art deep learning-based feature
matching methods only consider certain attributes such as
sparsity, repeatability, and distinctiveness, which may limit
accuracy in a complex circumstance with noise.

To address these problems, this study focuses on
feature matching methods, combining deep learning-based
feature matching methods to propose a rolling-guided
filter-based optimized feature matching method and make

the following contributions:

(1) A rolling-guided filter was introduced to generate
an image-scale pyramid that preserved the image edge
information and improved the repeatability of keypoints.

(2) A phase-weighted information was introduced to
construct feature descriptors that improved the adaptability
of feature descriptors to large grayscale differences
between images. The above method was then used to
obtain the candidate corresponding keypoints of an image.
The corresponding keypoint is employed to compute the
network loss, which introduces attribute constraints to train
the keypoint detector and feature descriptor.

(3) We introduced the corresponding keypoint
set obtained by nearest neighbour matching to better
completing the feature-matching task between the satellite
reference and UAV object images.

2 Related Works

Feature matching methods are oriented toward UAV
crossview object localization tasks, and can be classified
as region-based and feature-based methods for different
matching information. The region-based matching method
compares the similarity between the windows using
the sliding window approach and the two images are
considered as successfully matched when the similarity
is optimal. The feature-based methods include point, line,
and surface features. Point features are the most commonly
used and researched features, which generally exist at
locations where the gray value changes significantly in
all directions in the image. Point features have a better
resistance to occlusion and are easy to extract as well
as more suitable for matching satellite images and UAV
images than face features and line features. Feature-
matching methods can be further divided into traditional
and learning-based feature-matching methods. Based
on the traditional feature matching methods, this study
proposed a feature-matching method optimized using
a rolling-guide filter, and introduced phase congruency
information to create a feature descriptor. The three
methods are described below.

2.1 SIFT: A Feature Matching Approach

The targets of early point-feature matching research
were mainly the corner points of the image. Harris et al
[40] proposed the corner point extraction algorithm in
1988, using differential operations and an autocorrelation
matrix to detect corner points in an image with a rotation
invariance and illumination invariance, but without scale
invariance. Mikolajczyk et al [41] improved the Harris
corner point extraction algorithm. Lowe proposed the SIFT
algorithm, which uses a differential Gaussian operator
to approximate the Laplacian operator to establish the
differential scale space of the image. SIFT is a classical
feature-matching method with good performance in
natural image matching. SIFT feature matching algorithm
comprises five main steps: scale—space extremum
detection, keypoint location, assignment of principal
directions, construction of feature descriptors, and feature
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matching. The scale space L of the image was obtained
from the following equation:

L(z,y,0)=G(z,y,0) * I(z,y) @

where G(x, y, o) is a variable-scale Gaussian function,
I(x, y) is input image, the symbol * is convolution operator.
The difference in the Gaussian (DoG) image space is
generated by convolving an image with Gaussian kernels
of adjacent scales as shown in the following equation:

D(:v,y,a):(G(:v,y,ko)fG(w,y,o)) * I(.’L’,’y) (2)

The relationship between the difference in the Gaussian
(DoG) operator and the normalized Laplacian operator is
as follows:

G(xayaka-)iG(xayaa-)g(k*]-)O'ZAQG (3)

Therefore, using the DoG operator instead of the LoG
operator can improve the keypoint detection efficiency
[40].

The rolling-guided filter is an edge-preserving filter
that can retain the edge information in images, which is
beneficial for improving the repeatability of keypoints.
Therefore, in the subsequent sections of this study, a
rolling-guided filter was used instead of a Gaussian filter to
generate the scale pyramid.

2.2 Phase Congruency Feature Detection Method

Phase congruency-based feature detection methods
utilize the moments of phase congruency information to
determine the corners and edges. Phase congruency is a
dimensionless quantity that provides contrast invariant
information; thus, the magnitude of the main moments of
phase congruency can be used directly to determine the
strength of the corners and edges [42]. Kovesi improved
the phase congruency model and successfully applied it to
feature detection using the following model structure:

> W (z)B,(2)
PCy(z)= W )
B,(z) =14,(2)(C(z) —|S ()|) = T| ®)
C (z)=cos(¢.(z) — ¢ (x)) ©)
S (z)=sin (¢, (z)— ¢ (2)) %)

where function W(x) represents the weight factor for
the frequency extension. To avoid division by zero,

a small constant value € is added. Only when the
energy respondence is greater than 7 is included in the
calculations. The notation |p| indicates that p is equal to
itself when it is positive; otherwise, it is zero.

