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Abstract

With the rapid expansion of oil and gas pipeline
networks, their operational safety faces increasingly
complex risk threats. Conventional accident risk assess-
ment methods mainly rely on manually defined rules
and static indicators, making it difficult to uncover the
deeper causal logic and structural patterns of accidents.
To address this challenge, a risk early-warning model for
oil and gas pipelines is proposed, integrating knowledge
graph techniques with graph neural networks. Specifically,
pipeline accident reports from Pipeline and Hazardous
Materials Safety Administration (PHMSA) are consoli-
dated to construct a comprehensive knowledge graph
of pipeline risks. Based on this graph, a relation-aware
graph neural network node classification approach is
designed, which incorporates both structural features
and numerical attributes to enable risk prediction. Within
this framework, the Composition-based Multi-Relational
Graph Convolutional Networks (CompMRGCN) model
is further developed, extending the relation-aware graph
convolutional network by embedding a Markov random
field-based dependency mechanism to capture correlations
among node labels during prediction. Experimental results
demonstrate that the proposed early-warning model and
CompMRGCN method achieve 96.2% accuracy, 95.8%
Fl-score, and 97.1% mAP, representing improvements
of 6.7%, 5.6%, and 5.4% over the best existing baselines,
respectively. Comparative analysis indicates that this
approach substantially outperforms competing models
in terms of accuracy, generalization, and interpretability,
offering an effective and practical technical support for
intelligent accident early warning and safety management
of oil and gas pipelines.

Keywords: Accident risk prediction, Knowledge graph,
Oil and gas pipelines, Relation-aware graph neural network

1 Introduction

As the lifeline of national energy infrastructure,
the safe and stable operation of oil and gas pipelines
is directly linked to economic efficiency, public safety,

and environmental protection [1]. Traditional risk
assessment techniques for pipelines primarily rely on
statistical monitoring of physical sensor parameters such
as pressure, flow rate, and temperature, combined with
expert experience or fixed thresholds for alarm generation.
However, such approaches are insufficient for capturing the
coupled failures arising from multi-factor and multi-entity
interactions within complex pipeline networks. They also
exhibit limited capabilities in multi-source data integration
and semantic modeling, thereby lacking systematic support
for risk cognition [2]. In particular, when confronted
with atypical risk inducers such as intentional damage
or geological hazards, the timeliness and accuracy of
traditional monitoring models decrease significantly [3].

In recent years, the rapid development of emerging
technologies such as artificial intelligence, big data, and
graph learning has opened up new directions for pipeline
safety monitoring and risk early warning. Among them,
Graph Neural Networks (GNNs), which can effectively
model both the topological structure and attribute
dependencies among entities, have become a powerful tool
for structural modeling in complex networked systems [4].
Previous studies have demonstrated their adaptability in
diverse application scenarios, including fault identification
in power systems [5], water resource monitoring [6], and
safety assessment of urban rail transit [7].

2 Related Work

2.1 Research Status of Graph Neural Network in

Industrial Scene

GNNs as a deep learning paradigm designed for
graph-structured data, have demonstrated outstanding
performance in various domains in recent years [8].
The core idea of GNNSs is to treat each entity (node) as
a component of the graph and capture structural depen-
dencies among nodes through iterative message-passing
mechanisms, thereby generating high-quality node
representations. In industrial applications, GNNs are
particularly suitable for scenarios where devices exhibit
topological structures or interaction relationships, such
as power grid systems [9], water resource scheduling
[10], and industrial process control [11]. For example,
Wang et al. developed a Graph Convolutional Network
(GCN) monitoring graph for wind farms, enabling turbine
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state classification and fault prediction [12]. Similarly,
Velickovi¢ et al. employed a Graph Attention Network
(GAT) to model the graph structure among sensor nodes,
achieving effective representation and prediction of key
indicators within workshops and improving both the
flexibility and interpretability of the model [13].

2.2 Trends and Challenges of the Integration of GNN
and Knowledge Mapping

The integration of GNNs and Knowledge Graphs
(KGs) has been widely recognized as a promising
direction for enhancing systematic knowledge modeling
and intelligent reasoning, and recent studies have
explored applications in finance, healthcare, and
industrial manufacturing [14-15]. For instance, Zhao et al.
proposed a Multi-Scale Dynamic Graph Neural Network
(MSDG) model that integrates graph semantics with
embedding features to address anomaly detection tasks
in industrial sensors, demonstrating improved stability
and generalization [14]. Similarly, Soler et al. designed
a contextual safety modeling framework that combines
ontology-based reasoning with GNNs, enabling more
sensitive state recognition and responsive mechanisms
[16]. To address the challenge of dynamic evolution
modeling, Ma et al. developed a temporal graph-based
predictive model that significantly enhanced response
speed and prediction accuracy in industrial processes
[17]. In terms of interpretability, Yuan et al. introduced an
explainable GNN structure (xGNN) capable of explicitly
modeling risk propagation paths, thereby providing
decision-makers with causal chain—level analytical support
[18].

