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Abstract

The captured underwater images often have color 
distortion and blur due to the propagation characteristics 
of light in water. The enhancement for underwater images 
using deep learning has shown promising prospect. 
However, most neural networks model the inputs and 
outputs end-to-end directly, which fails to fully utilize 
the inherent information present in underwater images. 
We focus more on the real color distribution in water that 
contains comprehensive information, and fully leverage 
these information to restore the underwater images without 
the color deviation. In this work, an underwater image 
enhancement model combining Lab color space and 
double-opponency mechanism is proposed. Lab color space 
can extract luminance and chroma, which can express 
wider chroma range based on human visual perception. 
Double-opponent mechanism can extract color constancy 
features based on the biological vision mechanism when 
the lights have attenuation differences. Moreover, an 
adaptive light estimation module is designed to learn the 
light map from the outputs of double-opponency to adjust 
the overall color of the images. Extensive experiments 
demonstrate that our approach achieves outstanding results 
in enhancing color and clarity in underwater images.

Keywords: Underwater image, Image enhancement, Color 
correction, Color space

1  Introduction

Underwater images are widely used in the marine 
biology, underwater robot exploration, and other fields. 
However, different wavelengths of light in water have 
different attenuation due to the absorption properties in 
water [1], and the captured underwater images will show 
serious color deviation. As the red light attenuates quickly 
in water, blue and green lights slowly, the captured images 
often appear the bluish or greenish tinge [2]. At the same 
time, the suspended particles in water will also produce 
a scattering blur in captured images [3]. These issues 
seriously affect the optical imaging quality of underwater 
images, and also reduce the accuracy of the image 

detection and segmentation. Therefore, underwater image 
enhancement [4-8] is regarded as a crucial foundation for 
underwater resource detection and exploration [9]. We aim 
to improve the quality and visibility of underwater images 
to make them more suitable for human visual perception 
[10].

Figure 1. The image shows a comparison between the 
enhanced version on the left and the distorted version on 
the right

The previous traditional methods mainly use the 
underwater imaging model proposed by JAFF [11] 
combined with the relevant prior assumptions to enhance 
the underwater images, such as DCP [12] and the red 
channel [13]. These methods are mainly used to predict 
the unknown parameters of the imaging model by inverse 
solution, and then adjust the color of the captured image. 
However, traditional model-based approaches [14-16] are 
limited by specific aquatic environments, and difficult to 
generalize their applicability across diverse underwater 
settings. The utilization of the deep learning approach 
presents a vast potential for enhancing underwater image 
quality, such as [17-21]. But most neural networks model 
the inputs and outputs end-to-end directly. There is still 
deviation of color brightness or saturation in underwater 
image recovery.

One of the important reasons may be that some latent 
information of underwater images is not completely 
used. So in this paper, we extract luminance and chroma 
information based on Lab space, which has a wider 
chroma range and contains richer information than 
RGB color space. Another reason is that current optical 
imaging devices do not have the ability of perceiving 
color constancy like the human vision system, which can 
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enable the object’s perceived color constant when the 
light environment changes. Inspired by double-opponency 
mechanism of the human visual system [22], we extract 
color constancy features based on opponent color space 
when the lights have attenuation differences. The space 
has a special sensitivity to color contrast, that is, the values 
of different color channels will change when the light 
spectrum distribution changes, but their difference does not 
change obviously. This property can be used to extract the 
whole light source information for compensating the image 
color.

In this paper, we design a dual encoder-decoder 
enhancement model that fuses Lab and double-opponency 
to restore the degenerated underwater images. Moreover, 
an adaptive light estimation module is designed to learn 
the light map from the outputs of shallow feature extractor 
to control the whole color of the underwater images. We 
use both the synthetic dataset [23] and the real dataset 
UIEB [24] to train the proposed model. Figure 1 displays 
the enhanced result. The contributions of this paper are as 
follows:

•	 An underwater image enhancement model is 
proposed by combining Lab color space and 
double-opponency mechanism, which effectively 
fuses a wider chroma range information and 
the color constant property of the human visual 
system.

