
Journal of Internet Technology Vol. 26 No. 6, November 2025 743

*Corresponding Author: Daoxing Guo; Email: xyzgfg@sina.com
DOI: https://doi.org/10.70003/160792642025112606003

Adaptive Beamforming Algorithm Based on Automatic Deep Neural
Network Optimization for Multiple Noise Signals

Zheng Xu1,2, Zihao Pan1, Daoxing Guo1*

1 The College of Communications Engineering, Army Engineering University of PLA, China
2 Nanjing Panda Handa Technology Co., Ltd., China

xuzhengjust@126.com, pzh199801@126.com, xyzgfg@sina.com

Abstract

As modern communica t ion sys tems demand
increasingly higher speed and accuracy in signal
processing, traditional adaptive beamforming algorithms
face challenges in real-time response to rapidly changing,
multiple-noise signal environments. To address this issue,
this paper proposes an Automated Deep Neural Network
Adaptive Beamforming (A-DNNABF) algorithm for
multiple noise signal environments. A-DNNABF uses
the angle of arrival vector as input, employs an attention
mechanism, and optimizes network architecture via
Differentiable Architecture Search. Simulation results
show A-DNNABF outperforms traditional Minimum
Variance Distortionless Response (MVDR) and Deep
Neural Network Adaptive Beamforming (DNNABF)
methods in computational efficiency (10 times faster),
prediction accuracy, and robustness to varying interference
sources. The algorithm maintains stable performance with
changing numbers of interference signals, demonstrating
lower angular deviation in estimating both desired and
interference signals. A-DNNABF provides an efficient
solution for real-time adaptive beamforming in rapidly
changing, multiple-noise signal environments.

Keywords: Adaptive beamforming, Hyperparameter
optimization, Deep learning, Multiple noise signals

1 Introduction

Beamforming technology, as a core branch of array
signal processing, plays a crucial role in various fields such
as radar, sonar, communications, and electronic warfare.
Traditional beamforming methods, such as algorithms
based on the Signal-to-Noise Ratio (SNR) criterion,
Minimum Mean Squared Error (MMSE) criterion, and
Minimum Variance Distortionless Response (MVDR)
criterion, require recalculating the weight vector when
there are changes in the angle of the desired signal or
interference signals. This process is computationally
intensive and poses challenges for meeting the real-time
systems’ demand for quick updates of the optimal weight
vector. Particularly when dealing with multiple noise
signals, deep neural networks also struggle to respond

promptly to adaptive beamforming.
With the rapid development of artificial intelligence

and neural network technologies, applying them to
the field of beamforming has become a new research
direction. This approach utilizes neural networks for
data pre-training and then employs the trained network
model to adaptively output weight vectors during actual
application phases. When the Angle of Arrival (AoA) of
incoming signals changes, the neural network method
processes with a minimal response time compared to
traditional beamforming algorithms, which require
extensive computation. This enables array antennas to
achieve fast and efficient beamforming using neural
network technology, significantly enhancing the system’s
realtime performance. However, the angle of arrival of
both the desired signal received by the array antenna and
the multiple interference signals often change rapidly.
Traditional beamforming algorithms based on deep neural
networks struggle to respond in real-time and provide
optimal weight vector matrices due to the rapid variation
of input noise sources. To address this issue, this paper
proposes an Automated Deep Neural Network Adaptive
Beamforming for Multiple Noise Signal (A-DNNABF)
algorithm. This algorithm takes the AOA vector of the
incoming signal as network input, enhances the learning
of key features through an attention mechanism, and
automatically learns the architecture of a deep neural
network from large-scale input signals to output weight
vectors that approximate the MVDR algorithm. Simulation
results demonstrate that, compared to MVDR and
DNNABF, the A-DNNABF algorithm not only accurately
fits the MVDR algorithm’s weight vectors but also adapts
more effectively to rapid changes in the AoA of incoming
signals, adaptively forming beams and nulls. Moreover,
the computational speed of the A-DNNABF algorithm
is approximately 10 times faster than that of the MVDR
algorithm.

