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Abstract

With the rapid expansion of oil and gas pipeline 
networks, their operational safety faces increasingly 
complex risk threats. Conventional accident risk assess- 
ment methods mainly rely on manually defined rules 
and static indicators, making it difficult to uncover the 
deeper causal logic and structural patterns of accidents. 
To address this challenge, a risk early-warning model for 
oil and gas pipelines is proposed, integrating knowledge 
graph techniques with graph neural networks. Specifically, 
pipeline accident reports from Pipeline and Hazardous 
Materials Safety Administration (PHMSA) are consoli- 
dated to construct a comprehensive knowledge graph 
of pipeline risks. Based on this graph, a relation-aware 
graph neural network node classification approach is 
designed, which incorporates both structural features 
and numerical attributes to enable risk prediction. Within 
this framework, the Composition-based Multi-Relational 
Graph Convolutional Networks (CompMRGCN) model 
is further developed, extending the relation-aware graph 
convolutional network by embedding a Markov random 
field-based dependency mechanism to capture correlations 
among node labels during prediction. Experimental results 
demonstrate that the proposed early-warning model and 
CompMRGCN method achieve 96.2% accuracy, 95.8% 
F1-score, and 97.1% mAP, representing improvements 
of 6.7%, 5.6%, and 5.4% over the best existing baselines, 
respectively. Comparative analysis indicates that this 
approach substantially outperforms competing models 
in terms of accuracy, generalization, and interpretability, 
offering an effective and practical technical support for 
intelligent accident early warning and safety management 
of oil and gas pipelines.

Keywords: Accident risk prediction, Knowledge graph, 
Oil and gas pipelines, Relation-aware graph neural network

1  Introduction

As the lifeline of national energy infrastructure, 
the safe and stable operation of oil and gas pipelines 
is directly linked to economic efficiency, public safety, 

and environmental protection [1]. Traditional risk 
assessment techniques for pipelines primarily rely on 
statistical monitoring of physical sensor parameters such 
as pressure, flow rate, and temperature, combined with 
expert experience or fixed thresholds for alarm generation. 
However, such approaches are insufficient for capturing the 
coupled failures arising from multi-factor and multi-entity 
interactions within complex pipeline networks. They also 
exhibit limited capabilities in multi-source data integration 
and semantic modeling, thereby lacking systematic support 
for risk cognition [2]. In particular, when confronted 
with atypical risk inducers such as intentional damage 
or geological hazards, the timeliness and accuracy of 
traditional monitoring models decrease significantly [3].

In recent years, the rapid development of emerging 
technologies such as artificial intelligence, big data, and 
graph learning has opened up new directions for pipeline 
safety monitoring and risk early warning. Among them, 
Graph Neural Networks (GNNs), which can effectively 
model both the topological structure and attribute 
dependencies among entities, have become a powerful tool 
for structural modeling in complex networked systems [4]. 
Previous studies have demonstrated their adaptability in 
diverse application scenarios, including fault identification 
in power systems [5], water resource monitoring [6], and 
safety assessment of urban rail transit [7].

2  Related Work

2.1 Research Status of Graph Neural Network in 
Industrial Scene
GNNs as a deep learning paradigm designed for 

graph-structured data, have demonstrated outstanding 
performance in various domains in recent years [8]. 
The core idea of GNNs is to treat each entity (node) as 
a component of the graph and capture structural depen- 
dencies among nodes through iterative message-passing 
mechanisms, thereby generating high-quality node 
representations. In industrial applications, GNNs are 
particularly suitable for scenarios where devices exhibit 
topological structures or interaction relationships, such 
as power grid systems [9], water resource scheduling 
[10], and industrial process control [11]. For example, 
Wang et al. developed a Graph Convolutional Network 
(GCN) monitoring graph for wind farms, enabling turbine 
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state classification and fault prediction [12]. Similarly, 
Veličković et al. employed a Graph Attention Network 
(GAT) to model the graph structure among sensor nodes, 
achieving effective representation and prediction of key 
indicators within workshops and improving both the 
flexibility and interpretability of the model [13]. 

2.2 Trends and Challenges of the Integration of GNN 
and Knowledge Mapping
The integration of GNNs and Knowledge Graphs 

(KGs) has been widely recognized as a promising 
direction for enhancing systematic knowledge modeling 
and intelligent reasoning, and recent studies have 
explored applications in finance, healthcare, and 
industrial manufacturing [14-15]. For instance, Zhao et al. 
proposed a Multi-Scale Dynamic Graph Neural Network 
(MSDG) model that integrates graph semantics with 
embedding features to address anomaly detection tasks 
in industrial sensors, demonstrating improved stability 
and generalization [14]. Similarly, Soler et al. designed 
a contextual safety modeling framework that combines 
ontology-based reasoning with GNNs, enabling more 
sensitive state recognition and responsive mechanisms 
[16]. To address the challenge of dynamic evolution 
modeling, Ma et al. developed a temporal graph-based 
predictive model that significantly enhanced response 
speed and prediction accuracy in industrial processes 
[17]. In terms of interpretability, Yuan et al. introduced an 
explainable GNN structure (xGNN) capable of explicitly 
modeling risk propagation paths, thereby providing 
decision-makers with causal chain–level analytical support 
[18]. 

