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Abstract

The captured underwater images often have color
distortion and blur due to the propagation characteristics
of light in water. The enhancement for underwater images
using deep learning has shown promising prospect.
However, most neural networks model the inputs and
outputs end-to-end directly, which fails to fully utilize
the inherent information present in underwater images.
We focus more on the real color distribution in water that
contains comprehensive information, and fully leverage
these information to restore the underwater images without
the color deviation. In this work, an underwater image
enhancement model combining Lab color space and
double-opponency mechanism is proposed. Lab color space
can extract luminance and chroma, which can express
wider chroma range based on human visual perception.
Double-opponent mechanism can extract color constancy
features based on the biological vision mechanism when
the lights have attenuation differences. Moreover, an
adaptive light estimation module is designed to learn the
light map from the outputs of double-opponency to adjust
the overall color of the images. Extensive experiments
demonstrate that our approach achieves outstanding results
in enhancing color and clarity in underwater images.

Keywords: Underwater image, Image enhancement, Color
correction, Color space

1 Introduction

Underwater images are widely used in the marine
biology, underwater robot exploration, and other fields.
However, different wavelengths of light in water have
different attenuation due to the absorption properties in
water [1], and the captured underwater images will show
serious color deviation. As the red light attenuates quickly
in water, blue and green lights slowly, the captured images
often appear the bluish or greenish tinge [2]. At the same
time, the suspended particles in water will also produce
a scattering blur in captured images [3]. These issues
seriously affect the optical imaging quality of underwater
images, and also reduce the accuracy of the image
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detection and segmentation. Therefore, underwater image
enhancement [4-8] is regarded as a crucial foundation for
underwater resource detection and exploration [9]. We aim
to improve the quality and visibility of underwater images
to make them more suitable for human visual perception
[10].
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Figure 1. The image shows a comparison between the
enhanced version on the left and the distorted version on
the right

The previous traditional methods mainly use the
underwater imaging model proposed by JAFF [11]
combined with the relevant prior assumptions to enhance
the underwater images, such as DCP [12] and the red
channel [13]. These methods are mainly used to predict
the unknown parameters of the imaging model by inverse
solution, and then adjust the color of the captured image.
However, traditional model-based approaches [14-16] are
limited by specific aquatic environments, and difficult to
generalize their applicability across diverse underwater
settings. The utilization of the deep learning approach
presents a vast potential for enhancing underwater image
quality, such as [17-21]. But most neural networks model
the inputs and outputs end-to-end directly. There is still
deviation of color brightness or saturation in underwater
image recovery.

One of the important reasons may be that some latent
information of underwater images is not completely
used. So in this paper, we extract luminance and chroma
information based on Lab space, which has a wider
chroma range and contains richer information than
RGB color space. Another reason is that current optical
imaging devices do not have the ability of perceiving
color constancy like the human vision system, which can



776 Journal of Internet Technology Vol. 26 No. 6, November 2025

enable the object’s perceived color constant when the
light environment changes. Inspired by double-opponency
mechanism of the human visual system [22], we extract
color constancy features based on opponent color space
when the lights have attenuation differences. The space
has a special sensitivity to color contrast, that is, the values
of different color channels will change when the light
spectrum distribution changes, but their difference does not
change obviously. This property can be used to extract the
whole light source information for compensating the image
color.

In this paper, we design a dual encoder-decoder
enhancement model that fuses Lab and double-opponency
to restore the degenerated underwater images. Moreover,
an adaptive light estimation module is designed to learn
the light map from the outputs of shallow feature extractor
to control the whole color of the underwater images. We
use both the synthetic dataset [23] and the real dataset
UIEB [24] to train the proposed model. Figure 1 displays
the enhanced result. The contributions of this paper are as
follows:

* An underwater image enhancement model is
proposed by combining Lab color space and
double-opponency mechanism, which effectively
fuses a wider chroma range information and
the color constant property of the human visual
system.

*  An adaptive light estimation module is designed
from the outputs of double-opponency module
to compensate for the color bias caused by
attenuation, which can control the overall image
color.