According to the classical moment analysis equation,
the maximum and minimum moments of phase congruency
are denoted by M and m respectively,

M:%(c+a+ b+ (a—c)?) )

m=(cta—V+@a—0>) ©)

where M represents the edges in the image and m
represents the corners in the image. And a, b, and ¢ are
calculated as follows:

a= Y (PC(6)cos(0))” (10)
b=2 (PC(0)cos(0))- (PC(0)sin()) (11)

c=> (PC(®)sin(9)) (12)

2.3 Feature Matching based on Property Optimization

For convenience, we first provide the meanings of
some of the symbols. Let 7 and D denote the keypoint
detector and feature descriptor, respectively. The output
score of the keypoint detector is defined as:

fj[i]:nmsmd(F(Oi,Tj(INHF)),i61) N 13)

where nms,,, denotes the non-maximum suppression
function that ensures that one keypoint can be detected in a
local window with a radius of rad. I represents the original
image in the training sample and N is the number of pixels
in the image. Under illumination and viewpoint variations,
I is transformed into 7(/), where j denotes the different
transformations. o, represents the corresponding pixel in
the original image I and transformed image 7,(/).
Descriptor D outputs a descriptor vector for each
keypoint in the image 7)(/), which is defined as follows:

d][l]:D(017T](1)|0F)?l61’ 7N (14)

where d (i) is a normalized unit vector.

The objective of the training process is to maximize the
joint probability of all attributes to optimize the keypoint
detector and feature descriptor [43]. As the locations of the
keypoints in the image are not known in advance, a latent
variable y is introduced to represent a set of keypoints. Y is
a vector of length N (number of pixels in the image), where
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y[i] = 1 if pixel o, is a keypoint, or y[i] = 0. According to
the definition of o;, y[i] = | implies that o, is a keypoint in
both the original image I and the transformed image 7(/).

Using the attribute optimization method described
above, we can theoretically obtain keypoints with
repeatability and distinctiveness. However, the
performance of the cross-view feature matching scenario
decreased.

3 Proposed Method

3.1 Feature Matching Architecture based on Rolling

Guided Filter

The overall framework of the method is illustrated
in Figure 1. First, the satellite reference image and UAV
object image are input into the framework. Second, a
rolling-guided filter is used to establish a difference-of-
Gaussian rolling-guided scale space (DoGR). Next, phase
weighted information is used to construct the feature
descriptors for each keypoint, and candidate corresponding
keypoints are obtained through nearest-neighbour
matching. The respondence of the corresponding candidate
keypoints are used as constraints to construct a network
loss. Finally, the proposed model is used to match the
satellite reference and UAV object images. Thus, this
framework includes the following three optimizations:

(1) This study proposes a method of computing
keypoint respondence based on rolling-guided filter.
To address the issue of losing image edge information,
a rolling guided filter is used to build an image scale
pyramid, which retains the edge information of the image.

(2) A feature description based on phase-weighted
information is explored to describe the feature. Phase
congruency information is introduced to construct a feature
descriptor based on phase-weighted information. Candidate
corresponding keypoint sets are obtained through feature
matching using this descriptor.

(3) A property optimization based on keypoint
respondence constraint is conducted to accomplish
image matching in this study. A network loss constraint
is constructed using the keypoint respondences of
corresponding keypoints to optimize the model. The
optimized model obtains the optimal corresponding
keypoint set.

