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Abstract

Object detection is one of the most fundamental and 
core research areas in the field of computer vision, and 
the YOLO Series, a representative model series, is widely 
utilized across various artificial intelligence systems. 
Mobile networks serve as a crucial connectivity element 
that links nearly all industrial sectors, connecting various 
IoT devices through these networks. A typical example is 
network cameras (CCTV). Some deep learning AI models 
often exhibit degraded object detection performance 
compared to their reported benchmark results. While 
multiple factors may contribute to this, one well-known 
reason is the difference in characteristics between publicly 
available training datasets and images collected in CCTV 
environments. Due to the inherent bandwidth limitations of 
wireless networks, data transmission is often constrained. 
Particularly in mobile network environments, various 
approaches such as applying edge computing have been 
researched to reduce network load for object detection 
models deployed on CCTV systems. In this study, we 
systematically and linearly adjusted image resolution 
and object scale in video/image data transmitted over the 
network to analyze their impact on detection performance. 
Through this, the goal is to explore practical methods for 
achieving efficient real-time object detection that consider 
the constraints of network environments.

Keywords: Image resolution, Object proportion within 
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1  Introduction

Early forms of artificial intelligence, such as expert 
systems, relied on explicitly programmed knowledge 
and rules. These systems generated responses to user 
queries solely based on pre-entered data and rules, making 
them incapable of reasoning beyond their programmed 
knowledge. To address this limitation, researchers 
developed techniques enabling computers to autonomously 
generate rules from data, a concept now known as machine 
learning [1-2]. 

Machine learning is utilized in almost every domain 
where artificial intelligence is applied, with computer 
vision being one of its most active application areas. Early 
computer vision methods primarily focused on identifying 
features based on pixel relationships and differences 
within images or objects. Representative algorithms 
include SIFT (Scale-Invariant Feature Transform), which 
extracts keypoints across multiple scales using Difference 
of Gaussian (DoG) operations, and Haar feature-based 
methods, which leverage contrast in image regions. 
However, these traditional approaches often failed 
to deliver satisfactory performance, especially when 
confronted with complex image features or significant 
variations such as changes in illumination, distortion, and 
noise. Furthermore, low-level approaches like SIFT and 
Haar focused primarily on edges, corners, and intensity, 
making it difficult to capture high-level semantics such as 
object identity or contextual information [3-4].

The introduction of artificial neural networks, inspired 
by human cognition, addressed many of these challenges 
and ultimately gave rise to modern deep learning. 
Artificial neural networks are composed of input layers, 
output layers, and multiple hidden layers, each containing 
numerous nodes. As input data propagates through the 
network, each node generates intermediate responses by 
applying weighted signals and bias, ultimately producing 
an output prediction based on the collective inference of 
all layers.

Prominent deep learning models in computer vision 
include AlexNet, YOLO, SSD, and Faster R-CNN. 
AlexNet, a convolutional neural network (CNN) designed 
for image classification, demonstrated the effectiveness of 
deep learning approaches by winning the ILSVRC 2012 
competition. YOLO (You Only Look Once) represents 
a real-time single-stage object detection model that 
simultaneously predicts object positions and categories 
in a single pass, making it particularly well suited for 
applications requiring rapid inference. SSD (Single 
Shot MultiBox Detector) utilizes multiple feature maps 
to detect objects of varying sizes, while Faster R-CNN 
introduces a region proposal network (RPN) to efficiently 
generate candidate object regions for two-stage detection. 
Among these, YOLO has become one of the most widely 
adopted CNN-based object detection models, with 
ongoing improvements through to its twelfth version. In 
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practice, YOLO is also available under licenses that permit 
commercial use [5-8].

Deep learning models typically consist of numerous 
layers and nodes, each with a large number of parameters. 
Although the mathematical framework is well defined, it 
remains challenging to fully interpret how each specific 
input influences final predictions. As a result, model 
parameters are not usually disclosed in detail, but pre-
trained models—trained on curated public datasets—are 
commonly shared via SOTA leaderboards or repositories 
such as GitHub.