Regarding the application scenario, our method
primarily addresses signal processing challenges in
complex electromagnetic environments. Specifically, it
is applicable to high-density signal environments such as
urban communication networks, large industrial facilities,
or military communication systems. In these scenarios,
issues like signal interference, multipath effects, and
spectrum congestion are prevalent. Our approach captures
real environmental characteristics through large-scale

744 Journal of Internet Technology Vol. 26 No. 6, November 2025

signal collection, adaptively processes complex signals
using DARTS-optimized neural network architectures,
and achieves real-time signal quality optimization through
weight prediction. This makes our technology excel
in improving communication quality, reducing signal
conflicts, and enhancing anti-interference capabilities,
particularly suitable for communication systems requiring
high reliability and real-time performance.

The remainder of this paper is organized as follows.
Section 2 briefly introduces related work. In Section 3,
we detail the design of the proposed method A-DNNABF.
Section 4 describes the experimental setup, and Section
5 presents our experimental results comparing the
performance of A-DNNABF with some benchmarks.
Finally, in Section 6, we summarize the paper and propose
future work.

2 Related Work

2.1 Beamforming Algorithm Based on MVDR
Beamformer
Consider a uniform linear array with M elements and

an element spacing of d. Assume there are K + 1 incoming
signals, where the angle of arrival of the desired signal is
θ0, and the angles of arrival of the K interference signals are
θk (k = 1, 2, ..., K). The vector composed of the angles of
arrival (AOA) of the incoming signals is θ = [θ0, θ1, ..., θk].
The array output signal can be expressed as:

0
() () () ()

K

k k
k

x t s t a n tθ
=

= +∑ (1)

where sk(t) is the complex envelope of the k-th signal,
a(θk) is the corresponding array manifold vector, and n(t) is
the additive white noise vector.

The goal of the MVDR beamformer is to minimize the
output power while maintaining a unit gain in the direction
of the desired signal. The computation of its weight vector
is as follows:

1) Array Output Signal Model:

0 0
1

() () () () () ()
K

k k
k

x t a s t a s t n tθ θ
=

= + +∑ (2)

where: x(t) is the M × 1 array received signal vector, a(θ0)
is the M × 1 array manifold vector in the direction of the
desired signal, s0(t) is the complex envelope of the desired
signal, a(θk) is the array manifold vector in the direction of
the k-th interference signal, sk(t) is the complex envelope
of the k-th interference signal, and n(t) is an M × 1 additive
white noise vector.

2) Computing the Array Covariance Matrix:

[() ()]HR E X t X t= (3)

Where E[∙] denotes the expectation operation, and (∙)H

represents the conjugate transpose. R is an M × M matrix
containing spatial correlation information of signals,
interference, and noise.

3) MVDR Optimization Problem: The weight vector
w of the MVDR beamformer is obtained by solving the
following optimization problem:

0min s.t. () 1H H

w
w Rw w a θ = (4)

The goal of this optimization problem is to minimize
the output power wHRw while maintaining a unit gain
constraint in the direction of the desired signal, wHa(θ0)
= 1.

4) Solution to the MVDR Weight Vector: Using the
Lagrange multiplier method, a closed-form solution for the
MVDR weight vector can be obtained:

1
0

1
0 0

()
() ()MVDR H

R aw
a R a

θ
θ θ

−

−= (5)

Where: R − 1 is the inverse of the array covariance
matrix, and a(θ0) is the array manifold vector in the
direction of the desired signal.

5) Array Output: Using the MVDR weight vector, the
array output can be expressed as:

() ()H
MVDRy t w x t= (6)

This output maintains a unit gain response for the
desired signal while minimizing the total output power,
effectively suppressing interference and noise. The
MVDR can adaptively adjust the weights based on the
statistical properties of the received signal to optimally
suppress interference and noise. Under high signal-to-
noise ratio conditions, the MVDR can achieve higher
spatial resolution compared to traditional beamforming
methods. However, the MVDR requires the computation
of the covariance matrix inverse, which may lead to high
computational complexity when the number of array
elements is large. To accurately estimate the covariance
matrix, the MVDR typically requires a sufficient number
of samples, which could be a challenge in rapidly changing
environments.