*  Considering the difficulty of obtaining underwater
pairs of distorted images and clear counterparts,
the synthetic and real datasets are employed to
train the proposed model together, and these
training data can not only reflect the diversity
and complexity of different water types but
also enhance authenticity and practicality in
application.

Extensive comparative experiments have been

conducted with previous underwater image enhancement
methods to verify the superiority of the proposed method.

2 Related Work

2.1 Traditional Methods for Underwater Image

Enhancement

There are two main types of methods for enhancing
underwater images in the past: physics-based and non-
physics-based methods. Non-physics-based methods
attempted to achieve better clarity and color for underwater
images by adjusting the pixel values, such as histogram
equalization [25], gray world assumption [26], etc. These
methods may suffer from unnatural colors or image
distortion and have limited applicability. Physics-based
methods relied on the underwater image degradation
formula and predicted the parameters of the formula
from the given image, then reconstructed a clear image

by inverse inference, such as red channel prior [13],
blurriness prior [17], etc. These methods mainly focused
on estimating the transmission map of the images and
then recovering the images using the degradation formula.
However, the uncertainty of underwater scenes may
prevent these methods from producing satisfactory results.

2.2 Underwater Image Enhancement Based on Deep

Learning

Recently deep learning has made significant
improvements in underwater image restoration, it can
build a highly complex function from a large amount of
data, which can effectively remove the degradation of
underwater images. WaterGan [27] proposed a two-stage
network that first generates synthetic underwater images
using RGB-D and real underwater images, then used these
synthetic images to train an image restoration network.
Fabbri et al. [28] proposed UGAN which trained on the
dataset synthesized by CycleGAN [18] and introduced a
gradient difference loss to prevent the generated image
from being too blurry. The GAN-based methods mentioned
above have high training difficulty and often produce
undesired image artifacts. WaterNet [24] was trained
on a self-built the UIEB dataset and used the fusion of
different confidence maps to improve clarity. Peng et al.
[29] designed a loss function that combines multi-color
spaces to remove color artifacts. Ucolor [30] combined
the advantages of Lab and HSV color spaces to enhance
images. Despite using multi-color spaces to enhance the
color features, the water removal effect is unsatisfactory.
UWCNN [23] proposed an enhanced network combining
imaging model, which generates an approximate ground
truth image. MetaUE [31] combined with the physical
model used the meta-learning strategy to estimate the
unknown parameters, which can solve the different
degradation issues. However, considering the complexity
of the real underwater scene, accurately estimating
parameters poses a significant challenge, resulting in
unsatisfactory underwater images.

2.3 Double-Opponency Mechanism

Double-opponency mechanism is a color constancy
for color correction proposed by Gao et al [22]. By
simulating the characteristics of the retina to the double-
opponent cells, the color of the light source in the scene is
estimated to be used for the color-biased image. Illuminant

L= (Lg,Lg,Lg) is calculated by Eq. (1).

Ly max(DOCg (x))
Ls | =] max(DOC;(x)) 6))
Ly max(DOCg(x))

where max() is the global max pooling, DOC(x),
DOC4(x), and DOCg(x) are the color spaces after the
double-opponency cell responds to the RGB image, this
response process is shown in Eq. (3). See [22] for specific
details. According to the Von Kries model, the color cast
image is corrected through Eq. (2).



Underwater Image Enhancement by Combining LAB Color Space and Double-Opponency Mechanism 777

I =LxI Q)

c

Where I, is the corrected image, [ is the illuminant
coefficient, and / is the input image.
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Figure 2. The overall framework of the proposed network

By eliminating the influence of light source, the
color distortion of the images can be corrected. Inspired
by this theory, we will design a module to extract the
corresponding color constancy features for adjusting the
tone of the underwater image.

