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Abstract

Object detection is one of the most fundamental and
core research areas in the field of computer vision, and
the YOLO Series, a representative model series, is widely
utilized across various artificial intelligence systems.
Mobile networks serve as a crucial connectivity element
that links nearly all industrial sectors, connecting various
IoT devices through these networks. A typical example is
network cameras (CCTV). Some deep learning Al models
often exhibit degraded object detection performance
compared to their reported benchmark results. While
multiple factors may contribute to this, one well-known
reason is the difference in characteristics between publicly
available training datasets and images collected in CCTV
environments. Due to the inherent bandwidth limitations of
wireless networks, data transmission is often constrained.
Particularly in mobile network environments, various
approaches such as applying edge computing have been
researched to reduce network load for object detection
models deployed on CCTV systems. In this study, we
systematically and linearly adjusted image resolution
and object scale in video/image data transmitted over the
network to analyze their impact on detection performance.
Through this, the goal is to explore practical methods for
achieving efficient real-time object detection that consider
the constraints of network environments.

Keywords: Image resolution, Object proportion within
images, Deep learning, Mobile network, Edge computing

1 Introduction

Early forms of artificial intelligence, such as expert
systems, relied on explicitly programmed knowledge
and rules. These systems generated responses to user
queries solely based on pre-entered data and rules, making
them incapable of reasoning beyond their programmed
knowledge. To address this limitation, researchers
developed techniques enabling computers to autonomously
generate rules from data, a concept now known as machine
learning [1-2].

Machine learning is utilized in almost every domain
where artificial intelligence is applied, with computer
vision being one of its most active application areas. Early
computer vision methods primarily focused on identifying
features based on pixel relationships and differences
within images or objects. Representative algorithms
include SIFT (Scale-Invariant Feature Transform), which
extracts keypoints across multiple scales using Difference
of Gaussian (DoG) operations, and Haar feature-based
methods, which leverage contrast in image regions.
However, these traditional approaches often failed
to deliver satisfactory performance, especially when
confronted with complex image features or significant
variations such as changes in illumination, distortion, and
noise. Furthermore, low-level approaches like SIFT and
Haar focused primarily on edges, corners, and intensity,
making it difficult to capture high-level semantics such as
object identity or contextual information [3-4].

The introduction of artificial neural networks, inspired
by human cognition, addressed many of these challenges
and ultimately gave rise to modern deep learning.
Artificial neural networks are composed of input layers,
output layers, and multiple hidden layers, each containing
numerous nodes. As input data propagates through the
network, each node generates intermediate responses by
applying weighted signals and bias, ultimately producing
an output prediction based on the collective inference of
all layers.

Prominent deep learning models in computer vision
include AlexNet, YOLO, SSD, and Faster R-CNN.
AlexNet, a convolutional neural network (CNN) designed
for image classification, demonstrated the effectiveness of
deep learning approaches by winning the ILSVRC 2012
competition. YOLO (You Only Look Once) represents
a real-time single-stage object detection model that
simultaneously predicts object positions and categories
in a single pass, making it particularly well suited for
applications requiring rapid inference. SSD (Single
Shot MultiBox Detector) utilizes multiple feature maps
to detect objects of varying sizes, while Faster R-CNN
introduces a region proposal network (RPN) to efficiently
generate candidate object regions for two-stage detection.
Among these, YOLO has become one of the most widely
adopted CNN-based object detection models, with
ongoing improvements through to its twelfth version. In
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practice, YOLO is also available under licenses that permit
commercial use [5-8].

Deep learning models typically consist of numerous
layers and nodes, each with a large number of parameters.
Although the mathematical framework is well defined, it
remains challenging to fully interpret how each specific
input influences final predictions. As a result, model
parameters are not usually disclosed in detail, but pre-
trained models—trained on curated public datasets—are
commonly shared via SOTA leaderboards or repositories
such as GitHub.

Pre-trained models are generally unable to distinguish
between unseen object classes. For example, a YOLO
model trained on the COCO dataset can distinguish
between “person” and “airplane,” but cannot differentiate
between “person” and “soldier,” or between “airplane” and
“drone,” since such fine-grained classes are not part of its
training data. Thus, for real-world applications targeting
specific objects, additional training—namely fine-tuning—
on relevant data, as illustrated in Figure 1, is required [9].

Figure 1. Results of analyzing the same image data with
different label policies

When fine-tuned models are evaluated using public
datasets, their reported performance can be competitive
with SOTA. However, such results often do not generalize
well to images collected in real-world environments. As
shown in Table 1, this issue is widespread in the field
of computer vision, affecting not only object detection
but also tasks such as denoising, deblurring, and image
enhancement under adverse conditions [10-11].