2.2 Deep Neural Networks for Beamforming
Currently, numerous studies focus on neural network-

based beamforming technologies. Hopfield networks,
principal component analysis networks, and multilayer
perceptrons have been utilized for beamforming; however,
these methods do not fully exploit the nonlinear fitting
capabilities of neural networks [1-2]. Radial-basis
function (RBF) networks map the relationship between the
received signal covariance matrix and the weight vector
for beamforming, but clustering operations are necessary
to obtain the centers of the basis functions. The training
process of these networks is complicated, and as RBF

Adaptive Beamforming Algorithm Based on Automatic Deep Neural Network Optimization for Multiple Noise Signals 745

networks are single-hidden-layer feedforward networks,
the number of neurons in the hidden layer increases
significantly with more training samples, resulting in an
overly large network structure [3].

To overcome the drawbacks of RBF networks, deep
neural network (DNN) technology has begun to be applied
to beamforming. [4-6] used convolutional neural networks
(CNNs) to replace complex optimization algorithms,
predicting approximate optimal weight vectors by
inputting the autocorrelation matrix of received signals.
However, this method necessitates cumbersome data
preprocessing steps for better fitting results and a simpler
network architecture, introducing excessive angle-related
prior assumptions. Ren et al. [7] proposed a new
algorithm based on existing research and identified issues
called Deep Neural Network Adaptive Beamforming
(DNNABF). It inputs vectors composed of random
desired and interference signal angles of arrival (AOA)
and outputs the MVDR algorithm weight vector. It uses
four hidden layers activated by the PReLU function,
with the output layer activated by the tanh function. It
employs the Adam algorithm as the optimizer, granting
the network strong generalization capabilities. This allows
it to adaptively form beams and nulls at the desired and
interference signal angles when the angles of arrival
change, performing real-time anti-interference in the spatial
domain and accommodating more complex interference
scenarios.

2.3 Hyperparameter Optimization Techniques
In deep learning, hyperparameter optimization (HPO)

is finding optimal combinations of hyperparameters
to enhance model performance. Since hyperparameters
directly affect the model’s learning process and final
performance, correctly selecting and adjusting them
is crucial. The working principle of HPO algorithms
is consistent: they iteratively propose hyperparameter
configurations and then evaluate their performance.
These hyperparameters and their respective evaluations
are continuously stored in what is termed an archive, and
if the model achieves optimal performance, the desired
hyperparameter configuration is obtained [8]. Below
are some commonly used hyperparameter optimization
methods:
2.3.1 Grid Search (GS)

Grid search involves discretizing the range of each
hyperparameter (HP) and exhaustively evaluating
every combination of values. Numerical and integer HP
values are typically evenly distributed within their fixed
constraints. The number of different values for each HP
is referred to as the grid’s resolution. For categorical
HPs, part or all possible values are considered. This is
an exhaustive search method that systematically explores
multiple hyperparameter combinations within a predefined
space. It is suitable when the number of hyperparameters
is small, and the range of potential values for each
hyperparameter is limited. GS is directly affected by the
curse of dimensionality [9] since the required number of
evaluations grows exponentially with the number of HPs
when the grid resolution is fixed.

2.3.2 Random Search (RS)
U n l i k e g r i d s e a r c h , r a n d o m s e a r c h s e l e c t s

hyperparameter combinations within the possible
range. This method is often faster than grid search,
especially when the hyperparameter space is large. In its
simplest form, each hyperparameter value is sampled
independently from a pre-specified (usually uniform)
distribution, applicable to numeric, integer, or categorical
parameters with box constraints. RS performs better than
GS in high-dimensional HPO settings [10].
2.3.3 Bayesian Optimization

Bayesian optimization uses Bayesian statistics to
select hyperparameters to optimize the objective function
(typically the model’s performance on the validation set).
It builds a probabilistic model between hyperparameters
and the objective function and selects hyperparameters
that are most likely to improve performance. Bayesian
Optimization (BO), as a global optimization technique
for black-box functions, especially for HPO [11-13], has
become increasingly popular.
2.3.4 Evolutionary Algorithms