Therefore, constructing a risk prediction model 
for oil and gas pipelines that leverages the semantic 
representation capabilities of KGs together with the 
structural modeling power of GNNs not only holds 
substantial theoretical research value but also offers broad 
engineering application prospects for advancing industrial 
intelligence and improving risk control capacity.

2.3 Research Objectives and Technical Route
Against the backdrop of frequent oil and gas pipeline 

accidents and the limited effectiveness of traditional 
early-warning approaches, advancing risk monitoring 
methods from a purely “data-driven” paradigm to an 
integrated framework of “structural modeling + knowledge 
reasoning” has become one of the core directions for 
intelligent development in the industry [19]. GNNs have 
demonstrated notable performance in tasks such as fault 
detection and risk propagation modeling [20]. In contrast, 
KGs excel at semantic-level entity modeling and causal 
logic representation [21]. The integration of these two 
approaches enables a joint representation of “structure 
+ semantics” in complex systems, thereby providing a 
theoretical foundation for the development of predictive 
and interpretable intelligent risk identification systems.

This study focuses on the high-risk scenario of oil 
and gas pipeline accident risk prediction and proposes 
a modeling framework that integrates Relational Graph 
Convolutional Network (R-GCN) with multi-source 

knowledge graphs, thereby establishing an intelligent 
reasoning pathway from data to knowledge and from 
knowledge graphs to risk. The main contributions are as 
follows:

(1) A relation-aware graph neural network node 
classification method is designed which termed the 
Composition-based Multi-Relational Graph Convolutional 
Networks (CompMRGCN). Building upon an accident 
knowledge graph that incorporates both structural 
information and numerical attributes, a multi-relational 
graph convolutional framework with relation-aware 
mechanisms is developed to achieve unified modeling of 
node features and complex relationships.

(2) Within the CompMRGCN architecture, relation- 
aware mechanisms and label dependency modeling are 
introduced to enhance node semantic representations and 
capture potential associations among risk nodes, thereby 
substantially improving the accuracy and robustness of 
pipeline accident risk prediction.

(3) Systematic experiments conducted on a real pipe- 
line accident dataset demonstrate that CompMRGCN 
significantly outperforms multiple baseline methods in 
terms of accuracy, F1 score, and mAP. Furthermore, 
ablation studies confirm the effectiveness of each 
component design and the overall superiority of the 
proposed.

3  Data Set Construction and Know- 
ledge Mapping Preprocessing

3.1 Data Source and Structure Introduction
The dataset used in this study is primarily derived 

from the pipeline accident reports publicly released by the 
Pipeline and Hazardous Materials Safety Administration 
(PHMSA) under the U.S. Department of Transportation. As 
one of the most comprehensive pipeline failure databases 
worldwide, the PHMSA dataset documents accident 
information related to natural gas and liquid pipelines in 
North America since 2010. It contains detailed records of 
more than 10,000 pipeline accidents, covering multiple 
attributes such as accident occurrence time, geographic 
location, equipment type, operating company, economic 
losses, and casualties. This dataset is widely regarded as 
one of the most authoritative and complete oil and gas 
pipeline accident databases available internationally.

The raw data is provided in CSV format, and consists 
of both structured fields (e.g., state name, pipeline type, 
incident ID) and semi-structured fields (e.g., incident 
description, cause statement). Certain fields exhibit 
missing values or redundancies. Preliminary statistics 
indicate that the dataset contains more than 1,800 complete 
accident samples, with each record on average associated 
with multiple devices, companies, and impact indicators, 
thereby exhibiting a clear multi-source heterogeneous 
nature.

At the structural level, the raw data presents two major 
challenges. First, semantic redundancy exists across certain 
fields, such as “Location_Description” and “Incident_
Location”, which convey similar meanings and thus 
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require filtering and normalization during data processing. 
Second, some fields have relatively high missing rates; 
for instance, economic loss attributes such as “Total_
Investigation_Cost” and “Property_Damage” have a 
missing rate of nearly 30%, necessitating careful handling 
during subsequent feature construction.

In addition to the PHMSA dataset, multi-source data 
from other channels were integrated, including:

(1) Pipeline basic attribute data, such as diameter, wall 
thickness, material, and years of service;

(2) Environmental data, including soil type, humidity, 
temperature, and geological hazards.

