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Abstract

This review systematizes cyber situational awareness 
(CSA) for oil & gas pipeline networks with an application-
oriented workflow spanning data inputs, processing 
pipelines, and decision outputs. Building on recent 
literature, we distill three recurrent strands into reusable 
engineering dimensions-representative evidence, methods, 
constraints, and evaluation: (i) joint communication–
process anomaly identification that fuses cyber telemetry 
with process signals; (ii) cross-domain situation modeling 
capable of spanning OT/IT boundaries under cloudified and 
remote O&M; and (iii) knowledge-driven context fusion 
with event-to-process-impact scoring to link alerts to 
operational risk. We synthesize method families covering 
spatiotemporal graph/Transformer learning, semi/self-
supervision for scarce labels, evidential risk aggregation 
(e.g., Dempster–Shafer), hierarchical indicators and 
weighting (AHP), and SOC-oriented visualization that 
couples algorithmic metrics with operational KPIs. A 
critical appraisal reveals persistent gaps: non-uniform 
indicator definitions and weightings, the lack of pipeline-
specific OT/ICS benchmarks, fragile cross-domain 
generalization, and detection-centric designs that seldom 
progress into explainable, auditable, and cost-aware 
response. To bridge research and deployment, we propose 
a practical agenda: establish harmonized benchmarks 
and evaluation protocols aligned with O&M KPIs; adopt 
governance-first multi-source integration with an ontology/
knowledge-graph backbone; co-design models and runtime 
for edge/regional constraints via compression, distillation, 
and event-driven inference; and advance toward closed-
loop defense through policy learning and playbook-guided 
automation. The review consolidates fragmented advances 
into a transferable, scalable, and measurable pathway for 
CSA in real pipeline environments.

Keywords: Cyber situational awareness, OT/ICS 
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1  Research Status

1.1 Research Progress on Cyber Situational Awareness 
for Oil & Gas Pipeline Networks
Oil and gas pipeline networks are geographically 

distributed cyber-physical systems operated within 
integrated OT/IT environments that comprise field stations 
and valve rooms (sensors and RTU/PLC), heterogeneous 
wide-area communications (leased lines/public Internet/
satellite), and central SCADA, data historians, and 
security operations capabilities; within this context, cyber 
situational awareness (CSA) aims to aggregate, correlate, 
and project multi-source evidence-including industrial 
protocol communications, process time series, and system/
security logs-along the perception -comprehension–
projection cycle to produce explainable and auditable 
risk representations aligned with operational objectives 
[1]. To provide a rigorous bridge from concepts to 
engineering use, we formalize an application-oriented 
CSA reference workflow with three stages-data inputs, 
processing pipeline, decision outputs (Figure 1). This 
choice is methodologically supported by systematic 
evidence from cyber situation-awareness research and 
SOC-oriented situation-awareness studies [1-2]. Building 
on this foundation, Table 1 maps three commonly reported 
research strands-joint communication–process modeling, 
cross-domain situation modeling, knowledge-driven impact 
scoring-onto a set of reusable engineering dimensions 
(representative evidence, methods, constraints, evaluation). 
This mapping standardizes reporting and facilitates apples-
to-apples evaluation and replication across heterogeneous 
proposals [3-8].

( i )  Joint  Communication–process Anomaly 
Identification.