Therefore, constructing a risk prediction model
for oil and gas pipelines that leverages the semantic
representation capabilities of KGs together with the
structural modeling power of GNNs not only holds
substantial theoretical research value but also offers broad
engineering application prospects for advancing industrial
intelligence and improving risk control capacity.

2.3 Research Objectives and Technical Route

Against the backdrop of frequent oil and gas pipeline
accidents and the limited effectiveness of traditional
early-warning approaches, advancing risk monitoring
methods from a purely “data-driven” paradigm to an
integrated framework of “structural modeling + knowledge
reasoning” has become one of the core directions for
intelligent development in the industry [19]. GNNs have
demonstrated notable performance in tasks such as fault
detection and risk propagation modeling [20]. In contrast,
KGs excel at semantic-level entity modeling and causal
logic representation [21]. The integration of these two
approaches enables a joint representation of “structure
+ semantics” in complex systems, thereby providing a
theoretical foundation for the development of predictive
and interpretable intelligent risk identification systems.

This study focuses on the high-risk scenario of oil
and gas pipeline accident risk prediction and proposes
a modeling framework that integrates Relational Graph
Convolutional Network (R-GCN) with multi-source

knowledge graphs, thereby establishing an intelligent
reasoning pathway from data to knowledge and from
knowledge graphs to risk. The main contributions are as
follows:

(1) A relation-aware graph neural network node
classification method is designed which termed the
Composition-based Multi-Relational Graph Convolutional
Networks (CompMRGCN). Building upon an accident
knowledge graph that incorporates both structural
information and numerical attributes, a multi-relational
graph convolutional framework with relation-aware
mechanisms is developed to achieve unified modeling of
node features and complex relationships.

(2) Within the CompMRGCN architecture, relation-
aware mechanisms and label dependency modeling are
introduced to enhance node semantic representations and
capture potential associations among risk nodes, thereby
substantially improving the accuracy and robustness of
pipeline accident risk prediction.

(3) Systematic experiments conducted on a real pipe-
line accident dataset demonstrate that CompMRGCN
significantly outperforms multiple baseline methods in
terms of accuracy, F1 score, and mAP. Furthermore,
ablation studies confirm the effectiveness of each
component design and the overall superiority of the
proposed.

3 Data Set Construction and Know-
ledge Mapping Preprocessing

3.1 Data Source and Structure Introduction

The dataset used in this study is primarily derived
from the pipeline accident reports publicly released by the
Pipeline and Hazardous Materials Safety Administration
(PHMSA) under the U.S. Department of Transportation. As
one of the most comprehensive pipeline failure databases
worldwide, the PHMSA dataset documents accident
information related to natural gas and liquid pipelines in
North America since 2010. It contains detailed records of
more than 10,000 pipeline accidents, covering multiple
attributes such as accident occurrence time, geographic
location, equipment type, operating company, economic
losses, and casualties. This dataset is widely regarded as
one of the most authoritative and complete oil and gas
pipeline accident databases available internationally.

The raw data is provided in CSV format, and consists
of both structured fields (e.g., state name, pipeline type,
incident ID) and semi-structured fields (e.g., incident
description, cause statement). Certain fields exhibit
missing values or redundancies. Preliminary statistics
indicate that the dataset contains more than 1,800 complete
accident samples, with each record on average associated
with multiple devices, companies, and impact indicators,
thereby exhibiting a clear multi-source heterogeneous
nature.

At the structural level, the raw data presents two major
challenges. First, semantic redundancy exists across certain
fields, such as “Location Description” and “Incident
Location”, which convey similar meanings and thus
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require filtering and normalization during data processing.
Second, some fields have relatively high missing rates;
for instance, economic loss attributes such as “Total
Investigation Cost” and “Property Damage” have a
missing rate of nearly 30%, necessitating careful handling
during subsequent feature construction.

In addition to the PHMSA dataset, multi-source data
from other channels were integrated, including:

(1) Pipeline basic attribute data, such as diameter, wall
thickness, material, and years of service;

(2) Environmental data, including soil type, humidity,
temperature, and geological hazards.