Table 1. Data sources and description

Type Source Key attributes

Accident Data PHMSA
Time, Location, 

Cause, Consequence, 
Economic Loss 

Pipeline Attribute 
Data

Enterprise 
Database

Diameter, Wall 
Thickness, Material, 

Years of Service

Environmental 
Data

Geographic 
Information 

System

Soil Type, Humidity, 
Temperature, 

Geological Hazards

To address the characteristics described above, this 
study implements a unified data processing workflow, 
encompassing the extraction of core entities and 
attribute fields, field reduction, and label normalization 
preprocessing. The sources and key attributes of the data 
used in this process are summarized in Table 1. Based 
on this, a standardized knowledge graph structure is then 
designed, enabling the transformation of raw accident data 
into inputs suitable for graph neural networks. This process 
establishes a solid foundation for subsequent model 
training and inference analysis.

3.2 Entity and Relationship Extraction
Knowledge extraction forms the foundation of 

knowledge graph construction and aims to extract entities, 
relations, and attributes from multi-source data. To fully 
leverage the structured knowledge embedded in oil and gas 
pipeline accident data and provide graph neural network 
models with structurally clear input graphs, this study 
designs and implements a systematic data pre-processing 
and knowledge graph construction work-flow based on 
domain priors and data analysis results. This workflow 
extracts entities and relations for risk modeling, facilitating 
the transformation of raw accident records into graph-
structured inputs suitable for GNN modeling [22].

The extracted entity types include: pipeline entities 
(pipeline segments, valves, pumping stations, etc.), 
accident entities (leakages, ruptures, explosions, etc.), 
environmental entities (soil, climate, terrain, etc.), and 
factor entities (corrosion, external damage, material 
defects, etc.) [23].

The relation types include: part-of relations (e.g., 
“pipeline–located in–region”), causal relations (e.g., 

“corrosion–causes–leakage”), temporal relations (e.g.,  
“accident–occurred at–time”), and spatial relations (e.g., 
“pipeline–crosses–river”) [24].

3.3 Data Preprocessing and Atlas Generation Process
Due to the presence of redundant fields, missing 

values, and semantic inconsistencies in the raw data, an 
initial data cleaning and reduction process was performed, 
which mainly includes the following steps:

(1)	 Field selection and reduction: Key information 
relevant to graph construction (e.g., equipment 
type, accident time, operator, geographic location, 
and loss details) was retained, while fields 
unrelated to statistical analysis were removed.

(2)	 Missing value handling: For numerical fields with 
missing values (e.g., Property_Damage_Cost), the 
mean or median was used for imputation; missing 
text entries were set as empty and excluded during 
graph construction.

(3)	 Enumeration and discretization: Continuous 
fields such as pipeline service life (Pipe_Age) and 
economic loss (Cost) were binned to facilitate the 
creation of discrete entities.

(4)	 Text Standardization: Free-text fields, such as 
Cause_Description, were processed through 
lower-casing, stop-word removal, and keyword 
extraction to normalize cause-related entity 
descriptions.

The cleaned entities (e.g., accident events, equipment 
facilities, geographic locations, operators) were assigned 
unique entity identifiers (IDs) using a unified mapping 
table, following these strategies:

(1)	 Independent dictionaries were created for each 
entity type, with consistent naming prefixes to 
avoid conflicts.

(2)	 Entity IDs were encoded consecutively to ensure 
consistent tensor dimensions, facilitating efficient 
model processing.

(3)	 All nodes and edges in the graph were represented 
by numeric indices rather than original strings, 
reducing storage overhead.

After entity ID assignment, standard triples were 
constructed in the form of (head_id, relation_id, tail_id) 
according to the predefined relation types (e.g., operated_
by, caused_by). The characteristics of the graph structure 
are as follows:

(1)	 All edges are represented as unidirectional, with 
the option to extend to bidirectional relations if 
necessary.

(2)	 Relation types are stored with unified numbering, 
enabling efficient graph convolution propagation 
and parameter sharing.

(3)	 The final triples, along with the entity mapping 
table, are output together for use in deep learning 
frameworks such as PyTorch Geometric.

As shown in Figure 1, the complete data preprocessing 
workflow clearly illustrates the entire pipeline from raw 
accident data to GNN graph data, encompassing five core 
steps: cleaning, standardization, entity construction, rela- 
tion definition, and data output.
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Figure 1. Flow chart of data cleaning and graph structure 
generation

4  Model Design and Implementation

4.1 Overall Model Architecture
To enhance the accuracy and structural interpretability 

of oil and gas pipeline accident risk prediction, this study 
proposes a relation-aware graph neural network node 
classification method based on accident knowledge graph 
construction, termed CompMRGCN. The overall design 
constructs a heterogeneous graph input of entities and their 
semantic relationships using historical multi-field accident 
data. Through a relation-aware convolution mechanism, 
structural information and node features are jointly 
modeled, ultimately enabling risk prediction for accident 
nodes.

