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Abstract

In the context of large-scale deep learning models,
natural language generation systems are required to handle
multiple tasks concurrently. However, the addition of a
new task typically necessitates retraining the model from
scratch with both the original and new data, resulting in
considerable time and resource consumption. Moreover,
as the number of supported tasks grows, models with a
fixed number of parameters may face capacity limitations,
which can degrade overall performance. To address this
challenge, this study introduces a Transformer-based self-
back-translation approach for natural language generation,
termed TransNMT, using multilingual translation as a
case study. This method modularizes the model to enable
dynamic scalability, effectively mitigating the capacity
constraints posed by fixed parameters. Furthermore,
a self-back-translation mechanism is designed for
the TransNMT model, consisting of both forward
and backward translation, which refines the model’s
performance internally while reducing external noise. This
approach allows the model to perform well, particularly
in low-resource translation tasks. Experimental results
demonstrate significant improvements in BLEU scores
across four low-resource and three high-resource language
datasets, with the highest improvement reaching 2.7 BLEU
points in one of the low-resource languages.

Keywords: Natural language processing, Natural language
generation, Multilingual translation

1 Introduction

In recent years, Neural Machine Translation (NMT)
has achieved significant improvements in translation
quality when processing tens of millions of sentences.
However, the translation quality of NMT is not satisfactory
when dealing with low-resource languages with limited
training data. To address the scarcity of training data for
low-resource languages, two main solutions exist: one is
to adopt data augmentation strategies by back-translating
existing data and synthesizing parallel data to expand
the training corpus; the other is to utilize multilingual
NMT models that support translation between multiple
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languages, adjusting these models to enhance the
translation quality of low-resource languages.

The data augmentation method expands the training
data by back-translating existing low-resource data and
combining it with original data to create new parallel data,
without directly collecting new data. However, this method
does not fully explore the deep semantic information of
low-resource data, and the augmented data often contains a
certain level of noise, which can adversely affect the model
training process and reduce model performance.

Multilingual NMT models typically employ multi-
task learning, training on data containing multiple
translation language pairs. Previous research has found
that multilingual NMT can generally improve translation
quality between low-resource language pairs. Multilingual
NMT even possesses the ability to translate between
language pairs not included in the training data, known as
“zero-shot” translation capability, which is highly valuable
in practical applications since collecting translation data
for all language pairs is often challenging. The current
mainstream multilingual NMT model structure generally
adopts the classic Sequence-to-sequence (Seq2Seq)
model. However, as the number of languages supported
by the Seq2Seq model continues to increase, translation
performance may decline due to capacity bottlenecks in
model parameters. Furthermore, since model parameters
are shared across all languages, adding support for a new
language requires retraining the model using all language
data, which can be time-consuming and computationally
expensive.

To address this issue, this research proposes a natural
language generation method based on Transformer
self-back-translation, named TransNMT, leveraging
multilingual NMT as its foundation. This method not
only maintains the model’s performance on existing tasks
but also further enhances its translation quality on low-
resource translation tasks.

The main contributions of this paper are as follows:

* An M2TAB module based on the Transformer

attention mechanism is proposed for multilingual
NMT models. This module enables the NMT
model to form language-agnostic interlingual
representations, thereby enhancing the zero-
shot translation capability of the NMT model
and facilitating translation tasks for low-resource
languages.
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e The M2TAB module is equipped with a Mixture
of Expert (MoE) module to support dynamic
expansion and alleviate capacity bottlenecks. By
modularizing M2TAB, the maintainability of the
improved NMT model is enhanced.

e A self-back-translation mechanism for both
forward and backward translation is defined in
the TransNMT model, eliminating the need for
manually designed data augmentation schemes.
This internal optimization avoids external noise
and further improves the model’s translation
quality on low-resource translation tasks.

2 Related Work

2.1 Neural Machine Translation

Kalchbrenner et al. [1] were the first to introduce
neural network models into the field of machine
translation, utilizing Recurrent Neural Networks (RNNs)
for generating translations and integrating Convolutional
Neural Networks (CNNs) to optimize source text
processing, thereby opening up a new avenue for machine
translation. Sutskever et al. [2] constructed an RNN-
based encoder-decoder architecture through the sequence-
to-sequence (seq2seq) learning framework, where the
encoder encodes the source text and the decoder generates
the translation. This end-to-end structure simplifies the
complex processes of traditional translation systems and
serves as the foundation for Neural Machine Translation
(NMT). However, RNN models are prone to gradient
vanishing/exploding issues when dealing with long
sentences, affecting translation quality. To address this
issue, Sak et al. [3] proposed Long Short-Term Memory
(LSTM) networks, while Cho et al. [4] further streamlined
the structure into Gated Recurrent Units (GRUs),
effectively mitigating gradient challenges. RNN models
based on the encoder-decoder architecture have continued
to attract in-depth research and improvements due to their
superior performance. Building upon this foundation,
Bahdanau et al. [5] innovatively introduced the attention
mechanism into neural machine translation, presenting
the RNNSearch model. This model enables the decoder
to focus on critical parts of the source text, effectively
handling long-distance semantic dependencies.