Table 1. Data sources and description

Type Source Key attributes
Time, Location,
Accident Data PHMSA Cause, Consequence,
Economic Loss
Pipeline Attribute  Enterprise plameter, Wall.
Thickness, Material,
Data Database .
Years of Service
Environmental Geographlc Soil Type, Humidity,
Data Information Temperature,
System Geological Hazards

To address the characteristics described above, this
study implements a unified data processing workflow,
encompassing the extraction of core entities and
attribute fields, field reduction, and label normalization
preprocessing. The sources and key attributes of the data
used in this process are summarized in Table 1. Based
on this, a standardized knowledge graph structure is then
designed, enabling the transformation of raw accident data
into inputs suitable for graph neural networks. This process
establishes a solid foundation for subsequent model
training and inference analysis.

3.2 Entity and Relationship Extraction

Knowledge extraction forms the foundation of
knowledge graph construction and aims to extract entities,
relations, and attributes from multi-source data. To fully
leverage the structured knowledge embedded in oil and gas
pipeline accident data and provide graph neural network
models with structurally clear input graphs, this study
designs and implements a systematic data pre-processing
and knowledge graph construction work-flow based on
domain priors and data analysis results. This workflow
extracts entities and relations for risk modeling, facilitating
the transformation of raw accident records into graph-
structured inputs suitable for GNN modeling [22].

The extracted entity types include: pipeline entities
(pipeline segments, valves, pumping stations, etc.),
accident entities (leakages, ruptures, explosions, etc.),
environmental entities (soil, climate, terrain, etc.), and
factor entities (corrosion, external damage, material
defects, etc.) [23].

The relation types include: part-of relations (e.g.,
“pipeline—located in-region”), causal relations (e.g.,

“corrosion—causes—leakage”), temporal relations (e.g.,
“accident—occurred at-time”), and spatial relations (e.g.,
“pipeline—crosses—river”) [24].

3.3 Data Preprocessing and Atlas Generation Process

Due to the presence of redundant fields, missing
values, and semantic inconsistencies in the raw data, an
initial data cleaning and reduction process was performed,
which mainly includes the following steps:

(1) Field selection and reduction: Key information
relevant to graph construction (e.g., equipment
type, accident time, operator, geographic location,
and loss details) was retained, while fields
unrelated to statistical analysis were removed.

(2) Missing value handling: For numerical fields with
missing values (e.g., Property Damage Cost), the
mean or median was used for imputation; missing
text entries were set as empty and excluded during
graph construction.

(3) Enumeration and discretization: Continuous
fields such as pipeline service life (Pipe Age) and
economic loss (Cost) were binned to facilitate the
creation of discrete entities.

(4) Text Standardization: Free-text fields, such as
Cause Description, were processed through
lower-casing, stop-word removal, and keyword
extraction to normalize cause-related entity
descriptions.

The cleaned entities (e.g., accident events, equipment
facilities, geographic locations, operators) were assigned
unique entity identifiers (IDs) using a unified mapping
table, following these strategies:

(1) Independent dictionaries were created for each
entity type, with consistent naming prefixes to
avoid conflicts.

(2) Entity IDs were encoded consecutively to ensure
consistent tensor dimensions, facilitating efficient
model processing.

(3) All nodes and edges in the graph were represented
by numeric indices rather than original strings,
reducing storage overhead.

After entity ID assignment, standard triples were
constructed in the form of (head id, relation id, tail id)
according to the predefined relation types (e.g., operated
by, caused by). The characteristics of the graph structure
are as follows:

(1) All edges are represented as unidirectional, with
the option to extend to bidirectional relations if
necessary.

(2) Relation types are stored with unified numbering,
enabling efficient graph convolution propagation
and parameter sharing.

(3) The final triples, along with the entity mapping
table, are output together for use in deep learning
frameworks such as PyTorch Geometric.

As shown in Figure 1, the complete data preprocessing
workflow clearly illustrates the entire pipeline from raw
accident data to GNN graph data, encompassing five core
steps: cleaning, standardization, entity construction, rela-
tion definition, and data output.
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Figure 1. Flow chart of data cleaning and graph structure
generation

4 Model Design and Implementation

4.1 Overall Model Architecture

To enhance the accuracy and structural interpretability
of oil and gas pipeline accident risk prediction, this study
proposes a relation-aware graph neural network node
classification method based on accident knowledge graph
construction, termed CompMRGCN. The overall design
constructs a heterogeneous graph input of entities and their
semantic relationships using historical multi-field accident
data. Through a relation-aware convolution mechanism,
structural information and node features are jointly
modeled, ultimately enabling risk prediction for accident
nodes.