3 Approach

3.1 Proposed Architecture

We propose a model of underwater image enhancement
by combining Lab color space and double-opponency
mechanism, which is shown in Figure 2. The model has
three main modules: shallow feature extractor module,
dual encoder-decoder enhancement module, and adaptive
light estimation module. Given the input I = {Iss, 1, 45,
Inocs Txyrt, Where I, is the underwater degraded image,
I, 5 1s obtained by color space transformation from
RGB space, I, is the double-opponent space which is
converted via Eq. (3), I, represents the transmission map
of the underwater scene, which can be estimated by the
dark channel method [32], shown in Eq. (4).

Lpyr (x) = max (M)

e c “@
cxQ(x) max(B¢,1- B)

where B, is the background light which represents the
farthest pixels of /;5, €(x) denotes a local patch of size
15%15 centered at x, c is the channel of color.

First, we use the shallow feature extractor module to
extract features from the RGB, Lab, and double-opponent
color space respectively. These features can represent
the image information in different color spaces. Next,

the extracted features are divided into two branches for
processing. The first branch fuses the RGB and Lab
information through the encoder part of the dual encoder-
decoder enhancement module. I, reflects the degree of
attenuation degree of light in different range scenes when
it propagates in water. The value of I, is larger at the
close range scene, and less at the distant range, that is the
blur degree of distant scenes is more than that of close
ones. We use the 1— I, as a pixel-wise attention map,
which is multiplied pixel-wise with the decoded features at
the decoder part of the dual encoder-decoder enhancement
module. This will enhance the quality of underwater
images, especially in distant ranges. The second branch
employs the double-opponent space as the input of the
adaptive light estimation module, which estimates the
light source map corresponding to the underwater image.
Finally, the estimated light source map and the output
of the decoder part in the first branch are multiplied by
element-wise to adjust the overall color of the underwater
image deviation. These modules are described in more
detail below.

Shallow Feature Extractor. Its role is to obtain
features of different color spaces from the input images
and convert them into a unified channel dimension. First,
we use a 3x3 convolution kernel to conduct convolution
processes on the RGB, Lab and double-opponent spaces
of input image to obtain feature maps Firgp, F 5 and Fpoc.
To preserve the information of the double-opponent space
on the RGB branch, we concatenate the feature maps Fp o
with the Fyg; along the channel dimension. After that,
we feed F), into the adaptive light estimation module to
estimate the map of the light source.

Dual Encoder-Decoder Enhancement Module. This
module contains encoder and decoder parts. Lab features
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and RGB features concatenate with the double-opponent
features are used as the input of the encoder part. In the
encoder part, we use three fusion blocks, and use 2x2
downsampling between each adjacent fusion block to
reduce the spatial resolution of the features. We design
a cross fusion residual block as the basic block of each
fusion block to fuse Lab and RGB features, as shown in
Figure 3. The basic block contains two paths with upper
and lower convolution layers, corresponding to the features
of RGB and the features of Lab respectively. Each layer
accepts feature input, and passes it through a convolution
layer. By adding the output features of the other layer,
the fused features of the two layers are obtained. Then,
two residual features containing the fused information are
output from another convolution layer. We use the output
of the first fusion block as the input of the second, thereby
achieving multiple fusions of the two color space features
to improve the representation ability of the features. Eq.
(5) and Eq. (6) show the mathematical form of the cross
fusion residual block.

F'=ReLUWy *(F, + Fy) + b))+ K ©®)
Fy'=ReLUWy, (£ + £1) + b))+ F, ()

where F| and F, are the features of the two input
color spaces, and F|, are F,, the features after the first
convolution layer, /¥ and b are the weight and bias terms
of the convolution layer respectively.

:
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Figure 3. Cross fusion residual block

Before the decoder part, since the extracted features
have different attention for the three color spaces that have
been fused together. Therefore, the importance of different
channels is adaptively adjusted by adding channel attention
mechanism [33]. In addition, in order to enhance the details
of different distant and near objects in the image, the
transmission map of the corresponding scale is introduced
in each level enhance block, and the transmission map is
used as the spatial attention feature maps to enhance the
features by element-wise multiplication. In order to ensure
that the transmission map adapts to the different size of the
feature maps at different scales in the decoding module,
we use max pooling to downsample the transmission map
before feeding it into different position of the enhancement
module.