As research progressed, more neural network
structures were incorporated into machine translation.
In 2015, Meng et al. [6] integrated CNNs into statistical
machine translation, while Gehring et al. [7] designed a
fully convolutional encoder-decoder architecture in 2017,
enabling parallel encoding of source text, significantly
enhancing translation efficiency and quality. In the same
year, Vaswani et al. [8] introduced the Transformer model,
leveraging its unique self-attention mechanism and “multi-
head” attention calculation to achieve parallel processing
and efficient learning of information. Its translation
performance far surpasses RNN and CNN models, making
it the current mainstream translation model.

2.2 Low-Resource Multilingual Translation

Ha et al. [9] were the first to propose constructing a
multilingual neural machine translation (NMT) model
within a unified framework, utilizing manual tags on
source language corpora to indicate target languages,
thereby reducing model complexity. Subsequent research
showed that training a single NMT model directly on
multilingual corpora, without additional tagging, can
naturally adapt to multiple language pairs for translation
[10]. Given NMT’s heavy reliance on data, translation
quality in low-resource settings is inherently limited. To
address the scarcity of corpora, two primary strategies are
employed: data augmentation and multilingual modeling.
Data augmentation involves techniques such as synonym
replacement, reordering, and back-translation to increase
training data. For example, Hinton et al. [11] treated
monolingual corpora as bilingual data with missing parallel
sentences to construct new corpora, while back-translation
leverages existing NMT models for bidirectional
translation to expand parallel corpora [12]. Li et al. [13]
generated pseudo-parallel data through back-translation
to synthesize new corpora and applied filtering methods.
Artetxe et al. [14] employed iterative back-translation
until translation quality ceased to improve. Although back-
translation can enhance translation quality, especially in
low-resource scenarios [15-16], it adds a preprocessing
step that consumes resources and may amplify errors
between independent models, degrading the quality of
training data.

Multilingual modeling approaches aim to improve
translation quality for low-resource languages by adjusting
model structures and parameters. Gu et al. [17] applied
meta-learning algorithms to view low-resource translation
as a meta-learning problem, enhancing model adaptability.
Gu et al. [18] proposed a multi-resource boosting
strategy, sharing vocabulary and sentence representations
from multiple source languages to the target language,
facilitating low-resource language learning. Kocmi et al.
[19] implemented transfer learning to transfer knowledge
from high-resource to low-resource language models.
Kong et al. [20] designed a multilingual deep encoder
method to share lexical information, improving word
representation learning. Xia et al. [21] leveraged machine
translation to induce multilingual training data from
abundant English data, expanding the scale and diversity
of training. Qin et al. [22] fine-tuned pre-trained BERT
models to align multilingual representations through mixed
contextual information, enhancing cross-lingual translation
capabilities. Singh et al. [23] incorporated cross-lingual
features from similar languages into multilingual models,
specifically targeting the improvement of low-resource
language translation quality.

Despite these methods significantly improving
translation quality in low-resource environments, model
adjustments may lead to overfitting issues. Therefore,
achieving cross-lingual semantic generalization to further
enhance low-resource language translation quality remains
an urgent research topic requiring intensive investigation.
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Figure 1. The overall structure of the TransNMT model

3 Method

3.1 Overall Framework

The architecture of the TransNMT model proposed
in this study is illustrated in Figure 1. During the model
training phase, we utilize the word2vec algorithm to
conduct word embedding training for corpora of both
high-resource and low-resource languages, aiming to
obtain semantic space representations for their respective
vocabularies. For the semantic space of high-resource
languages, we directly employ them as pre-trained word
embeddings and input them into the corresponding
language’s encoder. In contrast, for the semantic space
of low-resource languages, we integrate it into the
semantic space of high-resource languages through
word-by-word alignment techniques, creating a shared
semantic space encompassing both high and low-resource
languages. Within this shared semantic space, we derive
representations for low-resource words based on the
representations of high-resource words, and these derived
representations are then used as word embeddings and
input into the encoders of their respective languages.