3.2 Principle of Feature Matching based on Rolling
Guided Filter

To address the issue of viewpoint differences between
satellite reference images and UAV object images, this
study proposes a feature matching method based on a roll-
ing-guided filter as shown in Figure 1. First, the keypoint
respondence of the image is calculated using a rolling-guid-
ed filter, and the keypoints are obtained. accordingly.
Second, a feature descriptor based on phase-weighted in-
formation is used to obtain the descriptors and a candidate
set of corresponding keypoints is obtained through feature
matching. Subsequently, the respondence of the candidate
corresponding keypoint sets is used to compute the loss for
optimizing the feature-matching network.

Optimization 1: Keypoint Response Calculation
Based on Rolling Guidance Filter

v
= =
o
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Gaussian-guided DoGR Scale
Reference Scale Space Space
Image
L '-v + > KeyPoint
Target Response
Image Phase Gradient  Weighted Phase
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A

Optimization 2: Feature Description Based
on Phase-Weighted Information
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Figure 1. Property optimized feature matching framework

3.2.1 Keypoint Respondence Calculation based on
Rolling Guided Filter

A rolling-guided filter is an edge-preserving filter
that retains the edge information of an image, which
is beneficial to improve the repeatability of keypoints.
Therefore, in this study, the Gaussian filters represented
by Equation 1 and Equation 2 are replaced with a rolling-
guided filter to generate the scale pyramid. Candidate
keypoints are then obtained through extreme detection in
the scale pyramid, followed by subpixel localization.

(1) Rolling guided filter

The rolling-guided filter is an edge-preserving filter
that can retain large-scale structural information of an
image while filtering out the image noise. It consists of two
parts: the removal of small-scale structures and restoration
of edges.

Small-scale structures were removed using a Gaussian
filter, as shown in the following equation:

cm=5 > eo(- M6 as

P qeN(p)

o 2
where K,= Z exp<f %) denotes the

geN(p)

normalization term, [ is the input image, G is the output
image. p and ¢ are the pixel coordinates in the image, g, is
the Gaussian standard deviation, and N(p) is the coordinate
collection of the neighbouring pixels around p. This filter
eliminates structures smaller than o, in scale.

Edge recovery is an iterative process. First, the
input image [ is smoothed using Equation 10 to obtain a
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smoothed image J;. Then, the input image / and result of
the previous iteration J, are used in a joint bilateral filter to
obtain the value of the (¢ + 1)th iteration, denoted by J,,,,
as follows:

TP =2 > we) 1@ 1@ 6

P qeN(p)

where w(p, q) is the joint bilateral filter weight defined as:

IO LW O SWL)

w(p,q):exp< 907 o

In Equation 11, J(g) is the value of the previous
iteration at pixel ¢, and o, and o, are the bilateral filter
parameters controlling the range and domain filter standard
deviations, respectively. The joint bilateral filter weight
w(p, q) considers the intensity similarity between p and ¢
in the input image /7, as well as the similarity between J,(p)
and J/(q) in the previous iteration result J,. This iterative
process helps recover the edges in the image while
preserving large-scale structures.

(2) Feature detection based on rolling guided filter

In this section, we introduce the rolling-guided filter
for feature detection. The feature detection process based
on the rolling-guided filter involves four steps establishing
a difference in Gaussian rolling (DoGR) guided pyramid,
spatial extremum detection, subpixel localization, and
elimination of edge respondences.

1) Establishing DoGR guided pyramid

Instead of the traditional approach, we chose a rolling
guided filter to establish the difference in the Gaussian
rolling (DoGR) guided pyramid. First, we set the number
of octaves in the scale-space pyramid to O and the number
of layers to S. The scale at any position in the scale space
is given by:

o(i,j)=k" toy2' " (18)

. o 1.
where o, is the initial scale and k = gc 1 the scale transfer

coefficient with S = ¢c+3,i € [1, O], andj € [1, S]. The
rolling-guided filter is convolved with the input image to
obtain the scale space image, which is expressed by the
following equation:

J”l(;o,o(i,j)):Ki > exp(fit £)1() (19)

P qeN(p)

_lp—dl|?

h= 202 (1,5) (20
R IPHOEPHOIE
fr=— 257 @1

where K, =" ex(,) €Xp(fi+ f,) is the normalization term and
1(q) is the input image. The scale space was constructed
by repeatedly applying Equation 14 to generate a Gaussian
rolling guided pyramid with O octaves and S layers. The
neighbouring images in the pyramid are then used to
generate the DoGR-guided pyramid.