Pre-trained models are generally unable to distinguish 
between unseen object classes. For example, a YOLO 
model trained on the COCO dataset can distinguish 
between “person” and “airplane,” but cannot differentiate 
between “person” and “soldier,” or between “airplane” and 
“drone,” since such fine-grained classes are not part of its 
training data. Thus, for real-world applications targeting 
specific objects, additional training—namely fine-tuning—
on relevant data, as illustrated in Figure 1, is required [9].

  

Figure 1. Results of analyzing the same image data with 
different label policies

When fine-tuned models are evaluated using public 
datasets, their reported performance can be competitive 
with SOTA. However, such results often do not generalize 
well to images collected in real-world environments. As 
shown in Table 1, this issue is widespread in the field 
of computer vision, affecting not only object detection 
but also tasks such as denoising, deblurring, and image 
enhancement under adverse conditions [10-11].

Table 1. PSNR values from SOTA and from real-world 
data

PSNR SSIM

Public Datasets
& gUnet (SOTA) 41.34~33.52 0.996~0.971

Real-world collec
-ted data & gUnet 38.86~34.48 0.99~0.978

Performance gaps between benchmarks and practice 
are largely attributable to differences in characteristics 
between public training datasets and real-world data. 
While it is practically impossible to account for every 
possible scenario in computer vision, this issue can be 
narrowed down to two main factors in the context of object 
detection.

First, there is the difference in image resolution. For 
example, the widely used COCO dataset primarily consists 
of images with a resolution of 640×480 pixels, whereas 

modern CCTV systems typically generate high-resolution 
images of 1920×1080 pixels or higher. Previous studies 
have shown that object detection performance improves 
with higher-resolution images. Therefore, whenever 
possible, it is necessary to perform object detection using 
high-resolution images [12-13].

Second, there is a difference in object size within 
images. While COCO 2017 images typically contain a 
single large object, CCTV images are designed to cover 
wide areas, resulting in much smaller objects relative to 
the overall scene. Figure 2(a) illustrates an example of a 
large object in an image from the COCO dataset, whereas 
Figure 2(b) shows an example of a small object captured 
by CCTV. Previous studies have reported that object size 
is inversely proportional to detection accuracy. This is 
because larger objects contain more information, which 
increases the likelihood that a deep learning model will 
make accurate inferences about them [14-18].

 

(a) Large object in 
an COCO image

(b) Small object captured by CCTV

Figure 2. Example of the Relative object scale in public 
datasets. 

In the past, dedicated cables connected DVR (Digital 
Video Recorders) and object detection devices were 
commonly used. Currently, many systems are configured 
so that cameras, NVRs (Network Video Recorders), and 
control centers are connected via networks. Using high-
resolution videos or images directly over the network 
inevitably places a heavy burden on the network. 
Therefore, it is necessary to identify a resolution that 
minimizes the impact on object detection performance 
while enabling downscaling. This study empirically 
investigates the effects of image resolution and object 
size on detection accuracy and aims to propose practical 
guidelines for the effective application of AI models in 
real-world environments [19-20].

2  Related Works

2.1 Network-Based CCTV Architecture
In the past, it was common to connect DVRs directly 

to CCTV cameras and link dedicated computers for 
object detection. However, as network-based systems 
became widely adopted, CCTV systems evolved into 
configurations where captured data is managed through the 
network.

The architecture of early systems using the network 
model was as follows: data captured by CCTV is stored 
in an NVR, and downscaled data is transmitted to a 
central control center where object detection is performed. 
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Although simple in structure, this approach places a heavy 
load on the entire network from the CCTV to the central 
control center and requires high computing power at the 
central detection system. 