Within industrial control system (ICS) security, relying 
on a single data modality (only traffic or only logs) rarely 
yields high-confidence detection; a comprehensive survey 
shows that multi-modal fusion of OT protocol flows (e.g., 
Modbus, DNP3, IEC-104, OPC UA), host/system events, 
and process variables has become a dominant trend for 
improving detectability and deployability in operational 
environments [3]. A focused review of machine learning 
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methods for ICS security further indicates that deep 
temporal models (e.g., CNN-LSTM and self-attention) 
are suited to capture dynamic dependencies in process 
behavior, and that lightweight inference at the edge 
is advisable to satisfy millisecond-to-second latency 
constraints typical of industrial processes [4]. From 
a learning-paradigm viewpoint, a survey centered on 
intrusion detection contrasts supervised, semi-supervised, 
and unsupervised strategies and argues that semi-/self-
supervised designs are more robust under scarce labeling, 
which is common in ICS datasets [5]. For cross-station 
correlation, a correlation-based multivariate anomaly 
detection framework constructs intra-/inter-station 
variable-relation graphs and then performs combined 
statistical/learning tests to suppress false positives, 
which naturally fits the hierarchical topology of “station-
segment-center” in pipeline systems [6]. On the process 
side, a method that combines process invariants with 
swarm-intelligence search automatically derives verifiable 

detection rules to mitigate label scarcity while enforcing 
physical consistency; this design is directly applicable to 
oil-and-gas variables such as pressure, flow, and valve 
position [7].

Figure 1. Endsley-based situation awareness–decision–
action closed-loop reference model

Table 1. Alignment of evidence, methods, constraints, and evaluation across CSA research strands for oil & gas pipeline 
networks

Strand Representative evidence Representative methods Key characteristics Adaptation points

Joint 
communication–
process anomaly 
identification

Industrial-protocol DPI, 
system/security logs, 
pressure/flow/valve time 
series

Deep temporal 
models (CNN-
LSTM/Transformer), 
correlation-based 
detection, semi-/self-
supervised learning

Multi-modal fusion, 
low-latency edge 
inference, cross-station 
association

Cope with long-
haullink instability; 
limited labels; maintain 
explainability

Cross-domain 
situation modeling 
(cloud/remote)

Identity & access 
auditing, cloud API logs, 
link-quality metrics

Zero-trust & continuous 
evaluation, evidence 
fusion with visual 
analytics

End-to-cloud evidence 
loop, stronger 
traceability

Continuous assessment 
for remote supervision/
inspection

Knowledge-driven 
semantic fusion and 
impact scoring

Asset/process/topology/
event knowledge; work-
order records

Knowledge-graph 
representation & 
reasoning; representation 
learning

Evidence alignment, 
causal tracing, 
quantitative impact 
scoring

Harmonize with NIST/
IEC baselines and API 
1164

(ii) Cross-domain situation modeling under 
cloudification and remote operations.

As pipeline enterprises migrate historians, disaster 
recovery, and selected applications to cloud platforms-
while simultaneously operating over mixed wide-area 
media (leased/public/satellite)-CSA must explicitly 
incorporate cloud-side observability (identity and 
access auditing, API invocation traces) and link-
quality measurements (loss, latency, jitter) as first-
class evidence. A recent survey on cloud-based SCADA 
systems synthesizes the resulting risks from shared 
resources, access-boundary management, and protocol 
weaknesses, and recommends building zero-trust, least-
privilege, continuously evaluated cross-domain situation 
graphs for remote operation paths [8]. From an energy-
sector perspective, a systematic review demonstrates that 
coupling the “alert aggregation → situation interpretation 

→ response orchestration” workflow with visual analytics 
and human-in-the-loop interfaces reduces operational 
burden and improves response consistency-capabilities 
that are critical for remote supervision and inspection in 
pipeline scenarios [9].

(iii) Knowledge-driven context fusion and “event-
to-process-impact” quantification.