Evolutionary Strategies (ES) are a class of stochastic
population-based optimization methods, inspired by the
concept of biological evolution, falling under the broader
category of Evolutionary Algorithms. In ES terminology,
an individual is a single HPC, a population is the
currently maintained set of HPCs, and the fitness of an
individual is its (inverted) generalization error. Mutation
is a (random) change of one or several hyperparameter
values in a configuration. Crossover creates a new
HPC by (randomly) combining values from two other
configurations. An ES follows iterative steps to find
individuals with high fitness values. Using so-called
nested ES, ES are less likely to get stuck in local minima
[14], and they can be directly modified to improve noise
resilience [15]. Furthermore, ES can be applied to settings
with complex search spaces and thus can work in spaces
where other optimizers might fail [16]. ES is more efficient
than RS and GS but still typically requires many iterations
to find good solutions, making them perform poorly in
expensive optimization settings like HPO.
2.3.5 Gradient-Based Methods

Gradient-based hyperparameter opt imizat ion
techniques use gradient information to optimize
h y p e r p a r a m e t e r s , m a i n l y f o r d i f f e r e n t i a b l e
hyperparameters. The core idea of this approach is to
directly optimize hyperparameters by computing their
gradients to improve model performance. This method
requires hyperparameters to be differentiable concerning
the loss function; compared to random search and
evolutionary algorithms, using gradient information can
find optimal solutions more quickly. It can continually
adjust hyperparameters during training. Differentiable
Architecture Search (DARTS) [17] defines a continuous
search space and optimizes architecture parameters using
gradient descent. This method is increasingly used in
deep learning, particularly in automated machine learning
(AutoML).

When performing hyperparameter optimization, the
introduction of hyperparameter optimization libraries such

746 Journal of Internet Technology Vol. 26 No. 6, November 2025

as Hyper-opt, Optuna, Ray Tune, and Scikit-optimize [18-
21] can facilitate rapid hyperparameter optimization. These
libraries provide tools for executing the aforementioned
methods and sometimes include more advanced features.
Factors to consider during the optimization process
include:

•	 Evaluation Metrics: Clearly define evaluation
metrics for model performance. This will determine
the objective of the optimization process.

•	 Validation Strategy: Use methods like cross-
va l ida t ion to assess the pe r fo rmance o f
hyperparameter combinations.

•	 C o m p u t a t i o n a l R e s o u r c e s a n d T i m e :
Hyperparameter optimization is typically
computation-intensive. Plan the allocation of
computational resources and time reasonably.

•	 Over f i t t ing Avoidance : Pay a t t en t ion to
performance on the validation set to avoid
choosing hyperparameter combinations that lead
to overfitting.

Hyperparameter optimization is an iterative process
requiring multiple experiments to find the optimal
combination. In practice, experience and intuition also play
important roles.

3 Method

Our method consists of three core components: Large-
Scale Signal Collection, Signal Processing Neural Network
Architecture Optimization Based on DARTS, and Weight
Prediction Output. First, we collect and preprocess large-
scale signal data. Then, this data is input into a DARTS-
based optimization module to automatically search for the
optimal neural network architecture. Finally, the optimized
network is used for weight prediction, outputting optimal
processing weights based on input signal characteristics.
These three components form a closed-loop system, with
data flowing sequentially between stages while allowing
feedback optimization, continuously improving the
efficiency and accuracy of signal processing.

The motivation behind our proposed new signal
processing method stems from several key challenges faced
by current technologies. Firstly, existing beamforming
methods based on convolutional neural networks are
ineffective in handling dynamically changing interference
signal sources. Secondly, while the MVDR algorithm
is widely used in signal processing, its computational
efficiency is relatively low, making it difficult to meet
real-time processing requirements. Additionally, the
rapid development of deep neural networks, especially
the significant advantages demonstrated by Transformer
models based on attention mechanisms in capturing
temporal signals, has provided us with new research
directions.

3.1 Large-Scale Signal Collection
Algorithm 1 describes a large-scale signal collection

process aimed at providing training data for subsequent
neural network architecture optimization. The algorithm

first defines the basic parameters of an array antenna,
modeled as a linear array, including the number of linear
antenna elements M and spacing d, as well as signal
sampling parameters such as sampling frequency fs and
sampling time T.