•	 An adaptive light estimation module is designed 
from the outputs of double-opponency module 
to compensate for the color bias caused by 
attenuation, which can control the overall image 
color.

•	 Considering the difficulty of obtaining underwater 
pairs of distorted images and clear counterparts, 
the synthetic and real datasets are employed to 
train the proposed model together, and these 
training data can not only reflect the diversity 
and complexity of different water types but 
also enhance authenticity and practicality in 
application.

Extensive comparative experiments have been 
conducted with previous underwater image enhancement 
methods to verify the superiority of the proposed method.

2  Related Work

2.1 Traditional Methods for Underwater Image 
Enhancement
There are two main types of methods for enhancing 

underwater images in the past: physics-based and non-
physics-based methods. Non-physics-based methods 
attempted to achieve better clarity and color for underwater 
images by adjusting the pixel values, such as histogram 
equalization [25], gray world assumption [26], etc. These 
methods may suffer from unnatural colors or image 
distortion and have limited applicability. Physics-based 
methods relied on the underwater image degradation 
formula and predicted the parameters of the formula 
from the given image, then reconstructed a clear image 

by inverse inference, such as red channel prior [13], 
blurriness prior [17], etc. These methods mainly focused 
on estimating the transmission map of the images and 
then recovering the images using the degradation formula. 
However, the uncertainty of underwater scenes may 
prevent these methods from producing satisfactory results.

2.2 Underwater Image Enhancement Based on Deep 
Learning 
Recently deep learning has made signif icant 

improvements in underwater image restoration, it can 
build a highly complex function from a large amount of 
data, which can effectively remove the degradation of 
underwater images. WaterGan [27] proposed a two-stage 
network that first generates synthetic underwater images 
using RGB-D and real underwater images, then used these 
synthetic images to train an image restoration network. 
Fabbri et al. [28] proposed UGAN which trained on the 
dataset synthesized by CycleGAN [18] and introduced a 
gradient difference loss to prevent the generated image 
from being too blurry. The GAN-based methods mentioned 
above have high training difficulty and often produce 
undesired image artifacts. WaterNet [24] was trained 
on a self-built the UIEB dataset and used the fusion of 
different confidence maps to improve clarity. Peng et al. 
[29] designed a loss function that combines multi-color 
spaces to remove color artifacts. Ucolor [30] combined 
the advantages of Lab and HSV color spaces to enhance 
images. Despite using multi-color spaces to enhance the 
color features, the water removal effect is unsatisfactory. 
UWCNN [23] proposed an enhanced network combining 
imaging model, which generates an approximate ground 
truth image. MetaUE [31] combined with the physical 
model used the meta-learning strategy to estimate the 
unknown parameters, which can solve the different 
degradation issues. However, considering the complexity 
of the real underwater scene, accurately estimating 
parameters poses a significant challenge, resulting in 
unsatisfactory underwater images.

2.3 Double-Opponency Mechanism
Double-opponency mechanism is a color constancy 

for color correction proposed by Gao et al [22]. By 
simulating the characteristics of the retina to the double-
opponent cells, the color of the light source in the scene is 
estimated to be used for the color-biased image. Illuminant 
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where max() is the global max pooling, DOCR(x), 
DOCG(x), and DOCB(x) are the color spaces after the 
double-opponency cell responds to the RGB image, this 
response process is shown in Eq. (3). See [22] for specific 
details. According to the Von Kries model, the color cast 
image is corrected through Eq. (2).
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Where Ic is the corrected image, L
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 is the illuminant 
coefficient, and I is the input image.
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Figure 2. The overall framework of the proposed network

By eliminating the influence of light source, the 
color distortion of the images can be corrected. Inspired 
by this theory, we will design a module to extract the 
corresponding color constancy features for adjusting the 
tone of the underwater image.