In asset- and process-rich environments, a knowledge 
layer can unify assets, process flows, topology, event 
semantics, and work-order records into a single semantic 
space. A state-of-the-art review on cybersecurity 
knowledge graphs details construction pipelines, entity–
relation representations, and reasoning mechanisms, 
and shows that knowledge representation and reasoning 
enhance cross-source evidence alignment, causal tracing, 
and automated orchestration [10]. An engineering-
oriented survey on knowledge-graph construction further 
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proposes combining representation learning with ontology 
constraints to realize robust matching and explainable 
inference across heterogeneous evidence [11]. For industry 
alignment, authoritative baselines are essential: NIST SP 
800-82 Rev.3 specifies OT-centric zoning/segmentation, 
metrics, and control requirements, offering a principled 
basis for defining knowledge-layer control objectives 
and measurement loops [12]; API Standard 1164 (3rd 
ed.) provides graded protection and audit requirements 
for pipeline control systems and thus an implementation 
guideline for mapping security events to quantitative 
impacts on pressure, flow, and transport capacity [13]. 
Complementing these, Ma survey synthesizes recent 
advances across attack/defense, detection, risk assessment, 
response, and protection in ICS, underscoring the 
importance of linking detection outcomes with risk 
evaluation and response strategies to close the evidence-
to-action loop-an approach that aligns closely with CSA 
deployment in pipeline operations [14].

(iv) Evaluation paradigm: beyond model scores to 
operations-oriented KPIs.

Exclusive reliance on Precision/Recall, F1, and AUC is 
insufficient to reflect operational value in pipeline contexts. 
A systematic review of SOC situation awareness advocates 
incorporating operations-oriented KPIs-e.g., mean time 
to acknowledge and repair, alert deduplication ratio, 
and end-to-end response SLAs-and enhancing situation 
explainability to reduce human workload [2]. Together 
with correlation-driven anomaly detection and process-
invariant constraints, these practices enable quantification 
of impact duration and magnitude on transport continuity, 
thereby aligning evaluation with process objectives [6-7].

1.2 Research on Network Security Situational 
Awareness Models and Risk-Assessment Methods
Networked s i tuat ional  awareness  (NSSA) in 

cyberspace can be framed as a data-driven pipeline that 
links layered sensing to semantic interpretation and 
forward projection; Abuabid articulates this as a unified, 
ML-centric approach that operationalizes SA with 
supervised learning over enterprise telemetry [15]. In SOC 
practice, Forsberg introduces a metric design framework 
that turns the “alert aggregation → situation interpretation 
→ response” workflow into measurable, operations-
oriented performance indicators, offering a concrete basis 
for evaluating SA effectiveness [16].

In situational modeling, Kiflay demonstrates that 
multimodal fusion of flow and payload features improves 
robustness over single-modality NIDS, underscoring 
fusion as a first-class design choice for deployability [17]; 
Xu further shows a few-shot, multimodal scheme that 
merges traffic-feature graphs with packet-feature sets to 
maintain performance under scarce labels [18]. From a 
learning-paradigm viewpoint, Nakıp proposes an online 
self-supervised IDS that continuously adapts feature 
representations during streaming operation, while Shyaa 
surveys concept drift handling and feature-engineering 
tactics essential for sustaining accuracy as threats evolve 
[19-20]. For correlation modeling, Birihanu presents an 

explainable correlation-based anomaly detection approach 
that exploits inter-sensor relationships to trace anomaly 
propagation-providing a reusable pattern for multi-
variable, cross-segment detection without relying on heavy 
labeling [21].

For risk assessment that fuses subjective and objective 
information, the classical Dempster–Shafer (DS) evidence 
theory has remained widely used in recent years for risk 
aggregation in networks and critical infrastructure. In 
maritime-network risk studies, Uflaz et al. fused expert 
evidence via DS to quantify potential risks under different 
attack scenarios, demonstrating DS’s applicability to 
uncertainty representation and conflict handling [22]. For 
smart-city and sectoral digitalization scenarios, Al Sharif 
et al. embedded DS into a comprehensive risk-analysis 
pipeline-from evidence modeling to synthesis and decision 
making-offering a transferable template for risk metrics 
in network and IoT contexts [23]. In terms of formal 
advances in evidential reasoning, Chen et al. introduced 
an evidential model on an ordered frame of discernment to 
address limitations of traditional DS in frame granularity 
and conflict management, providing a reusable inference 
pipeline for quantitative assessment in software and 
network security [24].