2) Spatial extremum detection

A local extremum can be detected on the DoGR
pyramid to obtain candidate keypoints, as shown in Figure
2. Each pixel in the current pyramid layer was compared
with 26 neighbouring pixels, including eight neighbouring
pixels at the same level, nine neighbouring pixels at the
previous level, and nine neighbouring pixels at the next
level. If the value of the pixel is greater than or less than
the values of these 26 pixels, the pixel is then considered
to be a candidate keypoint.

>

UoTlaall] 2 rag

Figure 2. Spatial extremum detection

3) Subpixel localization

The extremum points obtained from the spatial
extremum detection are discrete. Therefore, in this
study, the precise locations and scales of the keypoints
were determined by fitting a three-dimensional
quadratic function. Similar to SIFT, Taylor expanded the
respondence value of the candidate keypoint and got the
D(X) as follows:

oD” 1., 02D
X+ 5 X" 55

D(X)=D+ X

X 22)

The offset of the keypoint is calculated using the
following equation:

. 9’°D'oD
X=="5x" ax

(23)

If the offsets in all three dimensions were greater than
0.5, interpolation was required to add the offsets to the
keypoint, resulting in a new sampling point. Subsequently,
the function value D(X) at the extremum position is
calculated using Equation 19, and keypoints with |D(X)|"
less than 0.03 are discarded.

D(X)=D+ % 681?; X (24)
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3.2.2 Feature Description based on Phase-Weighted
Information

Phase congruency has the advantages of light
intensity invariance or contrast invariance. Considering
the significant grayscale differences between satellite
reference images and UAV object images, phase-
weighted information was introduced to construct feature
descriptors. By computing the similarity of features, a
candidate set of corresponding keypoints is generated to
address the large grayscale differences.

(1) Phase congruency modelling

First, given an image I, where any pixel is denoted as

I(x, y). M2 and M°¥ represent an evenly symmetric

and odd symmetric filters of a 2D log-Gabor wavelet
with scale s and orientation o. The 2D log-Gabor can
be constructed as the frequency domain with a centre
frequency (f;, 0;), where 6, is the orientation angle of the
filter and f; is the central radial frequency.

__ log(f/f:) ; ,(0*%)2
LG(f,G)Ze 2(10g(‘7)’,/f1)) -e 20a, (25)

The relationship between the central radial frequency f;
and filter wavelength 1 is given by

1
fi=5 (26)

The even and odd convolution respondences e, (x, )
and d,,(x, y) of image / can be obtained using Equation 22:

lew(z,y),duo (z,) =1 (z,y) - MZ™, I(z,y) - M) (27)

Next, we compute the amplitude component 4, (x, y),
phase component ¢, (x, y), and local energy E(x, y) of the
image I(x, y) at scale s and orientation o:

A, (z,9)=v/e2 (z,y) + d2 (z,y) (28)

¢so (-'L'7 y) =atan2 (esn (ma Z/) ) dso (.’L‘, y)) (29)

zmwﬂgzkmwf{gzyﬂmf 30)

Considering the influence of noise, the calculation of
phase congruency is given by the following equation:

Z Z W, (zay) LASO (%Z/)Aff’so (-T’y) - TJ
— @31

DD A (zy)te

pe(z,y) =

where pc(x, y) represents the magnitude of the phase
congruency. w,(x, y) is the weighting function, A¢, (x, y)
is the phase deviation function, 7 is the noise threshold
and € is a small value to prevent division by zero. The |...
| operator ensures that the result is not negative and if the
value inside the brackets is positive; it remain unchanged;
otherwise, it is set to 0.

(2) Feature description with phase-weighted
information

To achieve rotational invariance, it is necessary to
assign the main orientation to the keypoints. Before
constructing the feature description, the image is rotated
according to the main orientation, such that the x-axis
of the original image aligns with the main orientation.
The following sections describe the main orientation
assignment and feature description.