3  Approach

3.1 Proposed Architecture
We propose a model of underwater image enhancement 

by combining Lab color space and double-opponency 
mechanism, which is shown in Figure 2. The model has 
three main modules: shallow feature extractor module, 
dual encoder-decoder enhancement module, and adaptive 
light estimation module. Given the input I = {IRGB, ILAB, 
IDOC, IRMT}, where IRGB is the underwater degraded image, 
ILAB is obtained by color space transformation from 
RGB space, IDOC is the double-opponent space which is 
converted via Eq. (3), IRMT represents the transmission map 
of the underwater scene, which can be estimated by the 
dark channel method [32], shown in Eq. (4).
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where Bc is the background light which represents the 
farthest pixels of IRGB, Ω(x) denotes a local patch of size 
15×15 centered at x, c is the channel of color.

First, we use the shallow feature extractor module to 
extract features from the RGB, Lab, and double-opponent 
color space respectively. These features can represent 
the image information in different color spaces. Next, 

the extracted features are divided into two branches for 
processing. The first branch fuses the RGB and Lab 
information through the encoder part of the dual encoder-
decoder enhancement module. IRMT reflects the degree of 
attenuation degree of light in different range scenes when 
it propagates in water. The value of IRMT is larger at the 
close range scene, and less at the distant range, that is the 
blur degree of distant scenes is more than that of close 
ones. We use the 1− IRMT as a pixel-wise attention map, 
which is multiplied pixel-wise with the decoded features at 
the decoder part of the dual encoder-decoder enhancement 
module. This will enhance the quality of underwater 
images, especially in distant ranges. The second branch 
employs the double-opponent space as the input of the 
adaptive light estimation module, which estimates the 
light source map corresponding to the underwater image. 
Finally, the estimated light source map and the output 
of the decoder part in the first branch are multiplied by 
element-wise to adjust the overall color of the underwater 
image deviation. These modules are described in more 
detail below.

Shallow Feature Extractor. Its role is to obtain 
features of different color spaces from the input images 
and convert them into a unified channel dimension. First, 
we use a 3×3 convolution kernel to conduct convolution 
processes on the RGB, Lab and double-opponent spaces 
of input image to obtain feature maps FRGB, FLAB and FDOC. 
To preserve the information of the double-opponent space 
on the RGB branch, we concatenate the feature maps FDOC 
with the FRGB along the channel dimension. After that, 
we feed FDOC into the adaptive light estimation module to 
estimate the map of the light source.

Dual Encoder-Decoder Enhancement Module. This 
module contains encoder and decoder parts. Lab features 
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and RGB features concatenate with the double-opponent 
features are used as the input of the encoder part. In the 
encoder part, we use three fusion blocks, and use 2×2 
downsampling between each adjacent fusion block to 
reduce the spatial resolution of the features. We design 
a cross fusion residual block as the basic block of each 
fusion block to fuse Lab and RGB features, as shown in 
Figure 3. The basic block contains two paths with upper 
and lower convolution layers, corresponding to the features 
of RGB and the features of Lab respectively. Each layer 
accepts feature input, and passes it through a convolution 
layer. By adding the output features of the other layer, 
the fused features of the two layers are obtained. Then, 
two residual features containing the fused information are 
output from another convolution layer. We use the output 
of the first fusion block as the input of the second, thereby 
achieving multiple fusions of the two color space features 
to improve the representation ability of the features. Eq. 
(5) and Eq. (6) show the mathematical form of the cross 
fusion residual block.

1 12 11 21 12 1' ( ( ) )F ReLU W F F b F= ∗ + + + (5)

2 22 21 11 22 2' ( ( ) )F ReLU W F F b F= ∗ + + + (6)

where F1 and F2 are the features of the two input 
color spaces, and F11 are F21 the features after the first 
convolution layer, W and b are the weight and bias terms 
of the convolution layer respectively.

Figure 3. Cross fusion residual block

Before the decoder part, since the extracted features 
have different attention for the three color spaces that have 
been fused together. Therefore, the importance of different 
channels is adaptively adjusted by adding channel attention 
mechanism [33]. In addition, in order to enhance the details 
of different distant and near objects in the image, the 
transmission map of the corresponding scale is introduced 
in each level enhance block, and the transmission map is 
used as the spatial attention feature maps to enhance the 
features by element-wise multiplication. In order to ensure 
that the transmission map adapts to the different size of the 
feature maps at different scales in the decoding module, 
we use max pooling to downsample the transmission map 
before feeding it into different position of the enhancement 
module.