With respect to hierarchical indicators and weight 
determination, Analytic Hierarchy Process (AHP) remains 
a common tool for constructing situational scores, while 
recent work stresses its integration with imbalance-
aware learning and ensemble classifiers. Aimed at the 
IIoT, Yi et al. proposed an AHP-driven quantitative 
assessment pipeline that combines AUOS re-sampling 
with an XGBoost classifier to mitigate class imbalance 
and feature heterogeneity, significantly improving 
classification stability and interpretability [25]. In a more 
general network-SA setting, Zhang et al. presented a 
concrete implementation of “AHP decomposition-weight 
estimation-composite scoring,” which serves as a baseline 
paradigm for multi-indicator evaluation [26].

In the measurement and visualization direction-
specifically, how to quantify situational cognition-Wong 
and McNeese proposed a metric framework that crosses 
the Cyber Operations Five-Plane model with Endsley’s 
three levels, producing a reusable question bank and rating 
scales for quantitative SA measurement under varied task 
contexts [27]. For immersive situational awareness, Ahmad 
et al. surveyed visualization and interaction techniques 
and summarized evaluation mechanisms aligned with SA 
levels (perception, comprehension, projection), providing 
synthesized evidence for designing large-scale visual-
analytics systems [28]. From the resilience-engineering 
perspective, a cross-review of resilience and SA argued 
that absorption, recovery, and adaptive capacity should 
be integrated into SA modeling and measurement, 
forming a closed-loop indicator system spanning threat–
vulnerability–impact [29].

Under information sharing and national/regional 
scales, Serini proposed a concept model of “collective 
situational awareness” at the EU level, stressing 
standardized exchange mechanisms among member states 
and institutions to reduce decision uncertainty under cross-
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domain threats [30]. At the organizational level, Renaud 
and Goucher developed a cyber-SA model for SMEs 
and showed empirically that an organization’s SA level 
is positively associated with the strength of its control 
implementation, making the model a practical measure 
for capability building [31]. At the national level, a 
framework for cyber SA with simplified metrics and crisis-

management orientation was proposed to support macro-
level decision making and early warning [32]. To support 
method selection and reproducibility, the studies discussed 
in this subsection are aligned into a five-tuple- “methods/
models, core idea, strengths, limitations, representative 
refs.” -as summarized in Table 2.

 Table 2. Structured alignment of methods–core ideas–strengths–limitations–representative references for NSSA modeling 
and risk assessment

Strand Methods / Models Core idea Strengths Limitations

Foundational SA 
pipeline & SOC 
metrics

Data-driven SA 
framing; SOC KPI 
design

Frame SA as layered 
sensing → semantic 
interpretation 
→ projection; 
operationalize “alert 
→ interpretation → 
response” as KPIs

Unified terminology; KPI-based 
evaluation

Abstract; needs 
concrete modeling

Multimodal SA 
modeling

Fusion of flow + 
payload; few-shot 
multimodal fusion

Treat fusion as 
first-class; sustain 
performance under 
scarce labels

Robust and deployable Alignment overhead; 
feature work

Learning under 
drift / scarce 
labels

Online self-
supervised IDS; 
concept-drift 
handling

Adapt representations 
to evolving threats; 
engineer features 
against drift

Maintains accuracy in streams Stability/complexity 
trade-off

Correlation-
based, 
explainable 
detection

Inter-sensor/
variable 
correlation; 
explainability

Trace anomaly 
propagation via 
relation graphs

Label-light; cross-segment Depends on topology 
quality

Evidential risk 
assessment

DS fusion; 
ordered frame of 
discernment

Fuse subjective + 
objective evidence; 
manage uncertainty/
conflict

Works with incomplete/conflicting 
info

Sensitive to fusion 
rules

Hierarchical 
indicators & 
weighting

AHP + imbalance-
aware resampling + 
ensembles

Decompose indicators 
→ weights → 
composite score

Interpretable, practical Expert bias risk

Measurement & 
visualization

Metric frameworks; 
immersive visual 
analytics

Cross Endsley levels 
with cyber planes; 
quantitative SA

Reusable question banks; design 
guidance Cost; generalizability

Resilience-
oriented SA

SA × resilience 
(absorb–recover–
adapt)