Unlike traditional classification models that rely
solely on numerical feature vectors, the proposed method
first extracts key information from accident data, such
as equipment type, operator, geographic location, and
accident cause to construct entity nodes and define
semantic relationships (edges) between them, including
operated by, located in, and caused by [14]. This
results in a heterogeneous graph that integrates structural
connections and attribute features. The graph not only
captures the inter-entity associations but also preserves
the attributes of each node (e.g., equipment parameters,
accident loss metrics), providing rich input information for
the graph neural network [15].

Figure 2 shows the overall model architecture proposed
in this study, which mainly includes the following three
modules.
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Figure 2. Overall framework of accident risk prediction

(1) Input Layer

The input layer constructs an oil and gas pipeline
accident knowledge graph based on pipeline accident
report data, unifying the representation of accident entities,
attribute information, and multiple types of relationships.
Node structural features and numerical attributes are
integrated to provide foundational support for subsequent
modeling.

(2) Relation-Aware Graph Convolution Layer

Building on the concept of multi-relational combina-
tion modeling, the relation-aware graph convolution layer
incorporates a relation-aware mechanism, which fully
leverages information from different types of relational
edges. By integrating label-dependency constraints, the
layer learns node representations with enhanced semantic
expressiveness, enabling better capture of complex latent
connections among accident nodes [16].

(3) Output Layer

The output layer feeds the node representations into a
classifier to predict the probability distribution across three
risk levels: low, medium, and high. Through threshold
optimization, the model’s recognition capability under
class-imbalanced conditions is improved, achieving precise
risk early warning for pipeline accidents [17].

The overall workflow enables intelligent prediction
of oil and gas pipeline accident risks. By constructing
an accident knowledge graph that encompasses entities,
attributes, and multiple relationship types at the input stage,
the model effectively integrates structural information with
numerical features. In the intermediate stage, the relation-
aware graph convolution layer leverages multi-relational
combination modeling and the relation-aware mechanism
to semantically enhance complex relationships, while
incorporating label-dependency modeling to obtain more
expressive node representations. At the output stage, the
model classifies node risk levels, providing low, medium,
and high predictions, and employs threshold optimization
to improve performance under class-imbalanced conditions
[18].

The modules illustrated in the figure reflect the
progressive process from data to knowledge, from
knowledge to representation, and from representation to
prediction: the input module emphasizes data integration
and graph construction, the convolution module highlights
deep modeling of relations and semantics, and the output
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module corresponds to explicit determination of risk levels.
This workflow not only ensures accuracy and robustness
in risk prediction but also demonstrates the scalability and
application potential of graph neural networks in complex
industrial safety scenarios [25].

4.2 Graph Neural Network Modeling

This section presents the implementation details of
the graph neural network model, including the network
architecture, feature fusion mechanism, and loss function
definition. The modeling framework is not based on
traditional static graphs or rule-based networks; rather,
it leverages the structured knowledge graph constructed
previously, in which entities represent elements such as
accidents, equipment, and locations, while relations capture
various types of semantic associations. Consequently,
the graph neural network is employed to perform node
representation learning and risk inference directly on the
knowledge graph structure.

4.2.1 Heterogeneous Graph Structure Encoding Based
on Knowledge Graph

The input graph structure is derived from knowledge
graph triples (head, relation, tail), encompassing multiple
types of entity nodes (e.g., accidents, equipment, geo-
graphic locations, operators) and semantic relation
types (e.g., operated by, caused by, has location).
Unlike general graph models, this graph exhibits typical
knowledge graph characteristics:

Heterogeneous entities: Different node types are widely
distributed, with varying attribute dimensions.

Explicit semantics: Each edge type carries a clearly
defined semantic meaning.

Sparse structure with high information density:
Accident nodes serve as anchors, connecting to contextual
entities through multi-hop structures.

R-GCN designed for heterogeneous graphs typical
of knowledge graphs, assigns independent message-
passing transformations for each relation type, enabling
semantically differentiated information aggregation within
the graph structure [19]. The node update mechanism of
R-GCN, allows the model to automatically learn higher-
order contextual embeddings from graph relations such as
“an accident caused by a specific reason” or “a company
operates a specific pipeline segment,” thereby enhancing
its ability to perceive semantic contexts of accidents.

4.2.2 Graph Neural Network Encoding Structures

After the construction of the knowledge graph
structure, R-GCN is adopted as the core graph neural
network architecture. Building upon the standard GCN,
R-GCN introduces a relation-type—aware mechanism,
enabling the model to learn a distinct transformation
matrix for each type of edge relation, thereby enhancing its
capacity to model multi-relational graph structures [21].

(1) Basic Notations and Definitions

The graph structure is denoted as G = (V, E, R), where
V" denotes the set of nodes, E is the set of edges, and R
denotes the set of relation types.