Adaptive Light Estimation Module. Images captured 
underwater are influenced by the absorption of light waves 
in water, causing image color distortion and a blue-green 
tint. This phenomenon resembles the imaging under a 
color-biased light source. Inspired by [22], the double-
opponent space is employed to estimate the light source of 
underwater scenes. An adaptive light estimation module is 
proposed, which extracts the color constancy by modeling 
the double-opponent space features, to adjust the overall 
color of the underwater image. This module consists of 
three residual blocks, a convolutional layer and a softmax 
layer, the estimated light source is expressed as:

( ( ( ( ( )))))DOCL Softmax Conv Res Res Res F= (7)

where Softmax is the activation layer, Conv is 3×3 
convolutional layer, Res is the residual blocks, FDOC is the 
features of double-opponent, and L is the estimated light 
map.

Finally, the features FOut output by the dual encoder-
decoder enhancement module and the estimated L are 
multiplied by elements to obtain an enhanced image, 
which can be expressed as:

outoutput F L= × (8)

3.2 Network Loss
We use Eq. (9) as the total loss for model training and 

describe each component of the loss function in detail in 
the following.

1     Total L C ssim= + +L L L L (9)

Pixel-wise Loss (LL1): It usually includes LL1 or MSE, 
which can minimize the gap between the enhanced image 
IJ' and the clear image IJ. The LL1 often generates clearer 
images than MSE because it is less sensitive to noise and 
other outliers. In most cases, the LL1 is also superior to the 
MSE loss for reducing color bias from underwater images. 
Hence, LL1 is used as pixel-wise loss and it is shown in Eq. 
(10).
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VGGLoss (LC): LC [34] captures high-level features 
to ensure the semantic consistency between the enhanced 
image and the clear image. LC can avoid over smoothing 
and enhance the details of the image, as shown in Eq. (11).
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where φ(∙) is the mid-level features from the 15th 
convolutional layer of VGG19.

SSIMLoss (Lssim): Lssim is able to effectively evaluate 
visual quality differences between images. The attenuation, 
scattering, and chromatic bias of light in water cause 
underwater images to have blurred details, and color 
distortion. The aim of Lssim is to optimize the brightness, 
contrast and structural information of the underwater 
image. Lssim is shown in Eq. (12).

1ssim SSIM= −L (12)

SSIM is expressed as:

1 2
2 2 2 2

1 2
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where μIJ
 and σIJ

 are the mean and standard deviation of 
the clear image. μIJ'

 and σIJ'
 are the mean and standard 

deviation of the enhanced image. σIJIJ'
 is the covariance 

between the enhanced image and the clear image. c1 and c2 
are constants, generally c1 = 0.012 and c2 = 0.012.

4  Experiments

4.1 Experimental Details

Input Ground 
truth Retinex Red Fusion UWCNN UGAN Ucolor Ours

(a)

(b)

(c)

Figure 4. Test results of the proposed method and the six comparison methods on 3 synthetic underwater images (from left 
to right are: Input, Ground Truth, Retinex [14], Red [13], Fusion [15], UWCNN [23], UGAN [28], Ucolor [30] and Ours)

We jointly train with the UIEB dataset [24] and the 
synthetic dataset [23]. UIEB comprises 890 real underwater 
images and corresponding reference images. The synthetic 
dataset contains 1449 synthetic underwater images of 
different water bodies. To increase the generalization of 
the proposed model, we mix 800 pairs of real underwater 
images and 1350 pairs of synthetic underwater images 
from these two datasets as the training data. Meanwhile, 
we randomly select 90 pairs of real underwater images 
and reference images from the UIEB dataset and 30 pairs 
of synthetic underwater images from the synthetic dataset 
as the test data. Table 1 shows the configuration of all the 
experiments.