Subsequently, through the forward translation module
of TransNMT, we obtain the forward translation results,
which are then used as input for training the backward
translation module of TransNMT. During the training
process, we leverage the loss from backward translation to
optimize the forward translation. This self-back-translation
mechanism enables the predicted sentences generated
by forward translation to learn potential additions or
omissions in the source sentences during training, thereby
achieving data augmentation effects.

Compared to traditional sequence-to-sequence
(Seq2Seq) models, this model adopts a more flexible
design by assigning independent encoders and decoders
to each language. This design allows us to freely combine
translation modules based on the source and target
languages, enabling translation tasks in all directions.
Furthermore, since each language has its own independent

parameters within the TransNMT model, the model does
not encounter capacity bottlenecks when supporting
more languages. At the same time, adding support for
new languages merely requires adding the corresponding
language modules and training them, without affecting
existing language modules.

To address the potential decline in zero-shot translation
capability caused by independent parameters for each
language, the TransNMT model integrates the M2TAB
module based on the Transformer attention mechanism
within its translation modules. This module serves as a
bridge, connecting the encoders and decoders of different
languages through attention mechanisms, enabling
parameter sharing. This design facilitates the formation
of language-agnostic interlingual representations within
the TransNMT model, thereby enhancing its zero-shot
translation capability and enabling it to handle translation
tasks for low-resource and minority languages.

3.2 Semantic Shared Space

Under the framework of Multilingual Neural Machine
Translation (NMT), accurately modeling the complex
semantic relationships between vocabulary items across
different languages represents a central challenge
in enhancing system performance. In conventional
approaches, a comprehensive vocabulary is constructed by
multilingual NMT models, integrating lexical items from
all source languages. However, this integration strategy
does not naturally facilitate the sharing of language-
specific vocabularies within a unified embedding space,
particularly in scenarios where data-rich and data-
scarce languages coexist. For languages with abundant
data, learning their word embeddings is relatively
straightforward and effective; conversely, languages with
extreme data scarcity struggle to form high-quality lexical
representations due to insufficient training samples, posing
a notable performance bottleneck.

This paper aims to adopt a semantic space-sharing
strategy, leveraging the corpora of resource-rich languages
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to learn representations for vocabulary items in resource-
poor languages. By mapping low-resource vocabulary into
high-resource corpora, a shared word embedding space
is achieved, thereby transferring knowledge from high-
resource languages to low-resource ones.

To accomplish this goal, we first preprocess the
monolingual corpora of each low-resource language using
the word2vec technique, extracting initial monolingual
embedding sets for each language (i.e., constructing
independent monolingual semantic spaces). Subsequently,
we introduce automated word-by-word alignment
technology, which aligns words between bilingual
sentences based on similarity measures. Through this
step, the word embeddings of low-resource languages
are effectively transformed and mapped into a shared
semantic framework grounded in high-resource languages,
enabling cross-lingual knowledge sharing and transfer.
This process not only promotes the effective migration of
knowledge from high-resource languages to low-resource
environments but also enhances the model’s ability to
comprehend and process low-resource vocabulary.

Figure 2 shows examples of aligning the English
semantic space, which is taken as the high-resource corpus
semantic space, with the German semantic space and
Romanian semantic space respectively.

Ro Semantic space

é< o ﬁ

Aligned Semantic space

En Semantic space

De Semantic space

Figure 2. Schematic diagram of semantic space alignment

3.3 Translation Module of TransNMT

The TransNMT model’s translation module assigns
independent encoders and decoders to each language,
allowing for flexible combinations based on the source and
target language pair, enabling multi-directional translation
tasks. Each encoder consists of stacked feedforward and
self-attention sub-layers, while each decoder features
stacked feedforward, multi-head attention, and self-
attention sub-layers. Furthermore, TransNMT incorporates
a distinct neural network module, M2TAB, which
mirrors the Transformer architecture and acts as a bridge
between language encoders and decoders via the attention
mechanism.

Within the translation module, the encoder and
decoder for the i-th language are denoted as Enc; and Dec;,
respectively. Given a pair of sentences (x;, y;), representing
a translation from source language i to target language j,
where 1,j€{1,..., K}, and K is the total number of supported
languages. The TransNMT model is trained by maximizing
the likelihood estimation on the training set D;; for all
available language pairs in the set S. The objective of

maximizing the likelihood estimation, denoted as L, is
formally defined as follows:

> logp(y,ki:0)
(xi’y/')EDi,j5 (1)
(i,/)eS

L(6)=

In which, the probability p(y] x;) is modeled as:
p(yj|xl.)=Decj (MZTAB(Enci(xi))) ?2)

In the formula, M2TAB(-) represents the M2TAB
module proposed in this paper.