Unlike traditional classification models that rely 
solely on numerical feature vectors, the proposed method 
first extracts key information from accident data, such 
as equipment type, operator, geographic location, and 
accident cause to construct entity nodes and define 
semantic relationships (edges) between them, including 
operated_by, located_in, and caused_by [14]. This 
results in a heterogeneous graph that integrates structural 
connections and attribute features. The graph not only 
captures the inter-entity associations but also preserves 
the attributes of each node (e.g., equipment parameters, 
accident loss metrics), providing rich input information for 
the graph neural network [15]. 

Figure 2 shows the overall model architecture proposed 
in this study, which mainly includes the following three 
modules.

Figure 2.  Overall framework of accident risk prediction

(1)	 Input Layer
The input layer constructs an oil and gas pipeline 

accident knowledge graph based on pipeline accident 
report data, unifying the representation of accident entities, 
attribute information, and multiple types of relationships. 
Node structural features and numerical attributes are 
integrated to provide foundational support for subsequent 
modeling.

(2)	 Relation-Aware Graph Convolution Layer
Building on the concept of multi-relational combina- 

tion modeling, the relation-aware graph convolution layer 
incorporates a relation-aware mechanism, which fully 
leverages information from different types of relational 
edges. By integrating label-dependency constraints, the 
layer learns node representations with enhanced semantic 
expressiveness, enabling better capture of complex latent 
connections among accident nodes [16].

(3)	 Output Layer
The output layer feeds the node representations into a 

classifier to predict the probability distribution across three 
risk levels: low, medium, and high. Through threshold 
optimization, the model’s recognition capability under 
class-imbalanced conditions is improved, achieving precise 
risk early warning for pipeline accidents [17].

The overall workflow enables intelligent prediction 
of oil and gas pipeline accident risks. By constructing 
an accident knowledge graph that encompasses entities, 
attributes, and multiple relationship types at the input stage, 
the model effectively integrates structural information with 
numerical features. In the intermediate stage, the relation-
aware graph convolution layer leverages multi-relational 
combination modeling and the relation-aware mechanism 
to semantically enhance complex relationships, while 
incorporating label-dependency modeling to obtain more 
expressive node representations. At the output stage, the 
model classifies node risk levels, providing low, medium, 
and high predictions, and employs threshold optimization 
to improve performance under class-imbalanced conditions 
[18].

The modules illustrated in the figure reflect the 
progressive process from data to knowledge, from 
knowledge to representation, and from representation to 
prediction: the input module emphasizes data integration 
and graph construction, the convolution module highlights 
deep modeling of relations and semantics, and the output 
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module corresponds to explicit determination of risk levels. 
This workflow not only ensures accuracy and robustness 
in risk prediction but also demonstrates the scalability and 
application potential of graph neural networks in complex 
industrial safety scenarios [25].

4.2 Graph Neural Network Modeling
This section presents the implementation details of 

the graph neural network model, including the network 
architecture, feature fusion mechanism, and loss function 
definition. The modeling framework is not based on 
traditional static graphs or rule-based networks; rather, 
it leverages the structured knowledge graph constructed 
previously, in which entities represent elements such as 
accidents, equipment, and locations, while relations capture 
various types of semantic associations. Consequently, 
the graph neural network is employed to perform node 
representation learning and risk inference directly on the 
knowledge graph structure.
4.2.1 Heterogeneous Graph Structure Encoding Based 

on Knowledge Graph
The input graph structure is derived from knowledge 

graph triples (head, relation, tail), encompassing multiple 
types of entity nodes (e.g., accidents, equipment, geo- 
graphic locations, operators) and semantic relation 
types (e.g., operated_by, caused_by, has_location). 
Unlike general graph models, this graph exhibits typical 
knowledge graph characteristics:

Heterogeneous entities: Different node types are widely 
distributed, with varying attribute dimensions.

Explicit semantics: Each edge type carries a clearly 
defined semantic meaning.

Sparse structure with high information density: 
Accident nodes serve as anchors, connecting to contextual 
entities through multi-hop structures.

R-GCN designed for heterogeneous graphs typical 
of knowledge graphs, assigns independent message-
passing transformations for each relation type, enabling 
semantically differentiated information aggregation within 
the graph structure [19]. The node update mechanism of 
R-GCN, allows the model to automatically learn higher- 
order contextual embeddings from graph relations such as 
“an accident caused by a specific reason” or “a company 
operates a specific pipeline segment,” thereby enhancing 
its ability to perceive semantic contexts of accidents.
4.2.2 Graph Neural Network Encoding Structures

After the construction of the knowledge graph 
structure, R-GCN is adopted as the core graph neural 
network architecture. Building upon the standard GCN, 
R-GCN introduces a relation-type–aware mechanism, 
enabling the model to learn a distinct transformation 
matrix for each type of edge relation, thereby enhancing its 
capacity to model multi-relational graph structures [21].