Table 1. Experimental setup

Framework Pytorch
Optimizer Adam

Total epoch 500
Batch size 16

Learning rate 0.0002
GPU V100 (32G)

4.2 Qualitative Evaluations and Quantitative 
Evaluations
We evaluate the performance of six other methods: 

Retinex [14], Red [13], Fusion [15], UWCNN [23], UGAN 

[28], and Ucolor [30]. We select different scenes from 
the synthetic dataset as test samples, and Figure 4 shows 
the results on synthetic underwater images. The Red and 
Fusion methods eliminate the green color, but introduce 
severe red distortion, while Retinex performs better in 
color restoration than the previous two methods, but fails 
to preserve the image sharpness. These three traditional 
methods are obviously not adapted to the synthetic 
dataset, and thus produce unsatisfactory results. UWCNN 
effectively removes the underwater artifacts, but it also 
alters some of the original colors of the images, resulting 
in a slight deviation from the ground truth, whereas UGAN 
performs poorly in image clarity. Ucolor tends to produce 
warmer colors in recovering the underwater images (e.g. 
(c) in Figure 4). Ours surpasses the others in both color 
and sharpness aspects. Three traditional methods achieve 
low scores on PSNR/SSIM in Table 2, which agrees with 
the visual results. Among the deep learning methods, our 
proposed method significantly surpasses UWCNN and 
UGAN, and also outperforms Ucolor by a large margin on 
PSNR. Based on this analysis, our proposed method excels 
at enhancing underwater images compared to the other 
methods.

Moreover, we test on UIEB, as shown in Figure 5. 
In scene (a), the Red, UWCNN, and Ucolor methods all 
produce slightly blurred images, while the Retinex method 
introduces obvious artifacts. In scene (b), the Red and 
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produce slightly blurred images, while the Retinex method 
introduces obvious artifacts. In scene (b), the Red and 
Fusion methods cause a slight green shift to the coral reefs 
in the background, while the proposed method removes 
the underwater effect and restores more realistic colors. 
In scenes (c) and (d), the contrastive methods lack texture 
details, have artifacts, and suffer from green shifts (e.g. 
Red and Ucolor). Based on visual effects, our approach 
significantly improves the color and clarity of underwater 
images, verifying the effectiveness of fusing Lab and 
double-opponent in this paper.

Table 2. PSNR/SSIM scores of six methods and the 
proposed method on the synthetic dataset

Method PSNR↑ SSIM↑
Retinex 16.54 0.81

Red 13.72 0.78
Fusion 15.81 0.82

UWCNN 19.24 0.88
UGAN 19.72 0.86
Ucolor 23.49 0.94
Ours 25.67 0.95

Input

Reference

Retinex

Red

Fusion

UWCNN

UGAN

Ucolor

Ours

(a) (b) (c) (d) (e)

Figure 5. The proposed method and other comparison methods are tested on the UIEB dataset (from top to bottom are: 
input, Reference, Retinex, Red, Fusion, Ucolor and Ours. The numbers in the upper left corner of the image indicate 
PSNR/SSIM)
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In addition to visual effect analysis, we evaluate 
the enhancement effect using reference metrics (PSNR/
SSIM) and non-reference metrics (UIQM [35]/UCIQE 
[36]). The reference image is used as the ground-truth for 
calculating the reference metrics. Table 3 shows the results 
on the PSNR and SSIM, where higher scores indicate 
better results. Our model significantly outperforms the 
comparison methods on the PSNR, and is only slightly 
behind the Ucolor method on the SSIM, with a gap of only 
0.01. For the non-reference metrics, we use UIQM/UCIQE 
to measure the enhancement effect. UIQM is more similar 
with the human eye perception, and higher scores indicate 
better results. UCIQE focuses on the color distortion, color 
saturation and other color-related features of the image, 
and higher scores indicate better results. Table 4 presents 
the performance scores of our model and the comparison 
methods on UIQM/UCIQE. As observed in the table, our 
model surpasses the comparison methods on both non-
reference metrics. By combining the visual effect and 
objective metrics, we demonstrate that Ours significantly 
improves underwater image enhancement.