To address these drawbacks,  edge computing 
techniques have been proposed. While data captured 
by CCTV is still stored in an NVR, an edge computer 
is deployed near the CCTV to perform object detection 
locally. In the event of an unusual situation, alerts and 
video/image data are sent to the central control center. 
Although installing edge devices increases costs, their 
physical proximity to the CCTV compared to the 
central processing center enables faster response times. 
Additionally, selective processing at the edge reduces 
network load and usage since not all data is sent to the 
central server, and edge computing also affords resilience 
to network failures or central server issues [21-25].

Nonetheless, in both scenarios, video or image data 
travels over the network, raising the critical need for 
effective traffic management.

2.2 Public Datasets
In deep learning, the availability of large amounts 

of training data is generally considered beneficial for 
model performance. Constructing image datasets for 
deep learning involves substantial manpower for image 
collection and annotation, which has historically posed 
challenges. However, the release of various public datasets 
has significantly facilitated the development of deep 
learning models.

Representative public datasets include the following:
•	 MNIST: One of the earliest publicly available 

datasets, designed for handwritten digit recognition 
(digits 0 to 9). It contains 70,000 grayscale images 
of size 28×28 pixels, with 60,000 for training 
and 10,000 for testing, and has been widely used 
for evaluating convolutional neural network 
performance [26].

•	 ImageNet: A large-scale dataset containing 
approximately 14 million images across more 
than 1,000 object classes. It gained prominence 
following the success of AlexNet in 2012 and has 
since become a standard benchmark for evaluating 
computer vision models [27].

•	 COCO (Common Objects in Context): The 
most widely used benchmark dataset for object 
detection research. The 2017 version includes over 
330,000 images annotated for 80 everyday object 
categories. Most images have a resolution of 
640×480 pixels.

•	 Open Images: Developed by Google, this extensive 
dataset consists of over 9 million images with 
more than 16 million bounding box annotations. 

•	 Places2: Created by MIT, this dataset provides 
over 10 million images spanning more than 400 
scene categories [28].

Beyond these, specialized datasets have been 
established for domains such as satellite imagery and 
medical imaging, including MRI and X-ray datasets.

2.3 CCTV Data Generation and Characteristics of 
Generated Images
According to market research reports, the demand for 

4K and higher resolution CCTV cameras and the adoption 
of IP-based CCTV systems are rapidly increasing. 
Modern CCTV systems typically generate video data with 
resolutions of 1920×1080 pixels or higher. Additionally, 
studies analyzing real urban CCTV footage have shown 
that most images possess resolutions of at least 1280×720 
pixels.

In contrast, the widely used public dataset COCO 
predominantly consists of images with a much lower 
resolution of 640×480 pixels. Furthermore, most public 
datasets contain objects that occupy a significantly larger 
proportion of the image compared to real-world CCTV 
footage. For example, in the COCO 2017 dataset, objects 
occupy approximately 24% to 41% of the total image area, 
whereas in actual CCTV footage, this proportion is often 
below 1%.

Urban CCTV analysis research indicates that small 
objects—defined as those with a longest side less than 100 
pixels—account for approximately 55.3% of all detected 
objects. Specifically, 66.62% of pedestrians and 41.92% of 
vehicles fall into this small object category. These findings 
highlight the predominance of small objects in real CCTV 
footage, reflecting a notable disparity compared to the 
relatively large object scale proportions observed in public 
datasets.

2.4 YOLO Series
YOLO (You Only Look Once), first introduced in 

2015, is a prominent family of object detection and image 
segmentation models. The principal characteristic of 
YOLO is its single neural network architecture that enables 
the simultaneous and real-time prediction of the locations 
and classes of multiple objects within an image. Compared 
to other CNN-based object detection models such as 
Faster R-CNN and SSD, YOLO offers substantially faster 
inference, making it particularly suitable for applications 
requiring real-time processing, including video surveillance 
and autonomous driving.

While each version of YOLO has introduced specific 
architectural innovations, the fundamental pipeline remains 
largely consistent:

•	 The input image is divided into an S×S grid.
•	 Each grid cell predicts B bounding boxes, each 

with an associated confidence score.
•	 Bounding box information includes the center 

coordinates (x, y), width (w), height (h), and 
confidence (pc).

