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Abstract

In the context of large-scale deep learning models, 
natural language generation systems are required to handle 
multiple tasks concurrently. However, the addition of a 
new task typically necessitates retraining the model from 
scratch with both the original and new data, resulting in 
considerable time and resource consumption. Moreover, 
as the number of supported tasks grows, models with a 
fixed number of parameters may face capacity limitations, 
which can degrade overall performance. To address this 
challenge, this study introduces a Transformer-based self-
back-translation approach for natural language generation, 
termed TransNMT, using multilingual translation as a 
case study. This method modularizes the model to enable 
dynamic scalability, effectively mitigating the capacity 
constraints posed by fixed parameters. Furthermore, 
a self-back-translation mechanism is designed for 
the TransNMT model, consisting of both forward 
and backward translation, which refines the model’s 
performance internally while reducing external noise. This 
approach allows the model to perform well, particularly 
in low-resource translation tasks. Experimental results 
demonstrate significant improvements in BLEU scores 
across four low-resource and three high-resource language 
datasets, with the highest improvement reaching 2.7 BLEU 
points in one of the low-resource languages.

Keywords: Natural language processing, Natural language 
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1  Introduction

In recent years, Neural Machine Translation (NMT) 
has achieved significant improvements in translation 
quality when processing tens of millions of sentences. 
However, the translation quality of NMT is not satisfactory 
when dealing with low-resource languages with limited 
training data. To address the scarcity of training data for 
low-resource languages, two main solutions exist: one is 
to adopt data augmentation strategies by back-translating 
existing data and synthesizing parallel data to expand 
the training corpus; the other is to utilize multilingual 
NMT models that support translation between multiple 

languages, adjusting these models to enhance the 
translation quality of low-resource languages.

The data augmentation method expands the training 
data by back-translating existing low-resource data and 
combining it with original data to create new parallel data, 
without directly collecting new data. However, this method 
does not fully explore the deep semantic information of 
low-resource data, and the augmented data often contains a 
certain level of noise, which can adversely affect the model 
training process and reduce model performance.

Multilingual NMT models typically employ multi-
task learning, training on data containing multiple 
translation language pairs. Previous research has found 
that multilingual NMT can generally improve translation 
quality between low-resource language pairs. Multilingual 
NMT even possesses the ability to translate between 
language pairs not included in the training data, known as 
“zero-shot” translation capability, which is highly valuable 
in practical applications since collecting translation data 
for all language pairs is often challenging. The current 
mainstream multilingual NMT model structure generally 
adopts the classic Sequence-to-sequence (Seq2Seq) 
model. However, as the number of languages supported 
by the Seq2Seq model continues to increase, translation 
performance may decline due to capacity bottlenecks in 
model parameters. Furthermore, since model parameters 
are shared across all languages, adding support for a new 
language requires retraining the model using all language 
data, which can be time-consuming and computationally 
expensive.

To address this issue, this research proposes a natural 
language generation method based on Transformer 
self-back-translation, named TransNMT, leveraging 
multilingual NMT as its foundation. This method not 
only maintains the model’s performance on existing tasks 
but also further enhances its translation quality on low-
resource translation tasks.

The main contributions of this paper are as follows:
•	 An M2TAB module based on the Transformer 

attention mechanism is proposed for multilingual 
NMT models. This module enables the NMT 
model to form language-agnostic interlingual 
representations, thereby enhancing the zero-
shot translation capability of the NMT model 
and facilitating translation tasks for low-resource 
languages.



768   Journal of Internet Technology Vol. 26 No. 6, November 2025

•	 The M2TAB module is equipped with a Mixture 
of Expert (MoE) module to support dynamic 
expansion and alleviate capacity bottlenecks. By 
modularizing M2TAB, the maintainability of the 
improved NMT model is enhanced.

•	 A self-back-translation mechanism for both 
forward and backward translation is defined in 
the TransNMT model, eliminating the need for 
manually designed data augmentation schemes. 
This internal optimization avoids external noise 
and further improves the model’s translation 
quality on low-resource translation tasks.