1) Main orientation assignment

First, the input image / is processed using Equation
26 to calculate the multi-angle phase information pc,.
Subsequently, the phase information is accumulated
according to the angular direction to obtain the overall
phase information pc,,. Next, Sobel operators are used as
convolution kernels to convolve with / and pc,, separately
and obtain the gradient magnitude gd, angle information
angle, and phase gradient magnitude pc,,,

The computation of the phase-weighted gradient
information gd,, is given by

gduyy=¢€-gd+(1—e€)- pcya 32)

where € denotes the weighting factor, gd and gd,, are
calculated as follows:

gd =+/dz*+dy®,pc,a=+/dz3 + dys (33)

For each keypoint, a square region with a side length
of 60 and centered at the keypoint is taken. A gradient
histogram was computed within this region, and the peak
value was selected as the main orientation. In addition,
the directions with histogram values greater than 80%
of the main orientation were considered as secondary
orientations.

2) Feature description
The feature description method proposed in this study
is illustrated in Figure 3. Angle information and phase
weighted gradient information gd,, of the image are
computed using Equation 27. A square region with a side
length of N, centered at each keypoint was extracted,
where N, was obtained as follows:

N, = {min (1 20, Irml(?{“fI’))J (34)

where o is the scale size of the keypoint; 7, and 7, are the
width and height of the image, respectively; and |... |
denote the floor function.

Next, the two domains were then divided into
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17 approximately equally sized sub-regions. Each
subregion generated an 8-dimensional histogram of
gradient magnitude and orientation, resulting in a final
136-dimensional feature descriptor.

Info

T Histogram statistics in
polar coordinates

Gradient Info o {
+ |
i3 ” 1. U |

Phase nfo

Feature descriptor

Figure 3. Illustration of the feature description process

3) Generate candidate corresponding key point set

In this section, we denote the keypoint sets obtained
from the satellite reference image and UAV object image
as k, and k,. The feature descriptor sets for these keypoints
are denoted as d, and d,, and are generated using the phase-
weighted descriptor. Euclidean distance between any two
feature descriptors is given by:

D(di,di)=,|> (ri—t)> (35)

where df = (1 ,7;,...,15) fori€[1,2..., N;], and N, being
the number of keypoints in the satellite reference image
and df = (t/,t],....t}35) for j€[1, 2..., N,], with N, being

the number of keypoints in a UAV object image. Feature
matching was then performed based on the nearest-

neighbour criterion to obtain a candidate corresponding
keypoint set, which was used to generate the network loss
based on the property-optimal.
3.2.3 Feature Matching based on Property Optimization
with Keypoint Respondence Constrained
(1) Overall process of optimized feature matching
method

Traditional feature matching methods lack a connection
between keypoint detection and feature description, which
leads to suboptimal performance for crossview object
localization in UAVs. We proposed a feature matching
method based on property optimization with keypoint re-
spondence constrained as shown in Figure 4.

First, images without keypoint labels are input into
the keypoint detector and feature descriptor. Second, the
keypoint respondence calculated by the rolling-guided
filter and feature descriptors based on phase weighting
can be used to obtain candidate corresponding keypoints.
Subsequently, a loss function is constructed based on the
keypoint respondence to jointly optimize sparsity, repeat-
ability, and distinctiveness.

As mentioned in Section 3, our optimization is based on
Equation 8. Assuming the corresponding candidate key-
point respondence is denoted by /,, the loss function for
optimizing the feature-matching network is given by

Lall :Lm (X7Y) + Lo(Xalr)

s.t. argmax,,, | | P.I1P, [P, 4] (36)

where X denotes the convolutional image, and Y denotes
the original image. L, is the mean-squared error loss
function, and L, is the cross-entropy loss function, which is
defined as:

L, (X V) =(X,Y)? 37)
LOGL)=— > Xhuwlegl(hw)  @8)

With transforms in
different condition
r——

q- g

I'“».

| |\Descriptor]
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[keypoint set |
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Constraint ,ss Constraintl
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Figure 4. Illustration of optimizing feature matching method
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where 4 and w denote the coordinates.

Finally, a keypoint detector and feature descriptor were
used to compute the keypoints and feature descriptors
of the images. Similar to the SIFT feature matching
algorithm, the corresponding keypoint sets are obtained
through nearest-neighbour matching.