•	 Conditional class probabilities are estimated for 
each bounding box.

•	 A convolutional backbone extracts image features, 
which are then processed by the prediction head 
to simultaneously infer bounding boxes and class 
labels for each grid cell.

•	 Bounding boxes with low confidence are 
discarded, and redundant boxes are suppressed 
using Non-Maximum Suppression (NMS) to yield 
the final object locations and classes.
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The architecture of the YOLO model is shown in 
Figure 3.

Figure 3. YOLO model architecture

As of now, YOLO has reached version 11, with version 
12 under active development. An enterprise license is also 
available, facilitating widespread adoption in industrial 
applications.

Distinct features of each YOLO version include:
•	 YOLOv1: Real-time object detection over the 

entire image via a single network pass.
•	 YOLOv2: Introduction of anchor boxes, batch 

normalization, and multi-scale training, improving 
accuracy and detection of small objects.

•	 YOLOv3: Integration of residual blocks and 
Feature Pyramid Networks, enhancing the 
detection of objects at various scales.

•	 YOLOv4: Incorporation of CSPNet, SPP, and 
other cutting-edge techniques, further improving 
efficiency and small object detection.

•	 YOLOv5: Python-based implementation with 
various model sizes and mosaic data augmentation, 
optimized for practical deployment.

•	 YOLOv6: Anchor-free design and optimization for 
high-performance, lightweight, real-time industrial 
use.

•	 YOLOv7: Experimental architectures and efficient 
model compression improving both accuracy and 
speed.

•	 YOLOv8: Expanded functionality including 
classification, segmentation, pose estimation, and 
user-friendly APIs.

•	 YOLOv9: Enhanced gradient-based methods and 
model compression, optimizing for multi-task 
support.

•	 YOLOv10: End-to-end efficient design, removal 
of NMS, and innovations in both performance and 
speed.

•	 YOLOv11: Architectural improvements including 
C3k2, SPPF, and C2PSA, with support for multi-
vision tasks.

•	 YOLOv12: Adoption of attention-based structures, 
setting new standards in mAP performance and 
inference speed.

Typically, YOLO models are trained with input 
image resolutions of 640×640 pixels but can be scaled to 
1280×1280 as needed. However, modern CCTV systems 

frequently generate images at resolutions of 1920×1080 
or higher, necessitating downsampling for model 
compatibility. This process often results in information 
loss, potentially impacting detection performance.

2.5 Understanding the Impact of Image Quality and 
Object Distance on Object Detection Performance
This study highlights that when processing images 

collected from CCTV systems with various resolutions, 
downsampling frequently occurs for transmission to 
remote servers or for faster computation. However, this 
downsampling process often leads to the loss of pixel 
information for small objects, resulting in degraded 
detection performance.

Furthermore, the distance between the objects and the 
camera also significantly affects detection accuracy. In 
particular, depth information—representing the distance 
from the camera to objects within the image—has been 
shown to improve object detection rates. However, this 
approach requires that both the training and detection 
datasets include depth data, necessitating the use of 
RGB-D datasets (datasets containing both color and depth 
information). Additionally, input images used for testing 
or deployment must also contain corresponding depth 
channels.

Nonetheless, widely used generic image datasets 
such as ImageNet and COCO do not contain depth 
information. Although rule-based or AI-based techniques 
exist to estimate depth from 2D images, these methods 
typically suffer from lower accuracy, indicating the 
need for dedicated research to address this limitation. 
Figure 4 shows an example of an image containing depth 
information.

  

Figure 4. Standard image and RGB-D image

3  Methodology

In this study, we utilized a publicly available human 
object detection dataset from Roboflow. This dataset was 
selected over the COCO dataset due to its relatively higher 
image resolution, making it more suitable for evaluating 
detection accuracy as image resolution is systematically 
reduced.