2  Related Work

2.1 Neural Machine Translation
Kalchbrenner et al. [1] were the first to introduce 

neural network models into the field of machine 
translation, utilizing Recurrent Neural Networks (RNNs) 
for generating translations and integrating Convolutional 
Neural Networks (CNNs) to optimize source text 
processing, thereby opening up a new avenue for machine 
translation. Sutskever et al. [2] constructed an RNN-
based encoder-decoder architecture through the sequence-
to-sequence (seq2seq) learning framework, where the 
encoder encodes the source text and the decoder generates 
the translation. This end-to-end structure simplifies the 
complex processes of traditional translation systems and 
serves as the foundation for Neural Machine Translation 
(NMT). However, RNN models are prone to gradient 
vanishing/exploding issues when dealing with long 
sentences, affecting translation quality. To address this 
issue, Sak et al. [3] proposed Long Short-Term Memory 
(LSTM) networks, while Cho et al. [4] further streamlined 
the structure into Gated Recurrent Units (GRUs), 
effectively mitigating gradient challenges. RNN models 
based on the encoder-decoder architecture have continued 
to attract in-depth research and improvements due to their 
superior performance. Building upon this foundation, 
Bahdanau et al. [5] innovatively introduced the attention 
mechanism into neural machine translation, presenting 
the RNNSearch model. This model enables the decoder 
to focus on critical parts of the source text, effectively 
handling long-distance semantic dependencies.

As research progressed, more neural network 
structures were incorporated into machine translation. 
In 2015, Meng et al. [6] integrated CNNs into statistical 
machine translation, while Gehring et al. [7] designed a 
fully convolutional encoder-decoder architecture in 2017, 
enabling parallel encoding of source text, significantly 
enhancing translation efficiency and quality. In the same 
year, Vaswani et al. [8] introduced the Transformer model, 
leveraging its unique self-attention mechanism and “multi-
head” attention calculation to achieve parallel processing 
and efficient learning of information. Its translation 
performance far surpasses RNN and CNN models, making 
it the current mainstream translation model. 

2.2 Low-Resource Multilingual Translation 
Ha et al. [9] were the first to propose constructing a 

multilingual neural machine translation (NMT) model 
within a unified framework, utilizing manual tags on 
source language corpora to indicate target languages, 
thereby reducing model complexity. Subsequent research 
showed that training a single NMT model directly on 
multilingual corpora, without additional tagging, can 
naturally adapt to multiple language pairs for translation 
[10]. Given NMT’s heavy reliance on data, translation 
quality in low-resource settings is inherently limited. To 
address the scarcity of corpora, two primary strategies are 
employed: data augmentation and multilingual modeling. 
Data augmentation involves techniques such as synonym 
replacement, reordering, and back-translation to increase 
training data. For example, Hinton et al. [11] treated 
monolingual corpora as bilingual data with missing parallel 
sentences to construct new corpora, while back-translation 
leverages existing NMT models for bidirectional 
translation to expand parallel corpora [12]. Li et al. [13] 
generated pseudo-parallel data through back-translation 
to synthesize new corpora and applied filtering methods. 
Artetxe et al. [14] employed iterative back-translation 
until translation quality ceased to improve. Although back-
translation can enhance translation quality, especially in 
low-resource scenarios [15-16], it adds a preprocessing 
step that consumes resources and may amplify errors 
between independent models, degrading the quality of 
training data.

Multilingual modeling approaches aim to improve 
translation quality for low-resource languages by adjusting 
model structures and parameters. Gu et al. [17] applied 
meta-learning algorithms to view low-resource translation 
as a meta-learning problem, enhancing model adaptability. 
Gu et al. [18] proposed a multi-resource boosting 
strategy, sharing vocabulary and sentence representations 
from multiple source languages to the target language, 
facilitating low-resource language learning. Kocmi et al. 
[19] implemented transfer learning to transfer knowledge 
from high-resource to low-resource language models. 
Kong et al. [20] designed a multilingual deep encoder 
method to share lexical information, improving word 
representation learning. Xia et al. [21] leveraged machine 
translation to induce multilingual training data from 
abundant English data, expanding the scale and diversity 
of training. Qin et al. [22] fine-tuned pre-trained BERT 
models to align multilingual representations through mixed 
contextual information, enhancing cross-lingual translation 
capabilities. Singh et al. [23] incorporated cross-lingual 
features from similar languages into multilingual models, 
specifically targeting the improvement of low-resource 
language translation quality.