4 Experimental Analysis

In the following sections, we introduce the
experimental dataset, evaluation metrics, parameter
analysis of the attribute optimization for keypoint
constraints, comparison of keypoint matching before
and after optimization, and a comparison with existing
methods. The experiments described in this chapter were
conducted on a PC with 16GB memory, AMD R7-5800H
processor, and NVIDIA GeForce RTX 3070 graphics card.
The experimental environment consisted of Python 3.8,
PyTorch, and MATLAB R2016b.

4.1 Experimental Dataset and Evaluation Metrics

To validate the performance of the proposed algorithm,
experiments were conducted using the University-1652
dataset released by the University of Technology Sydney
(UTS). This dataset includes 1652 buildings from 72
universities worldwide and contains data from two
platforms, including satellites, synthetic UAV. In this
study, the first 100 classes of satellite images (one image
per class) and their corresponding 100 classes of UAV
images (5 images per class) were selected from the
University-1652 dataset. Figure 5 shows some sample
images from the dataset, which exhibit variations in scale,
rotation, object types, and viewpoints.

In this study, the repeatability rate (RPR), recall
rate (RR), accuracy rate (AR), and quantity rate (QR)
were chosen as evaluation metrics for the experiments.
Meanwhile, time efficiency (TE) is used to evaluate the
running speed of different feature matching methods,

Original Image Wavelength=3

and is defined as the sum of the time taken for feature
detection, feature description, and feature matching as the
overall running time.

R

C.Object Variance ]5.Viepint Variance

Figure 5. Sample images from the university-1652 dataset

4.2 Parameter Analysis of Property Optimization
Feature Matching Method with Keypoint
Constraints
In this section, we will investigate the performance of

the scale factor of the rolling-guided filter, the wavelength

parameter of the log-Gabor filter, and weighting factor of
the phase-weighted information.

4.2.1 Analysis of Scale Factor of Rolling-guided Filter

In this section, we keep the scale factor fixed at the
optimal value of 0.2 and analyse the effect of wavelength

A using a Log-Gabor filter on feature matching. A Log-

Gabor filter with minimum wavelengths of 3, 6, and 9

nm was used to extract the phase congruency information

from the images, as shown in Figure 6. As the wavelength
increased, the details of the phase congruency information
decreased, leaving only the larger object edge information.

Therefore, setting the wavelength 4 in the Log-Gabor filter

can affect the phase congruency extraction from the image

and feature matching performance.

(L k

Wavelength=6

2o
Wavelength=9

Figure 6. Phase congruency of images at different wavelengths

Figure 7 shows the results of processing using the
rolling guided filter with different values of the scale factor
o, = 0.05, 0.1, 0.15, 0.2. As the scale factor o, increased,
the blurring of the edge areas in the image became heavier.
When o, = 0.05, the matching accuracy (AR) was 96.36%,
indicating a good matching performance. However, as o,
increases, AR decreases to below 95%. The highest AR

of 98.44% is achieved when the o, = 0.2. When o, = 0.25,
the AR drops sharply to 76.36%, indicating a significant
decrease in matching performance.

Based on the above analysis, it can be concluded that
the value of 0.2 for o, in the rolling-guided filter yields
the best matching performance, with a matching accuracy
exceeding 95%.
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AR =176.36%

Figure 7. Variations on images with different scale

4.2.2 Analysis of Wavelength Parameter Related to
Log-gabor Filter

The feature-matching comparative experiment was
conducted using Log-Gabor filters of wavelengths ranging
from 3 to 9, and the results are shown in Figure 8. The
matching accuracy (AR) for different wavelengths are
as follows: 88.06%, 92.44%, 83.83%, 91.02%, 83.93%,
91.70%, and 87.80%. After wavelength 9, AR meet a
reduce. Regardless of the wavelength, the AR was higher
than 80%. When the wavelength is set to 4, 6, or 8, the AR
can exceed 90%. Moreover, when the wavelength was set
to 4, the matching accuracy reached its highest value of
92.44.
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Figure 8. Matching accuracy at different wavelengths

Therefore, we set the wavelength parameter to 4 can
reduce noise interference, extract better phase congruency
information from the image, and improves feature
matching performance.