The node feature matrix is denoted as X ER‘VW, where
d is the feature dimension.

The adjacency matrix is denoted as 4,€R""", for each
relation type reR. The entry A4,[i, j]=1 if and only if there
exists an edge of type » from node i to node ;.

(2) Relation-Specific Transformation Matrices

Traditional GCN employs a single weight matrix W,
whereas R-GCN introduces relation-specific transfor-
mation matrices for each relation type:

B = a{z z Loy +W”>h(”] ()
i r i 0 i 2
C. .

reR jeN;
L]

where i denotes the representation of node i at the

[ -th layer, N; represents the set of neighboring nodes

i

connected to node i via relation r, ¢;; is a normalization

Wr“) is the

constant, typically defined as ¢,; = |N,.' .
relation-specific weight matrix corresponding to relation
r, W is the weight matrix for self-connections and &

denotes a non-linear activation function.

(3) Relation-Aware Graph Convolutional Network

GCNs are primarily designed for simple undirected
graphs and are incapable of handling directed multi-
relational graphs in knowledge graphs. To address
this issue, this study adopts Composition-based Graph
Convolutional Network (CompGCN) as the foundational
architecture.

The model comprises two R-GCN layers, enabling the
transition from semantic aggregation of local neighbor-
hood information to higher-order modeling of global
structural information [26]. CompGCN simultaneously
learns representations of both nodes and relations. For
an edge (u, v, r), which denotes the existence of an edge
of type r directed from node u to node v, the convolution
operation is defined as follows:

h:m) _ f(z(u,,)eN(v)Wi((li@(h:l),hil) ))7 2)

where %, denotes the representation of node v at the /-th
layer, N(v) is the neighborhood set of node v, Wl((lz) is the
relation-specific weight matrix corresponding to relation
r, ¢ is the composition operator, and 4" denotes the

representation of relation 7 .

The composition operator ¢ can take one of the
following three forms:

Subtraction: ¢ (h,, h,) = h,~h,

Multiplication: ¢ (h,, h,) = h," h,

Circular Convolution: ¢ (h,, h,) = h,xh,

To reduce the parameter complexity introduced by a
large number of relations, CompGCN employs a set of
basis vectors V, = v, v,, ..., v, to represent all relations:
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B

hr = b=l arbvb (3)

where a,, denotes the coefficient of relation » with respect
to the basis vector v,.

. Vg } e R (where d is the dimension
of relation representation), ensuring that the dimension
of the basis vectors matches the dimension of the relation
representation.

Logic of Coefficient Learning, the coefficients a,, € R
are usually learned through the following two methods:

* Fixed basis vectors: The basis vectors are
predefined (e.g., fixed after random initialization),
and only «,, is learned (obtained by mapping
relation IDs through a fully connected layer).

* Learnable basis vectors: Both the basis vectors
v, and the coefficients a,, are updated through
backpropagation. In this case, a,, is often
constrained to be non-negative (e.g., via softmax
activation) to ensure the physical meaning that “the
relation representation is a weighted combination
of basis vectors”.

In this model, the structural embeddings learned by the
R-GCN are concatenated or integrated with the numerical
attribute features of the incident nodes and subsequently
fed into a Multi-Layer Perceptron (MLP) architecture to
perform the final risk level prediction.

4.2.3 Numerical Feature Fusion Strategy and Loss
Function

Although knowledge graphs provide abundant
structural and semantic information, nodes themselves also
contain important numerical attributes, such as the time
of accident occurrence, economic losses, and equipment
parameters. These attributes are normalized to form the

Vi={viv .

attribute vector x*” of node i.

In this study, we adopt a concatenation-based fusion
strategy between structural embeddings and attribute

vectors to construct the final node representation:

z, = Concat(hl.(z),xf’m ), C)

i

where h'” denotes the structural embedding of node i

attr

obtained through two R-GCN layers, and x;"" represents

the original attribute vector of the accident node. Attention-
based Fusion: z, = w," &> + w_ x""), where w, and w, are

attention weights (obtained through learning), which are
suitable for scenarios where the importance of different
features varies with samples (e.g., numerical features are
more important in high-risk incidents, while structural
features are more important in low-risk incidents). The
fused representation simultaneously incorporates both
“structural semantic context” and “static risk features.”

The loss function of the CompMRGCN model consists
of two components:

L=L,+ BLy, Q)

where L,,, is the task-related loss (e.g., cross-entropy
loss), Ly, denotes the KL divergence between the posterior
distribution and the prior distribution, and £ is a balancing
hyperparameter.