Adaptive Light Estimation Module. Images captured
underwater are influenced by the absorption of light waves
in water, causing image color distortion and a blue-green
tint. This phenomenon resembles the imaging under a
color-biased light source. Inspired by [22], the double-
opponent space is employed to estimate the light source of
underwater scenes. An adaptive light estimation module is
proposed, which extracts the color constancy by modeling
the double-opponent space features, to adjust the overall
color of the underwater image. This module consists of
three residual blocks, a convolutional layer and a softmax
layer, the estimated light source is expressed as:

L = Softmax(Conv(Res(Res(Res(Fpoc))))) )

where Softmax is the activation layer, Conv is 3%3
convolutional layer, Res is the residual blocks, F),, is the
features of double-opponent, and L is the estimated light
map.

Finally, the features F,,, output by the dual encoder-
decoder enhancement module and the estimated L are
multiplied by elements to obtain an enhanced image,
which can be expressed as:

output = F,,, x L ®)

3.2 Network Loss

We use Eq. (9) as the total loss for model training and
describe each component of the loss function in detail in
the following.

‘/‘"Total :‘CLI + ‘CC ‘Csstm (9)

Pixel-wise Loss (L,,): It usually includes L,;, or MSE,
which can minimize the gap between the enhanced image
1," and the clear image /,. The L,, often generates clearer
images than MSE because it is less sensitive to noise and
other outliers. In most cases, the L,, is also superior to the
MSE loss for reducing color bias from underwater images.
Hence, L, is used as pixel-wise loss and it is shown in Eq.

(10).

Lir = ZZ Ly =1, Iy (10)

i=l j=1

VGGLoss (L.): L. [34] captures high-level features
to ensure the semantic consistency between the enhanced
image and the clear image. L. can avoid over smoothing
and enhance the details of the image, as shown in Eq. (11).

L= ZZ (L) =0 ) Il an

i=1 j=1



Underwater Image Enhancement by Combining LAB Color Space and Double-Opponency Mechanism 779

where ¢(-) is the mid-level features from the 15th
convolutional layer of VGG19.

SSIMLoss (L,;,): L, is able to effectively evaluate
visual quality differences between images. The attenuation,
scattering, and chromatic bias of light in water cause
underwater images to have blurred details, and color
distortion. The aim of L, is to optimize the brightness,
contrast and structural information of the underwater
image. L, is shown in Eq. (12).

‘cssim =1-S8SIM (12)
SSIM is expressed as:
Input Ground Retinex Red

(b)

Cuppy, )Xoy, +¢3)

2 13)

2, 2 2
(uj, +pp, +e)og, +o7, +6,)

SSIM =

where g, and g, are the mean and standard deviation of
the clear image. x,, and o;, are the mean and standard
deviation of the enhanced image. g;,, is the covariance
between the enhanced image and the clear image. ¢, and ¢,
are constants, generally ¢, =0.01> and ¢, = 0.01°.

4 Experiments

4.1 Experimental Details

UWCNN  UGAN

Ucolor Ours

Fusion

Figure 4. Test results of the proposed method and the six comparison methods on 3 synthetic underwater images (from left
to right are: Input, Ground Truth, Retinex [14], Red [13], Fusion [15], UWCNN [23], UGAN [28], Ucolor [30] and Ours)

We jointly train with the UIEB dataset [24] and the
synthetic dataset [23]. UIEB comprises 890 real underwater
images and corresponding reference images. The synthetic
dataset contains 1449 synthetic underwater images of
different water bodies. To increase the generalization of
the proposed model, we mix 800 pairs of real underwater
images and 1350 pairs of synthetic underwater images
from these two datasets as the training data. Meanwhile,
we randomly select 90 pairs of real underwater images
and reference images from the UIEB dataset and 30 pairs
of synthetic underwater images from the synthetic dataset
as the test data. Table 1 shows the configuration of all the
experiments.