Despite these methods significantly improving 
translation quality in low-resource environments, model 
adjustments may lead to overfitting issues. Therefore, 
achieving cross-lingual semantic generalization to further 
enhance low-resource language translation quality remains 
an urgent research topic requiring intensive investigation.
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3  Method

3.1 Overall Framework
The architecture of the TransNMT model proposed 

in this study is illustrated in Figure 1. During the model 
training phase, we utilize the word2vec algorithm to 
conduct word embedding training for corpora of both 
high-resource and low-resource languages, aiming to 
obtain semantic space representations for their respective 
vocabularies. For the semantic space of high-resource 
languages, we directly employ them as pre-trained word 
embeddings and input them into the corresponding 
language’s encoder. In contrast, for the semantic space 
of low-resource languages, we integrate it into the 
semantic space of high-resource languages through 
word-by-word alignment techniques, creating a shared 
semantic space encompassing both high and low-resource 
languages. Within this shared semantic space, we derive 
representations for low-resource words based on the 
representations of high-resource words, and these derived 
representations are then used as word embeddings and 
input into the encoders of their respective languages.

Subsequently, through the forward translation module 
of TransNMT, we obtain the forward translation results, 
which are then used as input for training the backward 
translation module of TransNMT. During the training 
process, we leverage the loss from backward translation to 
optimize the forward translation. This self-back-translation 
mechanism enables the predicted sentences generated 
by forward translation to learn potential additions or 
omissions in the source sentences during training, thereby 
achieving data augmentation effects.

Compared to traditional sequence-to-sequence 
(Seq2Seq) models, this model adopts a more flexible 
design by assigning independent encoders and decoders 
to each language. This design allows us to freely combine 
translation modules based on the source and target 
languages, enabling translation tasks in all directions. 
Furthermore, since each language has its own independent 

parameters within the TransNMT model, the model does 
not encounter capacity bottlenecks when supporting 
more languages. At the same time, adding support for 
new languages merely requires adding the corresponding 
language modules and training them, without affecting 
existing language modules.

To address the potential decline in zero-shot translation 
capability caused by independent parameters for each 
language, the TransNMT model integrates the M2TAB 
module based on the Transformer attention mechanism 
within its translation modules. This module serves as a 
bridge, connecting the encoders and decoders of different 
languages through attention mechanisms, enabling 
parameter sharing. This design facilitates the formation 
of language-agnostic interlingual representations within 
the TransNMT model, thereby enhancing its zero-shot 
translation capability and enabling it to handle translation 
tasks for low-resource and minority languages.

3.2 Semantic Shared Space
Under the framework of Multilingual Neural Machine 

Translation (NMT), accurately modeling the complex 
semantic relationships between vocabulary items across 
different languages represents a central challenge 
in enhancing system performance. In conventional 
approaches, a comprehensive vocabulary is constructed by 
multilingual NMT models, integrating lexical items from 
all source languages. However, this integration strategy 
does not naturally facilitate the sharing of language-
specific vocabularies within a unified embedding space, 
particularly in scenarios where data-rich and data-
scarce languages coexist. For languages with abundant 
data, learning their word embeddings is relatively 
straightforward and effective; conversely, languages with 
extreme data scarcity struggle to form high-quality lexical 
representations due to insufficient training samples, posing 
a notable performance bottleneck.

This paper aims to adopt a semantic space-sharing 
strategy, leveraging the corpora of resource-rich languages 

Figure 1. The overall structure of the TransNMT model
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to learn representations for vocabulary items in resource-
poor languages. By mapping low-resource vocabulary into 
high-resource corpora, a shared word embedding space 
is achieved, thereby transferring knowledge from high-
resource languages to low-resource ones.

To accomplish this goal, we first preprocess the 
monolingual corpora of each low-resource language using 
the word2vec technique, extracting initial monolingual 
embedding sets for each language (i.e., constructing 
independent monolingual semantic spaces). Subsequently, 
we introduce automated word-by-word alignment 
technology, which aligns words between bilingual 
sentences based on similarity measures. Through this 
step, the word embeddings of low-resource languages 
are effectively transformed and mapped into a shared 
semantic framework grounded in high-resource languages, 
enabling cross-lingual knowledge sharing and transfer. 
This process not only promotes the effective migration of 
knowledge from high-resource languages to low-resource 
environments but also enhances the model’s ability to 
comprehend and process low-resource vocabulary.

Figure 2 shows examples of aligning the English 
semantic space, which is taken as the high-resource corpus 
semantic space, with the German semantic space and 
Romanian semantic space respectively.

Figure 2. Schematic diagram of semantic space alignment

3.3 Translation Module of TransNMT
The TransNMT model’s translation module assigns 

independent encoders and decoders to each language, 
allowing for flexible combinations based on the source and 
target language pair, enabling multi-directional translation 
tasks. Each encoder consists of stacked feedforward and 
self-attention sub-layers, while each decoder features 
stacked feedforward, multi-head attention, and self-
attention sub-layers. Furthermore, TransNMT incorporates 
a distinct neural network module, M2TAB, which 
mirrors the Transformer architecture and acts as a bridge 
between language encoders and decoders via the attention 
mechanism.