Integrate resilience 
into SA metrics loop Links threat→vulnerability→impact Needs longitudinal 

data

Collective / 
organizational / 
national SA

Collective SA; 
SME model; 
national framework

Standardized sharing; 
capacity building; 
macro early warning

Reduces decision uncertainty Governance & data 
sovereignty

1.3 Survey of Cyber Situational Awareness: Toward 
Information Security and Intelligent Challenges
Cyber network situational awareness (NSSA) 

underpins rational response through the loop of “behavior 
identification-intent understanding-impact assessment,” 
and recent reviews converge on a three-stage pipeline 
of “element extraction-assessment-prediction,” while 
highlighting the growing role of AI models in multi-
source fusion and projection accuracy [33]. From an 
engineering standpoint, an integrated route that couples 
NSSA with data-security protection is taking shape: end-

to-end frameworks align threat identification, vulnerability 
hardening, and data-protection controls with classification/
analytics policies so that sensing, inference and protection 
can be co-designed rather than bolted on [34]. At the 
governance layer, collective awareness increasingly 
depends on standardized cyber-threat-intelligence (CTI) 
sharing and common evaluation vocabularies; recent 
syntheses show that well-specified sharing formats and 
exchange processes improve cross-domain decision 
certainty and the explainability of actions taken under time 
pressure [35].
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In critical infrastructure and ICS/OT contexts, 
new surveys emphasize “attack surface-detection-risk 
assessment-response” as a closed loop, and propose hybrid 
threat-modelling that blends system-, attacker- and risk-
centric views to keep situational reasoning consistent 
across IT/OT convergence scenarios [36]. In enterprise 
digitalization, big-data-driven modelling-combining 
complex-network analysis with ML risk predictors-
has been shown to raise identification efficiency under 
heterogeneous telemetry and to support real-time posture 
tracking at scale, making data-centric NSSA a practical 
default for modern organizations [37].

In detection and prediction, Zhang et al. propose a 
smarter traffic-based detection scheme using real PCAP 
files; via feature engineering and classifier optimization 
it improves the practicality and efficiency of intrusion 
recognition and serves as an effective front-end for 
situational assessment [38]. Regarding learning paradigms, 
Chen employs regression and support-vector methods to 
achieve lower prediction error on historical attack data 
and strengthen situational capability [39]; In parallel, an 
IEEE study operationalizes forecasting of post-exploitation 
steps by learning from CTI reports and system logs, 
so measurement and response can form a closed loop 

earlier within enterprise EDR workflows [40]. For IoT, an 
IEEE edge-centric security state-awareness model fuses 
device-state signals and local traffic at the edge, enabling 
real-time situational assessment under heterogeneous 
endpoints and massive-connectivity [41]. Under large-
scale heterogeneous telemetry, recent work shows that 
self-supervised, online, and lightweight anomaly/event 
detection at the IoT edge-using compact sequence models 
and on-device feature learning-can deliver strong label-free 
performance, thereby improving assessment throughput 
and accuracy for global situational awareness [42]. In 
parallel, for complex attack surfaces, a decentralized 
dynamic-state estimation framework explicitly modeling 
DoS, bias-injection, and replay attacks sustains real-
time state prediction and robust estimation under partial 
observability, offering a practical basis for online resource 
orchestration [43].

To reduce cross-paper comparison and reproduction 
overhead, Table 3 structurally aligns the studies discussed 
in this subsection along “Author | Scenario | Core 
method | Key techniques/models | Main contribution.” 
The table only consolidates claims already argued in the 
text, mapping methods to data and contributions to help 
readers quickly choose reproducible input–method–metric 
combinations and comparison baselines.