In the TransNMT model integrated with M2TAB,
there is no direct connection between the encoder and
the decoder; instead, they individually compute attention
scores with M2TAB. As shown in Figure 1, for the
encoders of each language, M2TAB acts as a decoder,
where each position of M2TAB computes attention scores
with all positions of the encoder’s output sequence.
Similarly, for the decoders of each language, M2TAB takes
on the role of an encoder, with each position of the decoder
computing attention scores with all positions of M2TAB’s
output sequence. The M2TAB module is formally defined
as follows:

Hjyyr4p = FFN (MoE (Q,K.V')) A3)
0= HI{/;]ZTAB R C))
K.V =Hp, eR™ 5)

In the formula, H',,,,, represents the hidden state of
the /-th layer (/ € [1, L]) of M2TAB. H .5, being the top-
level output hidden state, is used to calculate the attention
scores between M2TAB and the decoder. H ., is the
input representation of M2TAB, and this work adopts
position encoding similar to that in Transformer, with
options for both learnable and fixed position encodings.
Attn(+) denotes the multi-head attention module, and
MoE(") represents the position-wise MoE sublayer. The
query matrix Q comes from the output of the preceding
stacked layers of M2TAB, while the key matrix K and
value matrix V are derived from the output sequence
representation H,,,, of the i-th language encoder. d is the
hidden layer size, n is the length of the encoder’s input
sequence, and 7 represents the sequence length of M2TAB.

3.4 M2TAB Module

As shown in Figure 3, the M2TAB module is
composed of stacked multi-head attention sublayers and
MoE sublayers. It serves as a bridge connecting various
language encoders and decoders through the attention
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mechanism, enabling parameter sharing and assisting
the TransNMT model in forming a language-agnostic
interlingual representation.

Given an input token x, E,(x) represents the output of
the i-th expert network. Then, the output y of the Mixture
of Experts (MoE) module can be expressed as:

y= softmax(x*Wg) E;(x) (6)

i
i=1

Where W, e R*" is a learnable weight matrix, and the
softmax function is used to distribute the weights among
the expert networks when processing the input tokens.
M2TAB equipped with MoE can be dynamically extended
during the process of incremental learning by increasing
the number of expert networks.

As shown in Figure 3, during the incremental training
phase, an additional expert network £, ,(x) is added to
the MoE layer for the newly introduced language, and the
dimensionality of the gating network is increased by one
to accommodate the expanded MoE. The output y of the
expanded MoE module is updated as follows:

n+l

y= soﬁmax(x*W'g )i Ei(x) @)
i=1

Where W', e R”""" is the weight matrix after
expansion.

Multi-Head Self-Attention

Add&Norm

v k q
Multi-Head Cross-Attention

Add&Norm

- Expert n+1 Expert Gate G
R

Expert 1 Expert 2

Add&Norm

Dec;
Figure 3. Schematic diagram of M2TAB module

3.5 Self-Back-Translation

In this paper, two TransNMT models are defined for
forward and backward translation, where the output from
the forward translation serves as input for the backward
translation. The optimized backward translation result is
then used as input for the source language.

Lioss
A
ADAM
4
f 1
Loss; Loss,
Predictive Word y* ------------- -1 Predictive Word x”
Iy
Forward TransNMT Backward TransNMT
En Encoder En Decoder ! En Encoder En Decoder
M2TAB i M2TAB
i

Ro Encoder Ro Recoder Ro Encoder Ro Recoder

—— |

.
Source Language Target Language || TargetLanguage
Word E ing y Word E ing y*

‘Word E: ing x
Figure 4. Schematic diagram of the self-back-translation
mechanism of TransNMT

Source Language
Word Ei ing x

By jointly optimizing the parameters of both
TransNMT models, the system identifies and corrects
deficiencies in the forward translation results, thereby
enriching the training data for forward translation. This
automatic back-translation approach eliminates the need
for manually designed data augmentation strategies,
internally optimizing the process to reduce external
noise and allowing the model to perform effectively in
low-resource translation tasks. Figure 4 illustrates how
TransNMT integrates with back-translation.