The explanations of prior distribution and posterior
distribution are as follows:

Posterior Distribution: ¢(#|G,X), which represents the
distribution of node embeddings h given the graph G and
node features X (usually modeled as a multivariate normal
distribution %(u, 6°I), where 2 and ¢ are output by the GCN
layer).

Prior Distribution: p(#), which is usually set as a
standard normal distribution %(0,/) to constrain the
smoothness of the embedding distribution.

Calculation of KL Divergence:

L, = %Z‘V‘l(uz +o? ~logo? ~1), 6)

Its function is to make the posterior distribution
approximate the prior distribution and prevent the
embeddings from overfitting to the local structure of the
training data.

The model parameters are updated using stochastic
gradient descent with backpropagation to compute
gradient. To mitigate overfitting, regularization techniques
such as dropout and weight decay are applied.

4.3 Risk Prediction and Qutput Module

The output of the model is the predicted risk level
for each accident node. The labels are divided into three
categories (low, medium, and high risk), and are generated
by integrating historical casualties, losses, and other
fields. During the prediction phase, the model outputs the
probability distribution over the three risk levels for each
accident node, and the class with the highest probability is
selected as the predicted category.

Considering the scarcity of high-risk accident samples
and the highly imbalanced class distribution, the training
phase adopts a weighted binary cross-entropy loss
(BCEWithLogitsLoss) function, assigning different loss
weights to different risk levels in order to enhance the
recognition capability for the high-risk category [27].

In the output stage, a single-layer MLP is employed
to map the fused representation into the risk-level space,
and the model is trained using BCEWithLogitsLoss. To
address the severe class imbalance problem (with high-
risk samples accounting for only a small proportion), a
weighting mechanism is incorporated into the loss function
to enhance the model’s ability to identify high-risk
accidents [28].

For the node classification task, a softmax classifier is
added to the last layer of R-GCN:

J;i,c = SOﬁ max (W h‘(L) + bclass ) (7)

class""i
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Supplementary Explanations on Dimension and Logic:

+  h": Represents the final structural embedding of
node i after passing through L layers of R-GCN.
Here, L=2, so h”=h?eR’,

+  Parameter dimensions: W, € R (where C = 3,
corresponding to three risk levels: low, medium,
and high), and b, €R".

exp (VVda.\w,a P+ Deass )
23:] exp(W P bc,m’g)

class,c "

+  Softmax calculation: ;.=

, where Ji. represents the probability that

node i1 belongs to the c-th risk level, which is
consistent with the logic of selecting the category
with the highest probability as the prediction
result.

The training and inference of the entire model are
implemented using PyTorch Geometric, together with
the graph-structured data generated in the preceding
sections, achieving a complete modeling process from
structure construction and embedding propagation to label
prediction [29]. The entire model can be regarded as a
structure-aware predictor for risk learning on knowledge
graph structures, which not only models explicit causal
paths among entities but also incorporates numerical
factors that affect the severity of accidents [30]. The entire
algorithm flow is shown in Algorithm 1.

Algorithm 1: The Main Procedure of Method Implementation.
Data: Node Representation Learning on Relational Graph
Input: Graph G = (V, E, R), node features X, number of

layers L

Output: Node representations H®)
1 SetHO® =X;
2 for [=0toL—1do
3 for each relationship r € R do
4 Calculate the normalized normalized adjadjacency
5 matrix:4, = Dy4,
6 end
7 for each relationship i € V do
8 Aggregate neighbor information:
9 hz(\jgi) = Lrer Z/‘GN{ %j Wf”l)hg'l)
10 Add self-connections:
! KD = 000 + WORD)
12 if [ > 0 then
13 h§1+1) _ h§1+1) n hEZ)
14 end
15 end
16 end

return H®

=

5 Experiments and Analysis of
Experimental Results

5.1 Dataset Partitioning and Evaluation Metrics

This study employs the oil and gas pipeline risk
knowledge graph constructed in Section 3 as the
experimental dataset, which is randomly divided into
training, validation, and test sets in a ratio of 7:2:1, as
shown in Table 2.

Three evaluation metrics are employed to assess the
performance of the model: the Average Precision (AP), F1-
score, Accuracy.

Table 2. Dataset statistics

Statistic Quantity

Total number of nodes 32,000

Total number of edges 48,000
Node types 12
Edge types 25

Training set nodes 22,400

Validation set nodes 6,400

Test set nodes 3,200

5.2 Experimental Results and Analysis

In this study, node classification prediction is
conducted on the constructed oil and gas pipeline accident
risk knowledge graph using the CompMRGCN model
based on the relation-aware graph convolutional network.
To verify the effectiveness of the proposed method,
multiple comparison models are selected for performance
evaluation, including the standard GCN, GAT, R-GCN,
CompGCN, and Graph Markov Neural Network (GMNN).