Table 1. PSNR values from SOTA and from real-world
data

PSNR SSIM

Public Datasets
& gUnet (SOTA) 41.34~33.52 0.996~0.971
Real-world collec 38.86-34 48 0.99-0.978

-ted data & gUnet

Performance gaps between benchmarks and practice
are largely attributable to differences in characteristics
between public training datasets and real-world data.
While it is practically impossible to account for every
possible scenario in computer vision, this issue can be
narrowed down to two main factors in the context of object
detection.

First, there is the difference in image resolution. For
example, the widely used COCO dataset primarily consists
of images with a resolution of 640x480 pixels, whereas

modern CCTV systems typically generate high-resolution
images of 1920x1080 pixels or higher. Previous studies
have shown that object detection performance improves
with higher-resolution images. Therefore, whenever
possible, it is necessary to perform object detection using
high-resolution images [12-13].

Second, there is a difference in object size within
images. While COCO 2017 images typically contain a
single large object, CCTV images are designed to cover
wide areas, resulting in much smaller objects relative to
the overall scene. Figure 2(a) illustrates an example of a
large object in an image from the COCO dataset, whereas
Figure 2(b) shows an example of a small object captured
by CCTYV. Previous studies have reported that object size
is inversely proportional to detection accuracy. This is
because larger objects contain more information, which
increases the likelihood that a deep learning model will
make accurate inferences about them [14-18].

(a) Large object in
an COCO image

Figure 2. Example of the Relative object scale in public
datasets.

In the past, dedicated cables connected DVR (Digital
Video Recorders) and object detection devices were
commonly used. Currently, many systems are configured
so that cameras, NVRs (Network Video Recorders), and
control centers are connected via networks. Using high-
resolution videos or images directly over the network
inevitably places a heavy burden on the network.
Therefore, it is necessary to identify a resolution that
minimizes the impact on object detection performance
while enabling downscaling. This study empirically
investigates the effects of image resolution and object
size on detection accuracy and aims to propose practical
guidelines for the effective application of Al models in
real-world environments [19-20].

2 Related Works

2.1 Network-Based CCTV Architecture

In the past, it was common to connect DVRs directly
to CCTV cameras and link dedicated computers for
object detection. However, as network-based systems
became widely adopted, CCTV systems evolved into
configurations where captured data is managed through the
network.

The architecture of early systems using the network
model was as follows: data captured by CCTV is stored
in an NVR, and downscaled data is transmitted to a
central control center where object detection is performed.
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Although simple in structure, this approach places a heavy
load on the entire network from the CCTV to the central
control center and requires high computing power at the
central detection system.

To address these drawbacks, edge computing
techniques have been proposed. While data captured
by CCTV is still stored in an NVR, an edge computer
is deployed near the CCTV to perform object detection
locally. In the event of an unusual situation, alerts and
video/image data are sent to the central control center.
Although installing edge devices increases costs, their
physical proximity to the CCTV compared to the
central processing center enables faster response times.
Additionally, selective processing at the edge reduces
network load and usage since not all data is sent to the
central server, and edge computing also affords resilience
to network failures or central server issues [21-25].

Nonetheless, in both scenarios, video or image data
travels over the network, raising the critical need for
effective traffic management.

2.2 Public Datasets

In deep learning, the availability of large amounts
of training data is generally considered beneficial for
model performance. Constructing image datasets for
deep learning involves substantial manpower for image
collection and annotation, which has historically posed
challenges. However, the release of various public datasets
has significantly facilitated the development of deep
learning models.

Representative public datasets include the following:

e MNIST: One of the earliest publicly available
datasets, designed for handwritten digit recognition
(digits 0 to 9). It contains 70,000 grayscale images
of size 28%28 pixels, with 60,000 for training
and 10,000 for testing, and has been widely used
for evaluating convolutional neural network
performance [26].

* ImageNet: A large-scale dataset containing
approximately 14 million images across more
than 1,000 object classes. It gained prominence
following the success of AlexNet in 2012 and has
since become a standard benchmark for evaluating
computer vision models [27].

e COCO (Common Objects in Context): The
most widely used benchmark dataset for object
detection research. The 2017 version includes over
330,000 images annotated for 80 everyday object
categories. Most images have a resolution of
640x480 pixels.

*  Open Images: Developed by Google, this extensive
dataset consists of over 9 million images with
more than 16 million bounding box annotations.