Algorithm 1. A large-scale signal collection process
1: Define array antenna parameters: number of array
elements M , spacing between elements d
2: Define sampling parameters: sampling frequency fs,
sampling time T
3: Initialize signal set S = {}
4: for each scenario i = 1 to N do
5: Generate expected signal AOA θ0

(i) and K interference

signal AOAs { }()

1

Ki
k k

θ
=

6: Construct AOA vector () () () ()
0 1, , ,i i i i

Kθ θ θ θ =  

7: Generate corresponding signal x(i)(t), t∈[0, T]
8: Compute MVDR weight vector w (i)

MVDR

9: (){ }() () (), (),i i i
MVDRS S x t wθ= 

10: end for
11: return signal set S

In the main loop, the algorithm simulates N different
signal scenarios. For each scenario i , it generates an
expected signal angle of arrival (AOA) θ 0

(i) and K

interference signal AOAs { }()

1

Ki
K k

θ
=

. These AOA values

are combined into a vector θ (i), representing the spatial
signal distribution of the current scenario.

Based on these AOAs, the algorithm generates
the corresponding time-domain signal x(i)(t), t∈[0, T].
This signal contains a mix of the expected signal and
interference, simulating a real complex signal environment.
Simultaneously, the algorithm computes the minimum
variance distortionless response (MVDR) weight vector
w (i)

MVDR for the scenario.
Finally, the algorithm adds the AOA vector θ (i), the

time-domain signal x(i)(t), and the MVDR weight
vector w (i)

MVDR as a whole to the signal set S . This process
is repeated N times, ultimately generating a signal set
containing a large number of different scenarios.

The signal set S will serve as input for subsequent
neural network architecture optimization algorithms,
used to train and evaluate the network’s performance in
different signal processing scenarios.

3.2 Signal Processing Neural Network Architecture
Optimization Based on DARTS
We will use the Transformer based on the attention

mechanism as the basic network architecture and
incorporate Neural Architecture Search (NAS) technology
to automatically optimize the network structure, primarily
designing an automated deep neural network architecture
optimization algorithm using Differentiable Architecture
Search (DARTS).

Adaptive Beamforming Algorithm Based on Automatic Deep Neural Network Optimization for Multiple Noise Signals 747

Compared to Progressive Neural Architecture Search
(PNAS), DARTS is generally faster because it does not
need to gradually expand the search space. DARTS might
be easier to implement and adjust because it employs
standard gradient descent methods; compared to Efficient
Neural Architecture Search (ENAS), DARTS is usually
easier to implement because it does not require a complex
reinforcement learning controller. The search process
in DARTS may be more stable because it is based on
gradient methods rather than sampling methods. The
hyperparameter optimization process, based on DARTS,
effectively explores the entire hyperparameter landscape.
This search process implicitly evaluates the algorithm’s
sensitivity to different hyperparameter combinations. The
optimal hyperparameters reported in our study represent
the best configuration found after exploring a wide
range of possibilities, ensuring both robustness and high
performance.
3.2.1 Problem Formulation

Given the input signal set S={(θ(i),x(i)(t),w(i)
MVDR)}N

i=1,
where θ (i) is the angle of arrival (AOA) vector, x(i)(t) is
the time-domain signal, and w (i)

MVDR is the MVDR weight
vector. Our goal is to find an optimal neural network
architecture A* such that:

A* = arg minA Lval (A, w*(A)) (7)

where w*(A) represents the optimal network weights for
a given architecture A, and Lval is the loss function on
the validation set.
3.2.2 Search Space Definition

This method was proposed in the original Transformer
paper. It uses sine and cosine functions of different
frequencies to encode positional information. (1) Learnable
Position Encoding: This method treats positional encoding
as learnable parameters. The model can adaptively
learn position representations best suited for the task
during training. (2) Relative Position Encoding: Unlike
absolute position encoding, this method encodes the
relative distances between elements. This is particularly
useful when dealing with variable-length sequences
and can help the model better capture local structures.
(3) Rotary Position Encoding (RoPE): This is a newer
method that encodes relative positional information
through complex number rotation. It theoretically offers
infinite extrapolability and is more robust to variations
in sequence length. (4) ALiBi (Attention with Linear
Biases): This method introduces linear biases in attention
computation to implicitly encode positional information.
It does not require explicit position embeddings and is
especially effective for long sequences. (5) Fourier
Position Encoding: This utilizes the Fourier series to
encode positional information, which can better handle
periodic signals or data with multi-scale structures.