Within the translation module, the encoder and 
decoder for the i-th language are denoted as Enci and Deci, 
respectively. Given a pair of sentences (xi, yj), representing 
a translation from source language i to target language j, 
where i,j∈{1,..., K}, and K is the total number of supported 
languages. The TransNMT model is trained by maximizing 
the likelihood estimation on the training set Di,j for all 
available language pairs in the set S. The objective of 

maximizing the likelihood estimation, denoted as L, is 
formally defined as follows:
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In the formula, M2TAB(·) represents the M2TAB 
module proposed in this paper.

In the TransNMT model integrated with M2TAB, 
there is no direct connection between the encoder and 
the decoder; instead, they individually compute attention 
scores with M2TAB. As shown in Figure 1, for the 
encoders of each language, M2TAB acts as a decoder, 
where each position of M2TAB computes attention scores 
with all positions of the encoder’s output sequence. 
Similarly, for the decoders of each language, M2TAB takes 
on the role of an encoder, with each position of the decoder 
computing attention scores with all positions of M2TAB’s 
output sequence. The M2TAB module is formally defined 
as follows:
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In the formula, H l
M2TAB represents the hidden state of 

the l-th layer (l ∈ [1, 𝐿]) of M2TAB. H L
M2TAB , being the top-

level output hidden state, is used to calculate the attention 
scores between M2TAB and the decoder. H 0

M2TAB is the 
input representation of M2TAB, and this work adopts 
position encoding similar to that in Transformer, with 
options for both learnable and fixed position encodings. 
Attn(∙) denotes the multi-head attention module, and  
MoE(∙) represents the position-wise MoE sublayer. The 
query matrix Q comes from the output of the preceding 
stacked layers of M2TAB, while the key matrix K and 
value matrix V are derived from the output sequence 
representation Henci of the i-th language encoder. d is the 
hidden layer size, n is the length of the encoder’s input 
sequence, and r represents the sequence length of M2TAB.

3.4 M2TAB Module
As shown in Figure 3, the M2TAB module is 

composed of stacked multi-head attention sublayers and 
MoE sublayers. It serves as a bridge connecting various 
language encoders and decoders through the attention 
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mechanism, enabling parameter sharing and assisting 
the TransNMT model in forming a language-agnostic 
interlingual representation.

Given an input token x, Ei(x) represents the output of 
the i-th expert network. Then, the output y of the Mixture 
of Experts (MoE) module can be expressed as:

( ) ( )
1

*
n

g ii
i

y softmax x W E x
=

= ∑ (6)

Where Wg ∈ Rd×n is a learnable weight matrix, and the 
softmax function is used to distribute the weights among 
the expert networks when processing the input tokens. 
M2TAB equipped with MoE can be dynamically extended 
during the process of incremental learning by increasing 
the number of expert networks.

As shown in Figure 3, during the incremental training 
phase, an additional expert network En+1(x) is added to 
the MoE layer for the newly introduced language, and the 
dimensionality of the gating network is increased by one 
to accommodate the expanded MoE. The output y of the 
expanded MoE module is updated as follows:
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Where W'g ∈ Rd×(n+1) is the weight matrix after 
expansion.

Figure 3. Schematic diagram of M2TAB module

3.5 Self-Back-Translation
In this paper, two TransNMT models are defined for 

forward and backward translation, where the output from 
the forward translation serves as input for the backward 
translation. The optimized backward translation result is 
then used as input for the source language. 

Figure 4. Schematic diagram of the self-back-translation 
mechanism of TransNMT

By jointly optimizing the parameters of both 
TransNMT models, the system identifies and corrects 
deficiencies in the forward translation results, thereby 
enriching the training data for forward translation. This 
automatic back-translation approach eliminates the need 
for manually designed data augmentation strategies, 
internally optimizing the process to reduce external 
noise and allowing the model to perform effectively in 
low-resource translation tasks. Figure 4 illustrates how 
TransNMT integrates with back-translation.