Table 1. Experimental setup

Framework Pytorch
Optimizer Adam
Total epoch 500
Batch size 16
Learning rate 0.0002
GPU V100 (32G)

4.2 Qualitative Evaluations and Quantitative
Evaluations
We evaluate the performance of six other methods:
Retinex [14], Red [13], Fusion [15], UWCNN [23], UGAN

[28], and Ucolor [30]. We select different scenes from
the synthetic dataset as test samples, and Figure 4 shows
the results on synthetic underwater images. The Red and
Fusion methods eliminate the green color, but introduce
severe red distortion, while Retinex performs better in
color restoration than the previous two methods, but fails
to preserve the image sharpness. These three traditional
methods are obviously not adapted to the synthetic
dataset, and thus produce unsatisfactory results. UWCNN
effectively removes the underwater artifacts, but it also
alters some of the original colors of the images, resulting
in a slight deviation from the ground truth, whereas UGAN
performs poorly in image clarity. Ucolor tends to produce
warmer colors in recovering the underwater images (e.g.
(c) in Figure 4). Ours surpasses the others in both color
and sharpness aspects. Three traditional methods achieve
low scores on PSNR/SSIM in Table 2, which agrees with
the visual results. Among the deep learning methods, our
proposed method significantly surpasses UWCNN and
UGAN, and also outperforms Ucolor by a large margin on
PSNR. Based on this analysis, our proposed method excels
at enhancing underwater images compared to the other
methods.

Moreover, we test on UIEB, as shown in Figure 5.
In scene (a), the Red, UWCNN, and Ucolor methods all
produce slightly blurred images, while the Retinex method
introduces obvious artifacts. In scene (b), the Red and
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produce slightly blurred images, while the Retinex method Table 2. PSNR/SSIM scores of six methods and the
introduces obvious artifacts. In scene (b), the Red and proposed method on the synthetic dataset
Fusion methods cause a slight green shift to the coral reefs

in the background, while the proposed method removes MthOd PSNRT SSIM1
the underwater effect and restores more realistic colors. Retinex 16.54 0.81
In scenes (c) and (d), the contrastive methods lack texture Re.d 13.72 0.78
details, have artifacts, and suffer from green shifts (e.g. Fusion 15.81 0.82
Red and Ucolor). Based on visual effects, our approach UWCNN 19.24 0.88
significantly improves the color and clarity of underwater UGAN 19.72 0.86
images, verifying the effectiveness of fusing Lab and Ucolor 23.49 0.94
double-opponent in this paper. Ours 25.67 0.95

Reference &

Retinex

Red

Fusion

UWCNN §

UGAN

Ucolor

Figure 5. The proposed method and other comparison methods are tested on the UIEB dataset (from top to bottom are:
input, Reference, Retinex, Red, Fusion, Ucolor and Ours. The numbers in the upper left corner of the image indicate
PSNR/SSIM)
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In addition to visual effect analysis, we evaluate
the enhancement effect using reference metrics (PSNR/
SSIM) and non-reference metrics (UIQM [35]/UCIQE
[36]). The reference image is used as the ground-truth for
calculating the reference metrics. Table 3 shows the results
on the PSNR and SSIM, where higher scores indicate
better results. Our model significantly outperforms the
comparison methods on the PSNR, and is only slightly
behind the Ucolor method on the SSIM, with a gap of only
0.01. For the non-reference metrics, we use UIQM/UCIQE
to measure the enhancement effect. UIQM is more similar
with the human eye perception, and higher scores indicate
better results. UCIQE focuses on the color distortion, color
saturation and other color-related features of the image,
and higher scores indicate better results. Table 4 presents
the performance scores of our model and the comparison
methods on UIQM/UCIQE. As observed in the table, our
model surpasses the comparison methods on both non-
reference metrics. By combining the visual effect and
objective metrics, we demonstrate that Ours significantly
improves underwater image enhancement.