The training set from Roboflow was used to train a 
YOLO 11-n model, thereby generating a corresponding 
deep learning model. The YOLO 11-n variant contains 
approximately 2,600,000 parameters, representing 
the number of trainable weights within the model. Its 
computation and resource requirements are quantified 
as 6.5 billion FLOPs. All other parameters were kept 
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at their default settings. Training images were resized 
to 640×640 pixels. This study focused on the effects of 
image resolution, the accepted pixel size by the model, and 
object-to-image scale ratio, with minimal modifications to 
experimental options to facilitate fair comparison.

The technical specifications of the system used for 
training are as follows:

Operating System: Windows 11
CPU: AMD Ryzen 7 6800H
GPU: NVIDIA GeForce RTX 3070 Ti Laptop GPU
Object Detection Model: YOLO 11-n
Dataset: Roboflow, construction-safety-gsnvb-0h1pm. 
class information: helmet: 2,543, no-helmet: 129, no-

vest: 892, person: 2,817, vest: 1,343
Dataset Split: Train Set: 83%, Valid Set: 10%, Test Set: 

7%

3.1 Resolution Change
For the analysis of image resolution, the original image 

was designated as 100%, and nine comparative datasets 
were generated by incrementally decreasing the resolution 
in 10% intervals. Figure 5 is an image created through 
original and resolution adjustment.

Figure 5. Sample images: original and resolution-adjusted

In total, ten datasets were constructed by resizing 
the images from 100% down to 10% of their original 
resolution. The mean resolution of the original images was 
1,056.49 pixels in width and 766.55 pixels in height.

3.2 The Ratio of the Size of the Image to the Size of the 
Target Object
For the object size ratio experiment, comparative 

datasets were created as follows:
The original image was designated as (a).
To maintain consistent resolution, a ground truth (gt) 

image was generated by downscaling the original image to 
half its width and height, denoted as (c).

As a comparison group, a region corresponding to 50% 
of the original image’s size was extracted, centered on the 
object, and identified as (b).

This region was cropped from the original image to 
produce the comparison dataset, referred to as (d).

Using this method, the object size within the image 
was effectively increased by approximately four times 
relative to the original.

Figure 6 shows an example of how the proportion of 
object size within an image changes through resolution 
adjustment and image cropping, compared to the original 
image.

Using these groups, we compared the effect of varying 
object-to-image area ratios on detection performance.

Figure 6. Process for adjusting the object-to-image area 
ratio

4  Experimental Results

4.1 Performance Variation by Resolution
Figure 7 presents a graph showing the variation in 

detection performance according to changes in image size. 
The dataset scaled to 10% of original resolution, which 
suffered the greatest data loss, exhibited the lowest object 
detection performance. As data loss decreased—that is, as 
the resolution of test images increased—object detection 
performance improved. As shown in Table 2, the detection 
accuracy remained similar to that of the original image at 
approximately 60% of the full size (about 596.80 pixels in 
width and 428.02 pixels in height). This trend is consistent 
with previous studies indicating that detection performance 
improves as image resolution increases up to a certain 
level. 

Figure 7. Changes in detection performance according to 
variations in image size

Table 2. Detailed performance indicators according to 
ratio changes compared to the reference image

Ratio of original 10% 20% 30% 40% 50% 60%
F1 36.5% 69.9% 89.7% 89.7% 99.3% 99.9%

mAP@0.5 33.1% 64.4% 87.8% 87.8% 98.9% 99.2%
mAP@0.5:0.95 32.9% 63.2% 84.1% 84.1% 98.4% 97.2%

Precision 71.4% 84.2% 100% 100% 99.9% 96.4%
Recall 25.3% 59.9% 82.4% 82.4% 98.2% 100%

However, the lack of further improvement beyond 
the 60% threshold likely has a different explanation. The 
resized image dimensions (approximately 596.80×428.02 
pixels) closely match the default input size for YOLO 
model training (640×640 pixels). Therefore, without 
further adjustment, this resolution emerges as optimal for 
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the model. Previous studies that addressed resolution issues 
often included steps to modify the training resolution of 
the models, supporting the relevance of this approach in 
similar contexts.