All experiments are performed under a unified data
processing pipeline. Negative sampling is employed
to control the ratio of positive to negative samples
at approximately 1:1.5, and the dataset is randomly
partitioned into training, validation, and test sets in a ratio
of 7:2:1. During training, weighted BCEWithLogitsLoss
is used, while the AP on the validation set serves as the
criterion for early stopping. In the testing phase, the
optimal classification boundary is determined by travers-
ing different decision thresholds, in order to achieve the
best F1-score and Accuracy.

The results of the comparison experiments are shown
in Table 3.

Table 3. Comparison experiment results

mAP  Fl-score Optimal Acc

Modeltype o) (04)  threshold (%)
CompMRGCN _ 97.1 958 039 962
GCN 803 816 045 824
GAT 83.6 842 048 857
R-GCN 8§73 865 041 859
CompGCN 892 884 043 878
GMNN 917 902 044 895

On the test set, the CompMRGCN model achieved
excellent performance with an mAP of 97.1%, an F1-
score of 95.8%, and an Accuracy of 96.2%, significantly
outperforming the other comparison models. Among
them, GCN obtained relatively good results with an
mAP of 80.3% and the Fl-score of 81.6%, highlighting
the importance of graph structural information in risk
prediction. The GAT model, however, performed poorly
in this task, with an mAP of 83.6%, the results are shown
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in Figure 3, possibly due to the overall sparsity of the
oil and gas pipeline accident graph and the weak local
neighborhood information of nodes, which limit the
effectiveness of the attention mechanism.

R-GCN exhibited relatively stable performance
in this task, achieving an mAP of 87.3% and an F1-
score of 86.5%, indicating that the incorporation of
relational modeling has a positive effect on enhancing
the expressive capacity of the model. However, since it
adopts only simple linear relational transformations, it fails
to sufficiently capture the compositional characteristics
among multiple relations, and therefore still shows certain
limitations in exploiting complex semantic relationships.

Value (%)

CompMRGCN

GCN ceuracy

GAT Accuracy

R-GCN Fl-score
CompGCN

GMNN AP

Figure 3. Comparison of experimental results

The CompGCN model performed better than R-GCN
in terms of results, achieving an mAP of 89.2% and an F1-
score of 88.4%, showing a clear improvement compared
with R-GCN. This demonstrates that relation composition
operations can effectively enhance feature interaction
capability and better exploit neighboring relational
information. However, since this method does not fully
integrate numerical attributes in accident scenarios, its
overall performance remains slightly lower than that of the
CompMRGCN proposed in this article.

GMNN also achieved relatively good results in the
experiments, with an mAP of 91.7% and an Fl-score of
90.2%. As a method that incorporates graph structural
priors and label propagation mechanisms, GMNN can
alleviate, to some extent, the negative impact caused
by label scarcity. However, compared with the method
proposed in this research, its capability of modeling
multi-relational knowledge is insufficient, and therefore
its overall performance is still inferior to that of
CompMRGCN.

It is worth noting that, in order to improve the
discrimination between positive and negative samples,
decision threshold optimization was applied during the
testing phase. The optimal classification threshold for the
CompMRGCN model was 0.39, which is lower than the
conventional default threshold of 0.5. In the case of class
imbalance, the output probabilities of the model often
exhibit certain biases. By appropriately adjusting the
threshold, a better balance between recall and accuracy can

be achieved, thereby significantly improving the overall
F1-score. This treatment does not alter the label definitions
or optimization objectives during training, ensuring the
fairness and credibility of the evaluation metrics.

In summary, the CompMRGCN model proposed
in this article significantly outperforms the comparison
methods across all three metrics. Compared with the
best comparison method, GMNN, accuracy is improved
by 6.7%, the Fl-score by 5.6%, and mAP by 5.4%. This
demonstrates that, by integrating relation-aware graph
convolutions, the model can better exploit graph structural
information and label dependencies. The experimental
results fully verify that the proposed CompMRGCN
method, by incorporating knowledge graph structures
and numerical attributes in the domain of oil and gas
pipeline accidents, can effectively enhance node-level
risk prediction performance, showing strong potential for
application and generalization.

5.3 Ablation Study

To further verify the importance of the design of each
module in the model, ablation experiments were conducted
on graph structure, relational information, node attributes,
and the negative sampling mechanism. The results are
shown in Table 4.