Table 3. PSNR/SSIM scores of six methods and the 
proposed method on the real underwater images

Method PSNR ↑ SSIM ↑
Retinex 18.31 0.84

Red 19.10 0.86
Fusion 20.55 0.89

UWCNN 18.81 0.84
UGAN 21.38 0.89
Ucolor 21.27 0.92
Ours 21.65 0.91

Table 4. UIQM/UCIQE scores of six methods and the 
proposed on the real underwater images

Method UIQM ↑ UCIQE ↑
Retinex 2.75 1.87

Red 2.54 1.55
Fusion 2.72 1.78

UWCNN 2.71 1.53
UGAN 2.81 1.33
Ucolor 2.79 1.47
Ours 2.97 1.94

4.3 Ablation Study
We conduct ablation experiments to verify the 

functions of VGGLoss and SSIMLos. Figure 6 illustrates 
the visual results. w/o LC & Lssim denotes the case without 
VGGLoss and SSIMLoss. w/o Lssim denotes the case 
without SSIMLoss. Comparing the two groups of plots w/
o LC & Lssim and w/o Lssim, w/o LC & Lssim causes the images 
to be artifactual and unrealistic. w/o Lssim will decrease the 
contrast and colorfulness of the underwater images. We 
also perform a quantitative analysis of the experimental 
results of Figure 6 using the PSNR/SSIM scores in Table 5. 
It indicates that adding VGGLoss can improve the PSNR/
SSIM scores. When VGGLoss is used in combination with 
SSIMLoss, the PSNR/SSIM scores are further improved.

In addition, we conduct ablation experiments by 
removing IRMT, ILAB and IDOC inputs respectively to analyze 
effectiveness. As shown in Figure 7 and Table 5, after 
removing the IRMT , the enhancement effect in some areas 
(red box of Figure 7) of the image is noticeably blured, 
and exhibits color distortion and low contrast. This further 
verifies that IRMT  can contribute to improve the model  

(input) (  w / o & ssimCL L )

(  w / o ssimL ) (Ours)

Figure 6. Ablation study towards the  CL  and the  ssimL
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performance by assigning depth weights to the degradation 
regions.On the other hand, the results of without IDOC 
are partially overexposed and color distorted, which 
indicates that IDOC can effectively balance the brightness 
and saturation of the image. Similarly, removing ILAB leads 
to over-enhanced color the artificial edge. In contrast, 
our proposed method achieves superior visual results, 
effectively suppressing noise while better preserving color 
restoration and detail enhancement.

Table 5. Quantitative results of the ablation study in terms 
of average PSNR and SSIM values

Method PSNR↑ SSIM↑
w / o LC & Lssim 18.13 0.84

w / o Lssim 18.68 0.88
w / o ILAB 17.04 0.79

w / o LDOC 17.11 0.86
w / o IRMT 19.28 0.87

Ours 21.65 0.91

5  Conclusion and Discussion

In this paper, we have integrated human visual 
perception and color constancy mechanism into the field 
of image enhancement, and propose an underwater image 
enhancement model that combines Lab color space and 
double-opponent mechanism. Lab color space has a 
wider range of tones than RGB. By integrating the color 
information of Lab and RGB, a dual encoder-encoder 
enhancement module is designed, which can extract richer 
hue information and improve local details of the input 
image. For the first time, the double-opponent mechanism, 
which can resist the change of light source in different 
environments, is applied to the deep learning model. By 
leveraging the double-opponent features, an adaptive light 
estimation module is designed to extract the light source 
map to compensate for the color deviation of underwater 
images.

The experiment results verify that our approach can 
correct the color deviation in complex environments, and 

achieve better visibility and natural appearance. Moreover, 
it also improves the clarity of the underwater images. The 
quantitative comparisons have indicated that image quality 
assessment indicators have been improved compared with 
those of the other enhancement approaches.

We also found that the performance of the proposed 
model is still a certain gap between the real underwater 
image and the synthetic image, especially in the waters 
with high turbidity. This may be due to environmental 
differences between the synthetic images involved in the 
training and the real underwater images. As the labels 
of real underwater images are difficult to obtain, we will 
consider generating more realistic environment simulation 
data in water or effective semi-supervised learning 
methods to improve the generalization and robustness of 
the underwater enhancement model in the future.
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