Synthesizing these findings, both the resolution 
of images used in training and testing, and the input 
resolution accepted by the detection model, are principal 
factors impacting model performance.

4.2 Performance Variation with Changes in Object Size 
Ratio
Assessing the effects of object-to-image size ratio 

adjustment on detection performance presents several 
challenges.

First, cropping and enlarging only the object from 
the image essentially tests the model on a fragment 
of the original image, resulting in a loss of contextual 
information. Second, cropping inherently reduces the 
overall image resolution, which, as highlighted in Section 
4.1, can lead to degraded detection accuracy. Third, when 
objects within the original images are already sufficiently 
large for effective recognition by the deep learning 
model, further enlargement may not offer meaningful 
improvements.

Following the procedure described in the process 
diagram (formerly Figure 6), the object-to-image ratio 
within each sample was increased fourfold. Figure 8 
illustrates the comparative performance in object detection 
as the object size ratio is varied.

Figure 8. Performance comparison by object size ratio

Table 3. Detailed performance metrics of object detection 
for original and enlarged object images

F1 mAP@0.5 mAP@0.5:0.95
Original 0.8486 0.8939 0.5164
Enlarged 0.8686 0.9239 0.5264

Table 3 compares the results between the dataset with 
a fourfold increase in object size ratio and the original 
dataset. It was observed that increasing the object ratio 
slightly improved detection performance, although the 
effect was relatively minor. This is likely because the 
objects in the original dataset were already large enough 
to be accurately detected, making further enlargement 
unnecessary.

Additionally, previous studies have demonstrated that 
depth information can significantly influence detection 

accuracy. Therefore, simply modifying the object size 
ratio may be insufficient for substantial improvements. 
Incorporating depth or other auxiliary data may be 
necessary to achieve meaningful gains in detection 
performance.

5  Discussion

When conducting experiments on object detection 
rates according to image resolution, consideration must 
be given to the fact that AI models commonly downscale 
input images during training. Therefore, research into the 
image sizes actually used by object detection models for 
both training and inference should precede experiments 
concerning detection rates across differing image 
resolutions, as this would lead to more effective and 
reliable results.

There are also several challenges in experiments 
involving the adjustment of object-to-image size ratios. If 
objects within an image are already sufficiently large for 
accurate identification by the model, increasing their size 
further will have limited benefit. Furthermore, for small 
objects in pixel-based images, simple enlargement does 
not necessarily enhance the quality of feature information 
obtained from the original image. As most CCTV 
systems produce pixel-based images, alternative research 
approaches are necessary. Thus, rather than relying solely 
on image scaling or geometric transformations, generating 
datasets using cameras with varying focal lengths or zoom 
capabilities would enable more precise investigation 
of how object-to-image size ratio affects detection 
performance.

6  Conclusion

This study restructured the Roboflow dataset to 
analyze the effects of image resolution and object-to-image 
scale ratio on object detection performance. The results 
demonstrated that both the resolution of the images and 
the resolution of data used by deep learning models during 
training and testing have a significant impact on detection 
accuracy, while the proportion of objects within an image 
plays a comparatively minor role.

When performing object detection using AI models, 
it can be inferred that the resolution at which a model 
is trained and tested represents its optimal operating 
resolution. Therefore, analyzing high-resolution images 
effectively requires adjusting the input resolution settings 
during both training and inference phases.

Regarding object size ratio, simple transformations 
such as image scaling, as used in this study, are insufficient. 
Instead, it is necessary to construct dedicated datasets 
containing the same objects captured at multiple distances 
to properly investigate the influence of object scale on 
detection performance.

Consequently, when employing models such as YOLO, 
it is recommended to predefine the input image resolution 
used for training and testing, and to utilize images 
matching this resolution for optimal results.
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