The loss function for the forward translation 
TransNMT is defined as Lossf, and the loss function for the 
backward translation TransNMT is defined as Lossb. Both 
utilize the cross-entropy loss function. During the training 
process, the weighted sum of these two losses is optimized 
using ADAM, a stochastic gradient descent method for 
optimizing stochastic objective functions based on first-
order gradients. The total loss Lloss is calculated as follows:

( )loss f bL ADAM Loss Lossλ= + (8)

4  Experiment

4.1 Dataset
The experimental data in this paper is a hybrid 

combination of parallel corpora created from the Europarl 
Parallel Corpus and the TED Talks corpus. It comprises 
parallel corpora from four low-resource languages (LRL), 
namely Romanian (Ro), Azerbaijani (Aze), Belarusian 
(Bel), and Galician (Glg), to English (En), as well as the 
semantic spaces of three high-resource languages (HRL), 
German (De), Finnish (Fi), and French (Fr), which are 
jointly trained to assist in verifying the effectiveness of 
low-resource translation. The statistical information of the 
parallel corpora is presented in Table 1.

Table 1. Parallel corpus statistics

LRL Train HRL Train
Ro 6.0k De 182k
Aze 5.97k Fi 103k
Bel 4.51k Fr 185k
Glg 10.0k - -
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4.2 Ablation Study
To verify the effectiveness of introducing the M2TAB 

module and the self-back-translation mechanism, as well as 
their impact on model performance, ablation experiments 
were conducted. The experimental results are presented in 
Table 2.

Table 2. Results of ablation experiments

M2TAB SBT Ro Aze Bel Glg

– – 15.7 8.9 12.8 25.7

√ – 21.8 11.6 16.9 27.6

– √ 22.3 12.6 15.2 28.5

√ √ 30.5 15.2 20.7 33.1

(Note: “√” indicates add, “–” indicates no add)

4.3 Comparative Experiment
The TransNMT model was compared with various 

classical neural machine translation models, including 
Multi-NMT RNN, Multi-NMT TR, Word-SDE, and 
Multi-NMT TR_SBT. This comparative analysis aimed 
to evaluate the performance and effectiveness of the 
TransNMT model in multi-language translation tasks. 
The detailed experimental results of this comparison are 
summarized in Table 3, highlighting the advancements 
achieved by the TransNMT approach.

Table 3. The results of various models in four languages 
under low-resource conditions

Model
BLEU

Ro Aze Bel Glg

Multi-NMT RNN 11.4 7.8 10.4 24.9

Multi-NMT TR 16.5 9.2 12.5 26.7

Word-SDE 27.6 11.3 17.7 29.5

Multi-NMT TR_
SBT 29.4 13.5 19.4 31.8

TransNMT(Ours) 30.5 15.2 20.7 33.1

In order to further validate the effectiveness of the 
semantic shared space approach, this paper expands from 
the initial English semantic space as the base semantic 
space to an English-centered semantic space, with the 
joint space of German (De), Finnish (Fi), and French (Fr) 
serving as auxiliary semantic spaces. The TransNMT 
model is trained on these four low-resource languages. 
The experimental results are shown in Table 4. The results 
show that the addition of auxiliary semantic spaces has 
improved the experimental results to a certain extent, 
demonstrating the effectiveness of the semantic shared 
space approach.

Table 4. Results of the impact of auxiliary languages on 
the translation quality of the model

De Fi Fr
Low resource language

Ro Aze Bel Glg

– – – 30.5 15.2 20.7 33.1

√ – – 31.2 15.9 21.2 33.6

√ √ – 32.1 16.8 22.1 34.5

√ √ √ 33.2 17.7 23.2 35.3

(Note: “√” indicates add, “–” indicates no add)

5  Conclusion

This study introduces a natural language generation 
approach termed TransNMT, which is grounded in 
multilingual neural machine translation (NMT) and 
leverages a Transformer-based self-back-translation 
mechanism. This approach addresses the challenge of 
learning lexical representations in low-resource settings. 
In the translation process, low-resource lexical items 
are represented by their high-resource counterparts, 
effectively utilizing high-resource corpora to improve the 
translation quality of low-resource content. Additionally, 
by embedding the self-back-translation structure within 
TransNMT, the issue of data scarcity in low-resource 
translation is further mitigated.

To address potential declines in zero-shot translation 
performance caused by language-specific parameters, 
the TransNMT model incorporates the M2TAB module, 
which is based on the Transformer attention mechanism. 
This module serves as a bridge between the encoders and 
decoders of different languages by enabling parameter 
sharing through the attention mechanism. This design 
allows the TransNMT model to develop language-agnostic 
interlingual representations, thereby improving zero-shot 
translation capabilities and facilitating translation tasks 
for minority and low-resource languages. Experimental 
results indicate that, compared to other baseline models, 
the proposed approach demonstrates superior performance 
in low-resource translation scenarios.
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