(1)	 Basic Notations and Definitions
The graph structure is denoted as G = (V, E, R), where 

V denotes the set of nodes, E is the set of edges, and R 
denotes the set of relation types.

The node feature matrix is denoted as X∈R|V|×d, where 
d is the feature dimension.

The adjacency matrix is denoted as Ar∈R|V|×|V|, for each 
relation type r∈R. The entry Ar[i, j]=1 if and only if there 
exists an edge of type r from node i to node j.

(2)	 Relation-Specific Transformation Matrices
Traditional GCN employs a single weight matrix W, 

whereas R-GCN introduces relation-specific transfor- 
mation matrices for each relation type:

( 1) ( ) ( ) ( ) ( )
0

,

1 ,r
i

l l l l l
i r R r i ij N

i j

h W h W h
c

σ+
∈ ∈

 
= Σ Σ +  

 
(1)

where ( )l
ih  denotes the representation of node i at the 

l -th layer, r
iN  represents the set of neighboring nodes 

connected to node i via relation r, ci,j  is a normalization 
constant, typically defined as ci,j = r

iN . ( )l
rW  is the 

relation-specific weight matrix corresponding to relation 
r, ( )

0
lW  is the weight matrix for self-connections and σ 

denotes a non-linear activation function.
(3)	 Relation-Aware Graph Convolutional Network
GCNs are primarily designed for simple undirected 

graphs and are incapable of handling directed multi- 
relational graphs in knowledge graphs. To address 
this issue, this study adopts Composition-based Graph 
Convolutional Network (CompGCN) as the foundational 
architecture.

The model comprises two R-GCN layers, enabling the 
transition from semantic aggregation of local neighbor- 
hood information to higher-order modeling of global 
structural information [26]. CompGCN simultaneously 
learns representations of both nodes and relations. For 
an edge (u, v, r), which denotes the existence of an edge 
of type r directed from node u to node v, the convolution 
operation is defined as follows:

( )( )( 1) ( ) ( ) ( )
( , ) ( ) ( ) , ,l l l l

v u r N v r u rh f W h hλ φ+
∈= Σ (2)

where hv
(l) denotes the representation of node v at the l -th 

layer, N(v) is the neighborhood set of node v, ( )
( )
l
rWλ  is the 

relation-specific weight matrix corresponding to relation 
r , ϕ is the composition operator, and ( )l

rh  denotes the 
representation of relation r .

The composition operator ϕ can take one of the 
following three forms:

Subtraction: ϕ (hu, hr) = hu−hr 
Multiplication: ϕ (hu, hr) = hu ∙ hr 
Circular Convolution: ϕ (hu, hr) = hu×hr 
To reduce the parameter complexity introduced by a 

large number of relations, CompGCN employs a set of 
basis vectors Vb = v1, v2, …, vB to represent all relations:
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B
r rb bb

h vα
=

= ∑ (3)

where αrb denotes the coefficient of relation r with respect 
to the basis vector vb.

Vb = { v1, v2, …, vB } d B×∈R  (where d is the dimension 
of relation representation), ensuring that the dimension 
of the basis vectors matches the dimension of the relation 
representation.

Logic of Coefficient Learning, the coefficients αrb ∈R
are usually learned through the following two methods:

•	 Fixed basis vectors: The basis vectors are 
predefined (e.g., fixed after random initialization), 
and only αrb is learned (obtained by mapping 
relation IDs through a fully connected layer).

•	 Learnable basis vectors: Both the basis vectors 
vb and the coefficients αrb are updated through 
backpropagation. In this case, α rb is often 
constrained to be non-negative (e.g., via softmax 
activation) to ensure the physical meaning that “the 
relation representation is a weighted combination 
of basis vectors”.

In this model, the structural embeddings learned by the 
R-GCN are concatenated or integrated with the numerical 
attribute features of the incident nodes and subsequently 
fed into a Multi-Layer Perceptron (MLP) architecture to 
perform the final risk level prediction.
4.2.3 Numerical Feature Fusion Strategy and Loss 

Function
Although knowledge graphs provide abundant 

structural and semantic information, nodes themselves also 
contain important numerical attributes, such as the time 
of accident occurrence, economic losses, and equipment 
parameters. These attributes are normalized to form the 
attribute vector attr

ix of node i.
In this study, we adopt a concatenation-based fusion 

strategy between structural embeddings and attribute 
vectors to construct the final node representation:

( )(2) , ,attr
i i iz Concat h x= (4)

where (2)
ih denotes the structural embedding of node i 

obtained through two R-GCN layers, and attr
ix represents 

the original attribute vector of the accident node. Attention-
based Fusion: zi = wh∙

(2)
ih  + wx∙

attr
ix ), where wh and wx are 

attention weights (obtained through learning), which are 
suitable for scenarios where the importance of different 
features varies with samples (e.g., numerical features are 
more important in high-risk incidents, while structural 
features are more important in low-risk incidents). The 
fused representation simultaneously incorporates both 
“structural semantic context” and “static risk features.”