*  Places2: Created by MIT, this dataset provides
over 10 million images spanning more than 400
scene categories [28].

Beyond these, specialized datasets have been

established for domains such as satellite imagery and
medical imaging, including MRI and X-ray datasets.

2.3 CCTYV Data Generation and Characteristics of

Generated Images

According to market research reports, the demand for
4K and higher resolution CCTV cameras and the adoption
of IP-based CCTV systems are rapidly increasing.
Modern CCTYV systems typically generate video data with
resolutions of 1920x1080 pixels or higher. Additionally,
studies analyzing real urban CCTV footage have shown
that most images possess resolutions of at least 1280x720
pixels.

In contrast, the widely used public dataset COCO
predominantly consists of images with a much lower
resolution of 640x480 pixels. Furthermore, most public
datasets contain objects that occupy a significantly larger
proportion of the image compared to real-world CCTV
footage. For example, in the COCO 2017 dataset, objects
occupy approximately 24% to 41% of the total image area,
whereas in actual CCTV footage, this proportion is often
below 1%.

Urban CCTYV analysis research indicates that small
objects—defined as those with a longest side less than 100
pixels—account for approximately 55.3% of all detected
objects. Specifically, 66.62% of pedestrians and 41.92% of
vehicles fall into this small object category. These findings
highlight the predominance of small objects in real CCTV
footage, reflecting a notable disparity compared to the
relatively large object scale proportions observed in public
datasets.

2.4 YOLO Series

YOLO (You Only Look Once), first introduced in
2015, is a prominent family of object detection and image
segmentation models. The principal characteristic of
YOLO is its single neural network architecture that enables
the simultaneous and real-time prediction of the locations
and classes of multiple objects within an image. Compared
to other CNN-based object detection models such as
Faster R-CNN and SSD, YOLO offers substantially faster
inference, making it particularly suitable for applications
requiring real-time processing, including video surveillance
and autonomous driving.

While each version of YOLO has introduced specific
architectural innovations, the fundamental pipeline remains
largely consistent:

e The input image is divided into an SxS grid.

*  Each grid cell predicts B bounding boxes, each

with an associated confidence score.

*  Bounding box information includes the center
coordinates (x, y), width (w), height (h), and
confidence (pc).

* Conditional class probabilities are estimated for
each bounding box.

* A convolutional backbone extracts image features,
which are then processed by the prediction head
to simultaneously infer bounding boxes and class
labels for each grid cell.

* Bounding boxes with low confidence are
discarded, and redundant boxes are suppressed
using Non-Maximum Suppression (NMS) to yield
the final object locations and classes.
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The architecture of the YOLO model is shown in
Figure 3.

% Backbone  yocy Head
— e == £ o |
I
"""""""""""""" =

Figure 3. YOLO model architecture

As of now, YOLO has reached version 11, with version
12 under active development. An enterprise license is also
available, facilitating widespread adoption in industrial
applications.

Distinct features of each YOLO version include:

*  YOLOvVI: Real-time object detection over the
entire image via a single network pass.

¢ YOLOV2: Introduction of anchor boxes, batch
normalization, and multi-scale training, improving
accuracy and detection of small objects.

*  YOLOvV3: Integration of residual blocks and
Feature Pyramid Networks, enhancing the
detection of objects at various scales.

*  YOLOV4: Incorporation of CSPNet, SPP, and
other cutting-edge techniques, further improving
efficiency and small object detection.

*  YOLOVS: Python-based implementation with
various model sizes and mosaic data augmentation,
optimized for practical deployment.

*  YOLOV6: Anchor-free design and optimization for
high-performance, lightweight, real-time industrial
use.

*  YOLOV7: Experimental architectures and efficient
model compression improving both accuracy and
speed.

*  YOLOvS: Expanded functionality including
classification, segmentation, pose estimation, and
user-friendly APIs.

*  YOLOVY: Enhanced gradient-based methods and
model compression, optimizing for multi-task
support.

*  YOLOV10: End-to-end efficient design, removal
of NMS, and innovations in both performance and
speed.

*  YOLOVI11: Architectural improvements including
C3k2, SPPF, and C2PSA, with support for multi-
vision tasks.

*  YOLOvVI12: Adoption of attention-based structures,
setting new standards in mAP performance and
inference speed.

Typically, YOLO models are trained with input

image resolutions of 640x640 pixels but can be scaled to
1280%1280 as needed. However, modern CCTV systems

frequently generate images at resolutions of 1920x1080
or higher, necessitating downsampling for model
compatibility. This process often results in information
loss, potentially impacting detection performance.