From the overall results, the complete CompMRGCN
model achieved the highest F1-score (95.8%) and AUC
(97.14%) on the test set, demonstrating the effectiveness of
each module design. The detailed analysis is as follows:

First, after removing relational type information
(replacing R-GCN with GCN), the model performance
declined, with the Fl-score dropping from 0.9583 to
0.8970 and the AUC from 0.9623 to 0.8794, indicating that
properly modeling semantic relations among entities plays
an important role in high-risk prediction.

The results of the ablation experiments indicate that
each component of the model plays a critical role in
overall performance. Among them, the contribution of the
relation-aware mechanism is the most significant; after
its removal, the model’s accuracy dropped by 8.3%, the
Fl-score by 6.1%, and the mAP by 6.9%, demonstrating
that introducing relation awareness is indispensable when
dealing with multi-relational knowledge graphs.

When the graph structure was completely removed
and only node attributes were retained MLP, the model
performance declined drastically, with the F1-score
reduced to 0.5797, the AUC to 0.5848, and the mAP to
58.4%, which is nearly equivalent to random guessing.
This result highlights the central role of graph structural
information in oil and gas pipeline risk modeling.

When node numerical features were removed (w/o
Feature) and only structural information was preserved,
the Fl-score decreased to 0.9082 and the mAP decreased
by 5.5%. Although the impact was smaller than that of
removing graph structure, this still demonstrates that
node attribute features provide important complementary
information to the model.

In addition, when negative sampling was eliminated
(w/o Negative Sampling) and the model was trained
directly on the complete dataset, its ability to handle
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class imbalance declined significantly, with the Fl-score
reduced to only 0.7523 and the mAP decreased by 4.7%.
Although the AUC remained relatively high (0.9277), the
actual classification performance deteriorated consider-
ably, indicating that the negative sampling strategy
is particularly important for training stability and for
identifying high-risk categories.

Table 4. Ablation experiment results

In summary, relation awareness, graph structure
modeling, node numerical features, and the negative
sampling strategy are all indispensable components of the
overall framework. Together, they contribute to accurate
prediction of high-risk accidents in oil and gas pipelines
and demonstrate significant advantages across multiple
evaluation metrics.

Structural Numerical  Relation

Negative

Model variant features features modeling  sampling AUC (%) Acc (%) F1(%) mAP (%)
CompMRGCN Yes Yes Yes Yes 0.9714 0.9623 95.8 97.1
w/o Relation-aware Yes Yes No Yes 0.8950 0.8794 89.7 (-6.1) 90.2 (-6.9)
w/o Graph No Yes No Yes 0.4081 0.5848  57.9(-37.9) 58.4 (-38.7)
w/o Feature No No Yes Yes 0.9570 0.9530 90.8 (-5.0) 91.6 (-5.5)
w/o Negative sampling Yes Yes Yes No 0.9370 0.9277  75.2(-20.6) 92.4(—4.7)

6 Conclusion

This study investigates the problem of intelligent
risk identification for oil and gas pipeline accidents and
proposes a graph neural network modeling approach that
combines structural information with semantic relations.
Based on the pipeline accident report data released by the
U.S. PHMSA, a heterogeneous knowledge graph for risk
prediction was constructed.

In addition, this study proposes an oil and gas pipeline
risk early warning model based on knowledge graphs
and graph neural networks, with the main contributions
summarized as follows: First, a comprehensive oil and
gas pipeline risk knowledge graph was constructed using
the publicly released PHMSA pipeline accident report
data. An experimental dataset with a total of 32,000 nodes
was established. Second, a relation-aware graph neural
network node classification method (CompMRGCN)
was designed. By introducing a relational convolution
mechanism and a node attribute fusion strategy, this
method simultaneously leverages node features and label
dependencies, thereby effectively improving the accuracy
of risk prediction and enhancing structural interpretability.
Finally, extensive experiments on real datasets demonstrate
that the CompMRGCN model achieves an accuracy
of 96.2%, an Fl-score of 95.8%, and a mean average
precision (mAP) of 97.1%, significantly outperforming the
comparison methods. The ablation study further validates
the effectiveness of each component of the model.

Although the proposed method achieved good
performance in experimental validation, certain limitations
remain. For example, the data dimension is limited: the
current experiments construct the knowledge graph solely
from structured accident data, without fully utilizing multi-
source information such as raw text descriptions and
sensor sequence data, leading to insufficient exploitation of
available information. Moreover, model interpretability is
still limited. Although structural information and relational

modeling have been incorporated, a systematic causal
reasoning pathway for accident mechanisms has not yet
been established.

In summary, this research provides a new method and
perspective for knowledge graph—based risk identification
of oil and gas pipeline accidents. The study lays a solid
foundation and demonstrates broad application prospects,
while still leaving room for improvement and valuable
directions for future research.
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