4.2.3 Analysis of Weighting Factor for Phase-weighted
Information

The weighting factor € is used to balance the phase
and gradient information. In this section, the scale factor
of the rolling-guided filter is set to 0.2, wavelength of the
Log-Gabor filter is set to 4, and € is set from 0.1 to 0.9 for
conducting comparative experiments on feature matching.

The experimental results are presented in Figure 9.
When € was set from 0.1 to 0.9, with a step length of 0.1,
the matching accuracy (AR) was 94.36%, 89.85%, 96%,
67.2%, 66.66%, 63.15%, 94.15%, 60%, and 74.07%,
respectively. Overall, when € is in the range of 0.1-0.3, the
AR exceeds 89% and shows good matching performance,

with the highest AR achieved at € = 0.3. Subsequently, in
the range of 0.4 to 0.6, AR remains between 60% and 70%
with a significant decline in matching performance. When
€ = 0.7, the matching accuracy increases to 94.91%.
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Figure 9. Matching accuracy with different weight factors

Then, in the range of 0.8 to 0.9, the AR is consistently
below 75%. When € = 0.8, the AR reaches the lowest value
of 60%. Based on the above analysis, € values of 0.1, 0.2,
0.3, and 0.7 yield a good matching performance, with the
optimal performance achieved at € = 0.3.

4.3 Comparison and Analysis of Feature Matching

Methods Before and After Optimization

The method proposed in this section is a feature-
matching method using a rolling-guided filter. Through
experimental analysis, we set the weight factor of the
rolling filter to 0.2, Log-Gabor filter wavelength to 4, and
phase information weight factor to 0.3. The results are then
compared and analysed with SIFT [27] and POP-Net [44]
as listed in Table 1.

Table 1. Comparison of methods before and after
optimization

RPR RR AR QR
SIFT 07512 0.0020 0.1980  0.0115

POP-Net  0.5825 0.0146 0.2317  0.0033

Optimized  0.9801  0.0324  0.4460  0.2504

According to the previously mentioned criteria,
the repeatability rate (RPR) of SIFT, POP-Net, and the
proposed method were 0.7512, 0.5825, and 0.9801,

respectively. Compared to SIFT and POP-Net, the
proposed method shows improvements of 22.89% and
39.76% in RPR, respectively. This indicates that the
optimized method can detect more repeatable keypoints in
the same scene under different environmental conditions.

The recall rates (RR) of SIFT, POP-Net, and the
proposed method were 0.0020, 0.0146, and 0.0324,
respectively. The proposed method achieved the highest
RR, indicating that the keypoints detected by the optimized
method were more distinctive and suitable for matching.

Furthermore, the accuracy rates (AR) of SIFT, POP-
Net, and the proposed method were 0.198, 0.2317, and
0.446, respectively. The AR of the optimized feature
matching method was the highest, showing improvements
of 24.8% and 21.43% compared with SIFT and POP-Net,
respectively.

Finally, the quantization rate (QR) of SIFT, POP-
Net, and the proposed method were 0.0115, 0.0033, and
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0.2504, respectively. The QR of the optimized feature
matching method was the highest, showing improvements
of 23.89% and 24.71% compared with SIFT and POP-Net,
respectively.

Based on the above analysis, the proposed method
performed better than the pre-optimized method for all
evaluation metrics. Therefore, the proposed method
is more suitable for solving UAV cross-view feature
matching problems.

4.4 Comparison and Analysis with Existing Methods

In this section, the proposed method is compared with
several mainstream algorithms including SIFT [27], SURF
[45], ORB [46], ASIFT, AKAZE [47], Superpoint [48],
SuperGlue [49], DISK [50], TILDE [51], and POP-Net
[44]. The experimental results are presented in Table 2.