Table 3. Structured alignment of Author–Scenario–Method–Technique–Contribution for NSSA studies

Author (Year) Application scenario Core method Key techniques / models Main contribution

Wang (2023) [33] NSSA overview (AI-
centric)

Three-stage NSSA 
pipeline

Multi-source fusion; ML-
based assessment & prediction

Unifies “element extraction–
assessment–prediction”; 
highlights AI for fusion & 
projection accuracy

Wang (2025) [34] Network & data 
security (overall)

Integrated route: 
NSSA + data-security

Threat identification, 
vulnerability hardening, 
data-protection controls; 
classification/analytics

End-to-end engineering so 
sensing–inference–protection 
are co-designed rather than 
bolted on

Fang et al. (2025) [35] Macro governance / 
CTI sharing

Collective SA via 
standardized CTI 
exchange

Standardized formats & 
exchange workflows; common 
evaluation vocabulary

Improves cross-domain decision 
certainty and explainability 
under time pressure

Badawy (2024) [36] ICS/OT (critical 
infrastructure)

Closed loop “attack 
surface–detection–
risk–response”

Hybrid threat-modeling 
(system/attacker/risk views); 
IT/OT convergence

Keeps situational reasoning 
consistent across convergence 
scenarios

Li (2025) [37] Enterprise 
digitalization / big data

Data-driven SA 
modeling at scale

Complex-network analysis 
+ ML risk predictors; 
heterogeneous telemetry

Higher identification efficiency; 
supports real-time posture 
tracking

Zhang et al. (2024) [38] Network traffic 
detection

PCAP-based 
intrusion recognition

Feature engineering; classifier 
optimization

Practical, efficient front-end for 
situational assessment

Chen (2017) [39] Historical threat 
prediction Regression & SVM Feature selection; error-aware 

modeling
Lower prediction error; stronger 
predictive SA capability

Zhu (2025) [40] Post-exploitation 
forecasting

CTI/log-driven threat 
step prediction

Time-series projection; NLP 
extraction; uncertainty-aware 
evaluation; EDR workflow

“Shift-left” closed loop-earlier 
coupling of measurement and 
response

Lei (2021) [41] IoT security (edge) Edge-centric security 
state awareness

Device-state signals + local 
traffic; lightweight ML at edge

Real-time assessment under 
endpoint heterogeneity and 
massive connectivity

Abououf (2022) [42]
Large-scale 
heterogeneous IoT 
telemetry

Self-supervised 
online anomaly/event 
detection

On-device feature learning; 
sequence autoencoding; 
lightweight runtime

Strong label-free detection; 
boosts assessment throughput & 
accuracy

Qu (2025) [43] Complex attack 
surfaces (power grid)

Decentralized 
dynamic-state 
estimation under 
cyber-attacks

Robustness to DoS, bias-
injection, replay; partial-
observability handling

Real-time state prediction & 
robust estimation for online 
orchestration
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2  Unresolved Challenges

Current research on network security situational 
awareness has progressed in multiple areas. Building on 
the preceding sections, at the scenario-and-framework 
level, an OT/IT integrated environment for oil and gas 
pipeline networks has converged on a tiered, collaborative 
paradigm centered on “edge–regional–central.” At the 
methods-and-models level, multi-source data fusion, 
temporal/graph learning, and knowledge representation 
have advanced the perception, comprehension, and 
projection of situational awareness. At the application 
level, practice targeting SOCs, ICS/OT, IoT, and large-
scale data has continued to expand, forming comparable 
input–method–metric combinations.

In risk assessment and measurement, the integration of 
multi-source evidence with AI has enabled more accurate 
and dynamic evaluation models, while indicator systems 
have gradually extended from algorithmic accuracy 
to operational efficiency and business impact, thereby 
strengthening protection and response capabilities.