The loss function of the CompMRGCN model consists 
of two components:

,task KLL L Lβ= + (5)

where Ltask is the task-related loss (e.g., cross-entropy 
loss), LKL denotes the KL divergence between the posterior 
distribution and the prior distribution, and β is a balancing 
hyperparameter.

The explanations of prior distribution and posterior 
distribution are as follows:

Posterior Distribution: q(h|G,X), which represents the 
distribution of node embeddings h given the graph G and 
node features X (usually modeled as a multivariate normal 
distribution ϰ(μ,σ2I), where μ and σ are output by the GCN 
layer).

Prior Distribution: p(h), which is usually set as a 
standard normal distribution  ϰ(0, I)  to constrain the 
smoothness of the embedding distribution.

Calculation of KL Divergence:

( )2 2 2
1

1 log 1 ,
2

V
KL i i ii

L u σ σ
=

= + − −∑ (6)

Its function is to make the posterior distribution 
approximate the prior distribution and prevent the 
embeddings from overfitting to the local structure of the 
training data.

The model parameters are updated using stochastic 
gradient descent with backpropagation to compute 
gradient. To mitigate overfitting, regularization techniques 
such as dropout and weight decay are applied.

4.3 Risk Prediction and Output Module
The output of the model is the predicted risk level 

for each accident node. The labels are divided into three 
categories (low, medium, and high risk), and are generated 
by integrating historical casualties, losses, and other 
fields. During the prediction phase, the model outputs the 
probability distribution over the three risk levels for each 
accident node, and the class with the highest probability is 
selected as the predicted category.

Considering the scarcity of high-risk accident samples 
and the highly imbalanced class distribution, the training 
phase adopts a weighted binary cross-entropy loss 
(BCEWithLogitsLoss) function, assigning different loss 
weights to different risk levels in order to enhance the 
recognition capability for the high-risk category [27].

In the output stage, a single-layer MLP is employed 
to map the fused representation into the risk-level space, 
and the model is trained using BCEWithLogitsLoss. To 
address the severe class imbalance problem (with high-
risk samples accounting for only a small proportion), a 
weighting mechanism is incorporated into the loss function 
to enhance the model’s ability to identify high-risk 
accidents [28].

For the node classification task, a softmax classifier is 
added to the last layer of R-GCN:

( )( )
,ˆ max .L

i c class i classy soft W h b= + (7)
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Supplementary Explanations on Dimension and Logic:
•	 hi

(L): Represents the final structural embedding of 
node i after passing through L layers of R-GCN. 
Here, L = 2, so hi

(L) = hi
(2)∈Rd.

•	 Parameter dimensions: Wclass∈RC×d (where C = 3, 
corresponding to three risk levels: low, medium, 
and high), and bclass∈RC.

•	 Softmax calculation: ,ˆi cy =
( )
( )

( )
, ,

3 ( )
1 , ,

exp

exp

L
class c i class c

L
c class c i class c

W h b

W h b=

⋅ +

Σ ⋅ +

, where  ,ˆi cy  represents the probability that 
node  i  belongs to the  c-th risk level, which is 
consistent with the logic of selecting the category 
with the highest probability as the prediction 
result.

The training and inference of the entire model are 
implemented using PyTorch Geometric, together with 
the graph-structured data generated in the preceding 
sections, achieving a complete modeling process from 
structure construction and embedding propagation to label 
prediction [29]. The entire model can be regarded as a 
structure-aware predictor for risk learning on knowledge 
graph structures, which not only models explicit causal 
paths among entities but also incorporates numerical 
factors that affect the severity of accidents [30]. The entire 
algorithm flow is shown in Algorithm 1.

5  Experiments and Analysis of 
Experimental Results

5.1 Dataset Partitioning and Evaluation Metrics
This study employs the oil and gas pipeline risk 

knowledge graph constructed in Section 3 as the 
experimental dataset, which is randomly divided into 
training, validation, and test sets in a ratio of 7:2:1, as 
shown in Table 2.

Three evaluation metrics are employed to assess the 
performance of the model: the Average Precision (AP), F1-
score, Accuracy.

Table 2. Dataset statistics

Statistic Quantity
Total number of nodes 32,000
Total number of edges 48,000

Node types 12
Edge types 25

Training set nodes 22,400
Validation set nodes 6,400

Test set nodes 3,200

5.2 Experimental Results and Analysis
In this study, node classification prediction is 

conducted on the constructed oil and gas pipeline accident 
risk knowledge graph using the CompMRGCN model 
based on the relation-aware graph convolutional network. 
To verify the effectiveness of the proposed method, 
multiple comparison models are selected for performance 
evaluation, including the standard GCN, GAT, R-GCN, 
CompGCN, and Graph Markov Neural Network (GMNN).