2.5 Understanding the Impact of Image Quality and
Object Distance on Object Detection Performance
This study highlights that when processing images

collected from CCTV systems with various resolutions,
downsampling frequently occurs for transmission to
remote servers or for faster computation. However, this
downsampling process often leads to the loss of pixel
information for small objects, resulting in degraded
detection performance.

Furthermore, the distance between the objects and the
camera also significantly affects detection accuracy. In
particular, depth information—representing the distance
from the camera to objects within the image—has been
shown to improve object detection rates. However, this
approach requires that both the training and detection
datasets include depth data, necessitating the use of
RGB-D datasets (datasets containing both color and depth
information). Additionally, input images used for testing
or deployment must also contain corresponding depth
channels.

Nonetheless, widely used generic image datasets
such as ImageNet and COCO do not contain depth
information. Although rule-based or Al-based techniques
exist to estimate depth from 2D images, these methods
typically suffer from lower accuracy, indicating the
need for dedicated research to address this limitation.
Figure 4 shows an example of an image containing depth
information.

Figure 4. Standard image and RGB-D image

3 Methodology

In this study, we utilized a publicly available human
object detection dataset from Roboflow. This dataset was
selected over the COCO dataset due to its relatively higher
image resolution, making it more suitable for evaluating
detection accuracy as image resolution is systematically
reduced.

The training set from Roboflow was used to train a
YOLO 11-n model, thereby generating a corresponding
deep learning model. The YOLO 11-n variant contains
approximately 2,600,000 parameters, representing
the number of trainable weights within the model. Its
computation and resource requirements are quantified
as 6.5 billion FLOPs. All other parameters were kept
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at their default settings. Training images were resized
to 640640 pixels. This study focused on the effects of
image resolution, the accepted pixel size by the model, and
object-to-image scale ratio, with minimal modifications to
experimental options to facilitate fair comparison.

The technical specifications of the system used for
training are as follows:

Operating System: Windows 11

CPU: AMD Ryzen 7 6800H

GPU: NVIDIA GeForce RTX 3070 Ti Laptop GPU

Object Detection Model: YOLO 11-n

Dataset: Roboflow, construction-safety-gsnvb-Oh1lpm.

class information: helmet: 2,543, no-helmet: 129, no-
vest: 892, person: 2,817, vest: 1,343

Dataset Split: Train Set: 83%, Valid Set: 10%, Test Set:
7%

3.1 Resolution Change

For the analysis of image resolution, the original image
was designated as 100%, and nine comparative datasets
were generated by incrementally decreasing the resolution
in 10% intervals. Figure 5 is an image created through
original and resolution adjustment.

70% 10%

Figure 5. Sample images: original and resolution-adjusted

In total, ten datasets were constructed by resizing
the images from 100% down to 10% of their original
resolution. The mean resolution of the original images was
1,056.49 pixels in width and 766.55 pixels in height.

3.2 The Ratio of the Size of the Image to the Size of the

Target Object

For the object size ratio experiment, comparative
datasets were created as follows:

The original image was designated as (a).

To maintain consistent resolution, a ground truth (gt)
image was generated by downscaling the original image to
half its width and height, denoted as (c).

As a comparison group, a region corresponding to 50%
of the original image’s size was extracted, centered on the
object, and identified as (b).

This region was cropped from the original image to
produce the comparison dataset, referred to as (d).

Using this method, the object size within the image
was effectively increased by approximately four times
relative to the original.

Figure 6 shows an example of how the proportion of
object size within an image changes through resolution
adjustment and image cropping, compared to the original
image.

Using these groups, we compared the effect of varying
object-to-image area ratios on detection performance.

Figure 6. Process for adjusting the object-to-image area
ratio

4 Experimental Results

4.1 Performance Variation by Resolution

Figure 7 presents a graph showing the variation in
detection performance according to changes in image size.
The dataset scaled to 10% of original resolution, which
suffered the greatest data loss, exhibited the lowest object
detection performance. As data loss decreased—that is, as
the resolution of test images increased—object detection
performance improved. As shown in Table 2, the detection
accuracy remained similar to that of the original image at
approximately 60% of the full size (about 596.80 pixels in
width and 428.02 pixels in height). This trend is consistent
with previous studies indicating that detection performance
improves as image resolution increases up to a certain
level.