At the same time, several open problems remain:

2.1 Inadequate Model Construction and Algorithm 
Optimization
Although significant progress has been made in the 

construction of models and optimization of algorithms for 
network security situational awareness, current research 
still falls short in several aspects. On one hand, existing 
models lack a comprehensive consideration of complex 
network environments and fail to effectively capture 
the dynamic evolution of security situations, resulting 
in insufficient accuracy and adaptability in real-world 
applications. On the other hand, algorithm optimization 
still relies heavily on traditional computational methods, 
lacking innovative algorithmic designs capable of handling 
massive datasets and high-dimensional features. Moreover, 
existing models and algorithms face limitations in 
processing multi-source heterogeneous data and integrating 
information from different layers, making them inadequate 
for the demands of complex situational awareness in 
practical network environments. Sun et al. (2024) propose 
a GNN-based intrusion detection system (GNN-IDS) that 
fuses a static attack graph with dynamic runtime telemetry 
into a single graph input and performs inference with 
a graph neural network. Evaluated on two public IDS 
datasets, the method reports consistently strong Precision/
Recall/F1 and, compared with non-graph baselines, an 
average reduction of prediction uncertainty of about 5% 
[44].

2.2 Unresolved Challenges in Security Assessment and 
Defense
Network security situational awareness technologies 

face numerous difficulties in the areas of security 
evaluation and defense. First, the selection and fusion 
of security assessment indicators lack unified standards 
and specifications, leading to significant subjectivity and 
uncertainty in evaluation results. Second, the formulation 

of defense strategies often relies on static models and 
algorithms, which struggle to adapt to the dynamic nature 
of cybersecurity threats. Furthermore, current defense 
mechanisms are insufficient in responding to novel 
attack methods and complex threat scenarios, making 
it difficult to achieve real-time and effective protection. 
Therefore, more accurate security evaluation methods and 
more targeted defense strategies are urgently needed to 
enhance the defensive capabilities of situational awareness 
systems. Recent work by Sayghe [45] introduces a digital-
twin–driven intrusion detection (DT-ID) framework for 
industrial SCADA. In simulation studies, DT-ID reports 
an F1-score of 96.3%, false-positive rate < 2.5%, and 
average detection latency < 500 ms, outperforming a rule-
based Snort IDS and a physics-only anomaly detector. 
These figures suggest meaningful gains in evaluation 
accuracy and timeliness. However, the design still centers 
on detection rather than closed-loop, self-adaptive 
defense; translating high detection scores into online 
response policies (e.g., RL-based mitigation, moving-
target strategies) and proving cross-domain robustness on 
OT traffic from pipeline SCADA remain open problems-
precisely the gaps highlighted in this section. 

2.3 Incomplete Strategies for Addressing Intelligent 
Challenges 
With  the  rap id  advancement  of  in format ion 

technologies, the field of network security situational 
awareness is encountering increasingly complex intelligent 
challenges. First, current research lacks innovation in 
algorithm design and struggles to improve computational 
efficiency, making it difficult to handle large-scale data and 
high-dimensional feature sets. Second, the application of 
big data and artificial intelligence in situational awareness 
systems remains at an early stage, without a well-
established theoretical system or technical framework. 
Additionally, the strategies for addressing intelligent 
cybersecurity threats lack systematic integration, hindering 
cross-domain and cross-technology collaboration. Thus, 
it is imperative to improve strategic frameworks for 
intelligent threat response and drive further development 
in network security situational awareness technologies. A 
recent study by Govindarajan [46] proposes a modular IDS 
that fuses graph-based feature extraction, a Transformer 
autoencoder, and contrastive learning for high-throughput 
cloud environments. Evaluated on NSL-KDD and CIC-
IDS2018, it reports average accuracy 99.97% with 
low false-positive rates and real-time inference under 
modest resources, indicating gains in both algorithmic 
effectiveness and computational efficiency. Yet, despite 
strong IT-cloud results, the work stops short of a unified 
theory/architecture for cross-domain SA and does not 
verify performance on OT/ICS telemetry typical of oil & 
gas-mirroring the “incomplete strategies” gap identified in 
this subsection.