All experiments are performed under a unified data 
processing pipeline. Negative sampling is employed 
to control the ratio of positive to negative samples 
at approximately 1:1.5, and the dataset is randomly 
partitioned into training, validation, and test sets in a ratio 
of 7:2:1. During training, weighted BCEWithLogitsLoss 
is used, while the AP on the validation set serves as the 
criterion for early stopping. In the testing phase, the 
optimal classification boundary is determined by travers- 
ing different decision thresholds, in order to achieve the 
best F1-score and Accuracy.

The results of the comparison experiments are shown 
in Table 3.

Table 3. Comparison experiment results

Model type mAP
(%)

F1-score
(%)

Optimal 
threshold

Acc
(%)

CompMRGCN 97.1 95.8 0.39 96.2
GCN 80.3 81.6 0.45 82.4
GAT 83.6 84.2 0.48 85.7

R-GCN 87.3 86.5 0.41 85.9
CompGCN 89.2 88.4 0.43 87.8

GMNN 91.7 90.2 0.44 89.5

On the test set, the CompMRGCN model achieved 
excellent performance with an mAP of 97.1%, an F1-
score of 95.8%, and an Accuracy of 96.2%, significantly 
outperforming the other comparison models. Among 
them, GCN obtained relatively good results with an 
mAP of 80.3% and the F1-score of 81.6%, highlighting 
the importance of graph structural information in risk 
prediction. The GAT model, however, performed poorly 
in this task, with an mAP of 83.6%, the results are shown 
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in Figure 3, possibly due to the overall sparsity of the 
oil and gas pipeline accident graph and the weak local 
neighborhood information of nodes, which limit the 
effectiveness of the attention mechanism.

R-GCN exhibited relatively stable performance 
in this task, achieving an mAP of 87.3% and an F1-
score of 86.5%, indicating that the incorporation of 
relational modeling has a positive effect on enhancing 
the expressive capacity of the model. However, since it 
adopts only simple linear relational transformations, it fails 
to sufficiently capture the compositional characteristics 
among multiple relations, and therefore still shows certain 
limitations in exploiting complex semantic relationships. 

Figure 3.  Comparison of experimental results

The CompGCN model performed better than R-GCN 
in terms of results, achieving an mAP of 89.2% and an F1-
score of 88.4%, showing a clear improvement compared 
with R-GCN. This demonstrates that relation composition 
operations can effectively enhance feature interaction 
capability and better exploit neighboring relational 
information. However, since this method does not fully 
integrate numerical attributes in accident scenarios, its 
overall performance remains slightly lower than that of the 
CompMRGCN proposed in this article.

GMNN also achieved relatively good results in the 
experiments, with an mAP of 91.7% and an F1-score of 
90.2%. As a method that incorporates graph structural 
priors and label propagation mechanisms, GMNN can 
alleviate, to some extent, the negative impact caused 
by label scarcity. However, compared with the method 
proposed in this research, its capability of modeling 
multi-relational knowledge is insufficient, and therefore 
its overall performance is still inferior to that of 
CompMRGCN.

It is worth noting that, in order to improve the 
discrimination between positive and negative samples, 
decision threshold optimization was applied during the 
testing phase. The optimal classification threshold for the 
CompMRGCN model was 0.39, which is lower than the 
conventional default threshold of 0.5. In the case of class 
imbalance, the output probabilities of the model often 
exhibit certain biases. By appropriately adjusting the 
threshold, a better balance between recall and accuracy can 

be achieved, thereby significantly improving the overall 
F1-score. This treatment does not alter the label definitions 
or optimization objectives during training, ensuring the 
fairness and credibility of the evaluation metrics.

In summary, the CompMRGCN model proposed 
in this article significantly outperforms the comparison 
methods across all three metrics. Compared with the 
best comparison method, GMNN, accuracy is improved 
by 6.7%, the F1-score by 5.6%, and mAP by 5.4%. This 
demonstrates that, by integrating relation-aware graph 
convolutions, the model can better exploit graph structural 
information and label dependencies. The experimental 
results fully verify that the proposed CompMRGCN 
method, by incorporating knowledge graph structures 
and numerical attributes in the domain of oil and gas 
pipeline accidents, can effectively enhance node-level 
risk prediction performance, showing strong potential for 
application and generalization.

5.3 Ablation Study
To further verify the importance of the design of each 

module in the model, ablation experiments were conducted 
on graph structure, relational information, node attributes, 
and the negative sampling mechanism. The results are 
shown in Table 4.