30%
10% 200 3086 40% 508 60%%

w1 Score (Mean)  ss—mAP@0.5 (mean) mAP@0.5:0.95 (mean)

Figure 7. Changes in detection performance according to
variations in image size

Table 2. Detailed performance indicators according to
ratio changes compared to the reference image

Ratio of original  10% 20% 30% 40% 50% 60%

Fl1 36.5% 69.9% 89.7% 89.7% 99.3% 99.9%
mAP@0.5 33.1% 644% 87.8% 87.8% 98.9% 99.2%
mAP@0.5:0.95 32.9% 63.2% 84.1% 84.1% 98.4% 97.2%
Precision 71.4% 84.2% 100% 100% 99.9% 96.4%
Recall 253% 59.9% 82.4% 82.4% 98.2% 100%

However, the lack of further improvement beyond
the 60% threshold likely has a different explanation. The
resized image dimensions (approximately 596.80x428.02
pixels) closely match the default input size for YOLO
model training (640x640 pixels). Therefore, without
further adjustment, this resolution emerges as optimal for
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the model. Previous studies that addressed resolution issues
often included steps to modify the training resolution of
the models, supporting the relevance of this approach in
similar contexts.

Synthesizing these findings, both the resolution
of images used in training and testing, and the input
resolution accepted by the detection model, are principal
factors impacting model performance.

4.2 Performance Variation with Changes in Object Size

Ratio

Assessing the effects of object-to-image size ratio
adjustment on detection performance presents several
challenges.

First, cropping and enlarging only the object from
the image essentially tests the model on a fragment
of the original image, resulting in a loss of contextual
information. Second, cropping inherently reduces the
overall image resolution, which, as highlighted in Section
4.1, can lead to degraded detection accuracy. Third, when
objects within the original images are already sufficiently
large for effective recognition by the deep learning
model, further enlargement may not offer meaningful
improvements.

Following the procedure described in the process
diagram (formerly Figure 6), the object-to-image ratio
within each sample was increased fourfold. Figure 8
illustrates the comparative performance in object detection
as the object size ratio is varied.

mAP@0.5:0.95

F1Score mAP@0.5

morigin(*1) m*4
Figure 8. Performance comparison by object size ratio

Table 3. Detailed performance metrics of object detection
for original and enlarged object images

Fl mAP@0.5 __ mAP@0.5:0.95
Original _ 0.8486 0.8939 0.5164
Enlarged  0.8686 0.9239 0.5264

Table 3 compares the results between the dataset with
a fourfold increase in object size ratio and the original
dataset. It was observed that increasing the object ratio
slightly improved detection performance, although the
effect was relatively minor. This is likely because the
objects in the original dataset were already large enough
to be accurately detected, making further enlargement
unnecessary.

Additionally, previous studies have demonstrated that
depth information can significantly influence detection

accuracy. Therefore, simply modifying the object size
ratio may be insufficient for substantial improvements.
Incorporating depth or other auxiliary data may be
necessary to achieve meaningful gains in detection
performance.

5 Discussion

When conducting experiments on object detection
rates according to image resolution, consideration must
be given to the fact that Al models commonly downscale
input images during training. Therefore, research into the
image sizes actually used by object detection models for
both training and inference should precede experiments
concerning detection rates across differing image
resolutions, as this would lead to more effective and
reliable results.

There are also several challenges in experiments
involving the adjustment of object-to-image size ratios. If
objects within an image are already sufficiently large for
accurate identification by the model, increasing their size
further will have limited benefit. Furthermore, for small
objects in pixel-based images, simple enlargement does
not necessarily enhance the quality of feature information
obtained from the original image. As most CCTV
systems produce pixel-based images, alternative research
approaches are necessary. Thus, rather than relying solely
on image scaling or geometric transformations, generating
datasets using cameras with varying focal lengths or zoom
capabilities would enable more precise investigation
of how object-to-image size ratio affects detection
performance.

6 Conclusion

This study restructured the Roboflow dataset to
analyze the effects of image resolution and object-to-image
scale ratio on object detection performance. The results
demonstrated that both the resolution of the images and
the resolution of data used by deep learning models during
training and testing have a significant impact on detection
accuracy, while the proportion of objects within an image
plays a comparatively minor role.

When performing object detection using Al models,
it can be inferred that the resolution at which a model
is trained and tested represents its optimal operating
resolution. Therefore, analyzing high-resolution images
effectively requires adjusting the input resolution settings
during both training and inference phases.

Regarding object size ratio, simple transformations
such as image scaling, as used in this study, are insufficient.
Instead, it is necessary to construct dedicated datasets
containing the same objects captured at multiple distances
to properly investigate the influence of object scale on
detection performance.

Consequently, when employing models such as YOLO,
it is recommended to predefine the input image resolution
used for training and testing, and to utilize images
matching this resolution for optimal results.
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