3  Conclusion

Research on network security situational awareness 
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(NSSA) for oil & gas pipeline systems is evolving 
from concept- and checklist-style advances toward an 
engineering-oriented system that is driven by business 
processes, led by data governance, and evaluated with 
comparable metrics. The first part of the paper surfaces 
the main threads in current research and practice: (i) 
joint communication–process anomaly identification 
is becoming a consensus, as single-modality inputs 
(traffic-only or log-only) cannot reliably capture causal 
mechanisms; (ii) with the deepening of cloudification 
and remote O&M, situational modeling must characterize 
spatiotemporal correlations across domains, layers, 
and stations; (iii) knowledge-driven contextual fusion 
and quantitative “event-to-process impact” mapping 
are key to turning detection outputs into executable 
decisions; (iv) metric quantification and visualization 
determine whether situational cognition can be used 
by SOC/control-room operators; and (v) under broader 
information sharing and sector-level collaboration, 
models and evaluations need portability, comparability, 
and reproducibility. The second part complements these 
threads methodologically: Dempster–Shafer (DS)–style 
evidence fusion for uncertainty, hierarchical indicators and 
weight determination (e.g., AHP) for multi-dimensional 
assessment, attack-graph/dependency modeling for causal 
structure, and quantification/visualization paradigms 
that enhance cognitive usability-together with structured 
summary tables to lower reproduction cost and to expose 
the key gaps between research and engineering.

Synthesizing the convergences and gaps across Parts 
One and Two, current strengths lie in the emergence 
of multi-source fusion, spatiotemporal correlation, and 
knowledge context as standard modeling elements, and in 
the shift of evaluation from single-point accuracy toward 
latency, explainability, and O&M usability. Limitations 
persist in non-uniform indicator/weight definitions, 
unverified cross-domain generalization, insufficient closed-
loop coupling, and the lack of comparable baselines under 
real OT/ICS conditions. Accordingly, four actionable 
recommendations are offered:

(1) Unified evaluation and benchmark construction. 
Build same-domain, same-metric benchmark datasets 
and protocols  around typical  oi l  & gas SCADA 
scenarios, aligning algorithmic scores with O&M KPIs 
(e.g., alert acknowledgement/repair time, impact on 
transport capacity) to support cross-study and cross-site 
comparability and transferability.

(2) Data-governance-first with a semantic backbone. 
Prioritize data quality, spatiotemporal alignment, and 
semantic disambiguation; use ontologies/knowledge graphs 
to align alarms, operating conditions, work orders, and 
equipment states to a shared semantic coordinate system, 
establishing a consistent fact base for risk quantification 
and coordinated response.

(3) Joint modeling with engineering-constraint co-
design. Maintain a “communication + process” multi-
modal approach and combine spatiotemporal graph 
modeling with attention to capture cross-site correlations; 
on the engineering side, use edge/regional collaborative 
inference,  model compression, and event-driven 

computation to achieve a compute–latency–reliability 
balance.

(4) From detection to closed loop. Integrate detection–
assessment–decision–action into a closed-loop policy, 
jointly optimizing false-positive cost, response latency, 
and process safety; constrain with explainable policies and 
auditable playbooks to form replicable, evolvable runbooks 
and toolchains that support continual learning and policy 
evolution.

The above synthesis condenses the trajectories and 
methods developed in the first two parts into a transferable, 
scalable, and measurable NSSA and active-defense 
framework oriented to real oil & gas pipeline operations, 
providing a reproducible technical and governance 
pathway for sector-level security operations.

For an at-a-glance alignment of strengths and gaps, this 
section includes a bar chart comparing capability readiness 
across five core dimensions (see Figure 2). Multi-source 
fusion and data governance exhibit moderate maturity 
(~68% and ~62%), whereas indicator standardization 
(45%), cross-domain generalization (38%), and closed-loop 
defense (32%) remain the primary bottlenecks-highlighting 
the need to prioritize unified evaluation baselines and end-
to-end strategy integration from detection to response.

Figure 2. Maturity of five core CSA capabilities
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