Table 3. PSNR/SSIM scores of six methods and the
proposed method on the real underwater images

Method PSNR 1 SSIM 1
Retinex 18.31 0.84
Red 19.10 0.86
Fusion 20.55 0.89
UWCNN 18.81 0.84
UGAN 21.38 0.89
Ucolor 21.27 0.92
Ours 21.65 0.91

g e

(w/o L

ssim )

Table 4. UIQM/UCIQE scores of six methods and the
proposed on the real underwater images

Method UIQM 1 UCIQE 1
Retinex 2.75 1.87
Red 2.54 1.55
Fusion 2.72 1.78
UWCNN 2.71 1.53
UGAN 2.81 1.33
Ucolor 2.79 1.47
Ours 2.97 1.94

4.3 Ablation Study

We conduct ablation experiments to verify the
functions of VGGLoss and SSIMLos. Figure 6 illustrates
the visual results. w/o L. & L, denotes the case without
VGGLoss and SSIMLoss. w/o L, denotes the case
without SSIMLoss. Comparing the two groups of plots w/
oL.&L,, andw/o L, w/o L. & L, causes the images
to be artifactual and unrealistic. w/o L, will decrease the
contrast and colorfulness of the underwater images. We
also perform a quantitative analysis of the experimental
results of Figure 6 using the PSNR/SSIM scores in Table 5.
It indicates that adding VGGLoss can improve the PSNR/
SSIM scores. When VGGLoss is used in combination with
SSIMLoss, the PSNR/SSIM scores are further improved.

In addition, we conduct ablation experiments by
removing I, 1,5 and I, inputs respectively to analyze
effectiveness. As shown in Figure 7 and Table 5, after
removing the /;,,,, the enhancement effect in some areas
(red box of Figure 7) of the image is noticeably blured,
and exhibits color distortion and low contrast. This further
verifies that /,,,, can contribute to improve the model

&L,

sim )

Figure 6. Ablation study towards the Lo and the L,
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(W/o Ipyr)

(w/o Ip)

-

(w/o Ipogc)

Figure 7. Ablation study towards the Iy, {745 and Ipoc

performance by assigning depth weights to the degradation
regions.On the other hand, the results of without 7,
are partially overexposed and color distorted, which
indicates that /,,,. can effectively balance the brightness
and saturation of the image. Similarly, removing /7, ,, leads
to over-enhanced color the artificial edge. In contrast,
our proposed method achieves superior visual results,
effectively suppressing noise while better preserving color
restoration and detail enhancement.

Table 5. Quantitative results of the ablation study in terms
of average PSNR and SSIM values

Method PSNR1? SSIM1
w/oLe& Ly, 18.13 0.84
w/oL, 18.68 0.88
w/ol 17.04 0.79
w /0 Lpoc 17.11 0.86
W/ 0 Ipyr 19.28 0.87
Ours 21.65 0.91

5 Conclusion and Discussion

In this paper, we have integrated human visual
perception and color constancy mechanism into the field
of image enhancement, and propose an underwater image
enhancement model that combines Lab color space and
double-opponent mechanism. Lab color space has a
wider range of tones than RGB. By integrating the color
information of Lab and RGB, a dual encoder-encoder
enhancement module is designed, which can extract richer
hue information and improve local details of the input
image. For the first time, the double-opponent mechanism,
which can resist the change of light source in different
environments, is applied to the deep learning model. By
leveraging the double-opponent features, an adaptive light
estimation module is designed to extract the light source
map to compensate for the color deviation of underwater
images.

The experiment results verify that our approach can
correct the color deviation in complex environments, and

achieve better visibility and natural appearance. Moreover,
it also improves the clarity of the underwater images. The
quantitative comparisons have indicated that image quality
assessment indicators have been improved compared with
those of the other enhancement approaches.

We also found that the performance of the proposed
model is still a certain gap between the real underwater
image and the synthetic image, especially in the waters
with high turbidity. This may be due to environmental
differences between the synthetic images involved in the
training and the real underwater images. As the labels
of real underwater images are difficult to obtain, we will
consider generating more realistic environment simulation
data in water or effective semi-supervised learning
methods to improve the generalization and robustness of
the underwater enhancement model in the future.
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