The loss function for the forward translation
TransNMT is defined as Loss;, and the loss function for the
backward translation TransNMT is defined as Loss,. Both
utilize the cross-entropy loss function. During the training
process, the weighted sum of these two losses is optimized
using ADAM, a stochastic gradient descent method for
optimizing stochastic objective functions based on first-
order gradients. The total loss L, is calculated as follows:

loss

Ly, = ADAM (Lossf + ﬂLossb) )

4 Experiment

4.1 Dataset

The experimental data in this paper is a hybrid
combination of parallel corpora created from the Europarl
Parallel Corpus and the TED Talks corpus. It comprises
parallel corpora from four low-resource languages (LRL),
namely Romanian (Ro), Azerbaijani (Aze), Belarusian
(Bel), and Galician (Glg), to English (En), as well as the
semantic spaces of three high-resource languages (HRL),
German (De), Finnish (Fi), and French (Fr), which are
jointly trained to assist in verifying the effectiveness of
low-resource translation. The statistical information of the
parallel corpora is presented in Table 1.

Table 1. Parallel corpus statistics

LRL Train HRL Train
Ro 6.0k De 182k
Aze 5.97k Fi 103k
Bel 4.51k Fr 185k

Glg 10.0k - -
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4.2 Ablation Study

To verify the effectiveness of introducing the M2TAB
module and the self-back-translation mechanism, as well as
their impact on model performance, ablation experiments

were conducted. The experimental results are presented in
Table 2.

Table 2. Results of ablation experiments

M2TAB SBT Ro Aze Bel Glg
- - 15.7 8.9 12.8 25.7

N - 21.8 11.6 169 276
- v 223 126 152 285
N v 305 152 207 33.1

(Note: “\" indicates add, “~” indicates no add)

4.3 Comparative Experiment

The TransNMT model was compared with various
classical neural machine translation models, including
Multi-NMT RNN, Multi-NMT TR, Word-SDE, and
Multi-NMT TR_SBT. This comparative analysis aimed
to evaluate the performance and effectiveness of the
TransNMT model in multi-language translation tasks.
The detailed experimental results of this comparison are
summarized in Table 3, highlighting the advancements
achieved by the TransNMT approach.

Table 3. The results of various models in four languages
under low-resource conditions

BLEU
Ro Aze Bel Glg
Multi-NMTRNN 114 7.8 104 249
Multi-NMT TR 16.5 9.2 12.5 26.7
Word-SDE 27.6 11.3 17.7 29.5

Multi-NMT TR _
SBT

TransNMT(Ours)  30.5 15.2 20.7 33.1

Model

29.4 13.5 19.4 31.8

In order to further validate the effectiveness of the
semantic shared space approach, this paper expands from
the initial English semantic space as the base semantic
space to an English-centered semantic space, with the
joint space of German (De), Finnish (Fi), and French (Fr)
serving as auxiliary semantic spaces. The TransNMT
model is trained on these four low-resource languages.
The experimental results are shown in Table 4. The results
show that the addition of auxiliary semantic spaces has
improved the experimental results to a certain extent,
demonstrating the effectiveness of the semantic shared
space approach.

Table 4. Results of the impact of auxiliary languages on
the translation quality of the model

Low resource language
Ro Aze Bel Glg
- - - 30,5 152 207 331

De Fi Fr

N - - 312 159 212 336
N N - 321 168 221 345
N \ v 332 177 232 353

(Note: “\” indicates add, “~ indicates no add)

5 Conclusion

This study introduces a natural language generation
approach termed TransNMT, which is grounded in
multilingual neural machine translation (NMT) and
leverages a Transformer-based self-back-translation
mechanism. This approach addresses the challenge of
learning lexical representations in low-resource settings.
In the translation process, low-resource lexical items
are represented by their high-resource counterparts,
effectively utilizing high-resource corpora to improve the
translation quality of low-resource content. Additionally,
by embedding the self-back-translation structure within
TransNMT, the issue of data scarcity in low-resource
translation is further mitigated.

To address potential declines in zero-shot translation
performance caused by language-specific parameters,
the TransNMT model incorporates the M2TAB module,
which is based on the Transformer attention mechanism.
This module serves as a bridge between the encoders and
decoders of different languages by enabling parameter
sharing through the attention mechanism. This design
allows the TransNMT model to develop language-agnostic
interlingual representations, thereby improving zero-shot
translation capabilities and facilitating translation tasks
for minority and low-resource languages. Experimental
results indicate that, compared to other baseline models,
the proposed approach demonstrates superior performance
in low-resource translation scenarios.
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