From the overall results, the complete CompMRGCN 
model achieved the highest F1-score (95.8%) and AUC 
(97.14%) on the test set, demonstrating the effectiveness of 
each module design. The detailed analysis is as follows:

First, after removing relational type information 
(replacing R-GCN with GCN), the model performance 
declined, with the F1-score dropping from 0.9583 to 
0.8970 and the AUC from 0.9623 to 0.8794, indicating that 
properly modeling semantic relations among entities plays 
an important role in high-risk prediction.

The results of the ablation experiments indicate that 
each component of the model plays a critical role in 
overall performance. Among them, the contribution of the 
relation-aware mechanism is the most significant; after 
its removal, the model’s accuracy dropped by 8.3%, the 
F1-score by 6.1%, and the mAP by 6.9%, demonstrating 
that introducing relation awareness is indispensable when 
dealing with multi-relational knowledge graphs.

When the graph structure was completely removed 
and only node attributes were retained MLP, the model 
performance declined drastically, with the F1-score 
reduced to 0.5797, the AUC to 0.5848, and the mAP to 
58.4%, which is nearly equivalent to random guessing. 
This result highlights the central role of graph structural 
information in oil and gas pipeline risk modeling.

When node numerical features were removed (w/o 
Feature) and only structural information was preserved, 
the F1-score decreased to 0.9082 and the mAP decreased 
by 5.5%. Although the impact was smaller than that of 
removing graph structure, this still demonstrates that 
node attribute features provide important complementary 
information to the model.

In addition, when negative sampling was eliminated 
(w/o Negative Sampling) and the model was trained 
directly on the complete dataset, its ability to handle 
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class imbalance declined significantly, with the F1-score 
reduced to only 0.7523 and the mAP decreased by 4.7%. 
Although the AUC remained relatively high (0.9277), the 
actual classification performance deteriorated consider- 
ably, indicating that the negative sampling strategy 
is particularly important for training stability and for 
identifying high-risk categories.

In summary, relation awareness, graph structure 
modeling, node numerical features, and the negative 
sampling strategy are all indispensable components of the 
overall framework. Together, they contribute to accurate 
prediction of high-risk accidents in oil and gas pipelines 
and demonstrate significant advantages across multiple 
evaluation metrics.

Table 4. Ablation experiment results

Model variant Structural 
features

Numerical 
features

Relation 
modeling

Negative 
sampling AUC (%) Acc (%) F1 (%) mAP (%)

CompMRGCN Yes Yes Yes Yes 0.9714 0.9623 95.8 97.1

w/o Relation-aware Yes Yes No Yes 0.8950 0.8794 89.7 (–6.1) 90.2 (–6.9)

w/o Graph No Yes No Yes 0.4081 0.5848 57.9 (–37.9) 58.4 (–38.7)

w/o Feature No No Yes Yes 0.9570 0.9530 90.8 (–5.0) 91.6 (–5.5)

w/o Negative sampling Yes Yes Yes No 0.9370 0.9277 75.2 (–20.6) 92.4 (–4.7)

6  Conclusion

This study investigates the problem of intelligent 
risk identification for oil and gas pipeline accidents and 
proposes a graph neural network modeling approach that 
combines structural information with semantic relations. 
Based on the pipeline accident report data released by the 
U.S. PHMSA, a heterogeneous knowledge graph for risk 
prediction was constructed.

In addition, this study proposes an oil and gas pipeline 
risk early warning model based on knowledge graphs 
and graph neural networks, with the main contributions 
summarized as follows: First, a comprehensive oil and 
gas pipeline risk knowledge graph was constructed using 
the publicly released PHMSA pipeline accident report 
data. An experimental dataset with a total of 32,000 nodes 
was established. Second, a relation-aware graph neural 
network node classification method (CompMRGCN) 
was designed. By introducing a relational convolution 
mechanism and a node attribute fusion strategy, this 
method simultaneously leverages node features and label 
dependencies, thereby effectively improving the accuracy 
of risk prediction and enhancing structural interpretability. 
Finally, extensive experiments on real datasets demonstrate 
that the CompMRGCN model achieves an accuracy 
of 96.2%, an F1-score of 95.8%, and a mean average 
precision (mAP) of 97.1%, significantly outperforming the 
comparison methods. The ablation study further validates 
the effectiveness of each component of the model.

Although the proposed method achieved good 
performance in experimental validation, certain limitations 
remain. For example, the data dimension is limited: the 
current experiments construct the knowledge graph solely 
from structured accident data, without fully utilizing multi-
source information such as raw text descriptions and 
sensor sequence data, leading to insufficient exploitation of 
available information. Moreover, model interpretability is 
still limited. Although structural information and relational 

modeling have been incorporated, a systematic causal 
reasoning pathway for accident mechanisms has not yet 
been established.

In summary, this research provides a new method and 
perspective for knowledge graph–based risk identification 
of oil and gas pipeline accidents. The study lays a solid 
foundation and demonstrates broad application prospects, 
while still leaving room for improvement and valuable 
directions for future research.
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