Among all algorithms, ORB has the fastest matching
speed, but its matching accuracy (AR) was only 0.1690,
which does not effectively solve the problem of matching
of satellite reference images and UAV object images. SIFT,
SURF, AKAZE, and ASIFT have AR values of 0.1980,
0.2240, 0.2390, and 0.4290, respectively, all of which were
higher than that of ORB, and SURF, AKAZE, and ASIFT
have higher matching precision than SIFT. Among them,
ASIFT performs well in large image viewpoint differences,
with RPR of 0.9665, RR of 0.0046, and QR of 0.1608,
but the time efficiency was significantly reduced, with an
average matching time of 14.6s for two 512*512 pixel
images. In deep learning-based feature matching methods,
TILDE, Superpoint, DISK, POP-Net, and SuperGlue have
AR values of 0.0038, 0.2722, 0.1860, 0.2317, and 0.2775,
respectively. SuperGlue has the highest AR and RR values,
whereas the performances of Superpoint and POP-Net
were slightly lower than those of SuperGlue. DISK has the
highest repeatability rate (RPR) and quantization rate (QR)
among these methods, with an RPR of 0.9075 and a QR
of 0.0124. The feature matching method proposed in this
study had RPR, RR, AR, and QR values of 0.9801, 0.0324,
0.446, and 0.2504, respectively, with the highest RPR, AR,
and QR values overall. Compared to the other methods,
the proposed method improved the RPR, AR, and QR
values by 32.25%, 22.3%, and 22.93%, respectively. The
experimental data indicate that the proposed method can
better address the issue of viewpoint differences in cross
view point feature matching, thereby laying the foundation
for further research on feature matching.

Figure 10 and Figure 11 demonstrate the performance
of different feature matching algorithms for building and
stadium. As shown in Figure 10, deep learning-based
methods, such as Superpoint, SuperGlue, DISK, TILDE,
and POP-Net outperform traditional feature-matching
methods, except for ASIFT. In Figure 11, where there
was a significant variation in the viewpoint between the
two images. ORB, SURF, AKAZE, DISK, SuperGlue,
Superpoint, and POP-Net failed to provide accurate
matches in these two images, whereas the proposed method
in this study maintains a good matching performance and
effectively addresses the issue of viewpoint differences in
feature matching.

Proposed Method

D.ASIFT

G.SuperGlue H.Superpoint

Figure 10. Matching results of building images

Figure 11. Matching results of stadium images

5 Conclusion

In this study, a rolling-guided filter-optimized feature
matching method was proposed to address the issue of
viewpoint differences between satellite reference and UAV
target images. Phase congruency was incorporated in the
feature description step to handle the grayscale differences
between the two images using phase-weighted information.
Subsequently, a candidate set of corresponding keypoints
was obtained using the previous methods, and the
respondences of these keypoints were used to construct a
network loss model for the joint optimization of sparsity,
repeatability, and discriminability to obtain keypoint
detector and feature descriptor. Finally, the trained models
were used to extract keypoints and feature descriptors
from two images, and the corresponding keypoint set was
obtained through nearest-neighbour matching. To validate
the effectiveness of the proposed method, experiments
were conducted using a University-1652 dataset. The
proposed method achieved an average improvement of
32.25% in the repeatability rate (RPR), 22.3% in the
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accuracy rate (AR), compared with the baseline methods.

viewpoint differences between satellite reference images

Therefore, the proposed method is effective in addressing and UAV object images.
Table 2. Comparison with existing feature matching method

RPR RR AR QR Time(s)
SIFT 0.7512 0.0020 0.1980 0.0115 1.20
SURF 0.8799 0.0020 0.2240 0.0112 0.93
ORB 0.3811 0.0242 0.1690 0.0019 0.63
AKAZE 0.7032 0.0067 0.2390 0.0042 1.39
ASIFT 0.9665 0.0046 0.4290 0.1608 14.60
TILDE 0.2794 0.0015 0.0038 0.0019 2.56
DISK 0.9075 0.0033 0.1860 0.0124 1.50
Superpoint 0.5392 0.0245 0.2722 0.0021 0.72
SuperGlue 0.5849 0.0649 0.2775 0.0026 2.20
POP-Net 0.5831 0.0146 0.2317 0.0033 0.67
Proposed 0.9801 0.0324 0.4460 0.2504 0.38
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