Skip Connections, also known as Residual Connections
or Shortcut Connections, are a widely-used technique in
deep neural networks. Skip connections allow the direct
transmission of input from one layer to a deeper layer,
bypassing some intermediate layers. This connection

enables information to flow more freely through the
network, not strictly following a hierarchical forward
propagation path. They can be used to alleviate the
vanishing gradient problem, promote feature reuse, and
simplify the optimization process. In DARTS-based
neural network architecture optimization for signal
processing, skip connections can serve as an option in
the search space. We can include various types of skip
connections in the search space, such as simple identity
mappings, skip connections with linear transformations,
or those with lightweight convolutions. The algorithm can
automatically decide where to add skip connections within
the network. This may include adding skip connections
between Transformer blocks, between self-attention
layers and feedforward network layers, or long-range skip
connections across multiple layers. By including skip
connection options in the search space, our algorithm can
automatically discover the network topology that is best
suited for specific signal-processing tasks. This flexibility
allows the algorithm to balance between different network
depths and complexities while maintaining good gradient
flow and feature propagation. In signal processing tasks,
skip connections can be particularly useful because they
help models better handle information across different time
scales or frequency ranges while retaining direct access
to the original input signal. This could be beneficial for
accurate prediction of MVDR weight vectors and AOA
estimation.
3.2.3 Mixed Operation Definition

A mixed operation is the weighted sum of all candidate
operations in the search space. For each learnable
connection in the network, we define a mixed operation
that includes all possible candidate operations (such as
multi-head self-attention, feedforward networks, etc.), with
each operation having an associated weight parameter. In
our signal processing task, mixed operations may include
different types of attention mechanisms (such as multi-head
self-attention with different numbers of heads), various
configurations of feedforward networks, and various
positional encoding methods and skip connection options.
By optimizing the weights of these mixed operations, the
algorithm can automatically discover the network structure
that best handles the given signal data, thereby achieving
superior performance in tasks like MVDR weight vector
prediction.

For each learnable connection (i, j) in the network, we
define the mixed operation as:

() ()
()()

()() ()
,

,
,

exp

exp

i j
oi j

o i j
o o

o o
α

α′ ′

∈

∈

= ∑
∑

x xO

O

(8)

Where αo
(i,j) is a learnable architecture parameter.

3.2.4 Architecture Design
The final network architecture will consist of the

following components:
•	 Input Layer: Processes the time-domain signal

x(i)(t)

748 Journal of Internet Technology Vol. 26 No. 6, November 2025

•	 Feature Extraction Layer: Utilizes the attention
mechanism obtained through search

•	 Transformer Encoder: Employs the optimal self-
attention mechanism and feedforward network
obtained through search

•	 Output Layer: Predicts the weight vector w^

3.2.5 Optimization Algorithm
We propose Algorithm 2 to optimize the neural net-

work architecture: The loss function L can be defined as:

 L = MSE (w^ , wMVDR) (9)

where w^ is the weight vector predicted by the network,
and MSE stands for mean squared error.

Algorithm 2. DARTS-based signal processing neural
network architecture optimization
1: Input: Signal set S , search space O
2: Initialize architecture parameters α and network
weights w
3: while convergence condition is not met do
4: Sample batch data B t ra in , Bval from S
5: Update weights: w ← w − η w∇ w L t r a i n (w * , α ;
B t ra in)
6: Update architecture: α ← α − η α∇ α Lval (w *(α) , α ;
Bval)
7: end while
8: Determine final architecture A based on α
9: return A

Algorithm 2 first takes a set of signals and a predefined
search space as input. The search space includes
various possible network operations, such as different
configurations of multihead self-attention mechanisms,
feedforward network layers, position encoding methods,
and skip connections. By introducing the concept of
mixed operations, the algorithm transforms these discrete
choices into a continuous optimization problem. During
the initialization phase, the algorithm randomly sets the
architecture parameters α and network weights w .

The algorithm then enters an iterative optimization
process. In each iteration, it samples training and validation
batch data from the input signal set. The optimization
process consists of two alternating steps: first, the network
weights w are updated using the training batch to minimize
the training loss. Next, the architecture parameters
α are updated using the validation batch to minimize
validation loss. This bilevel optimization strategy allows
the algorithm to simultaneously consider both network
performance and structural efficiency. The loss function
is defined as the mean squared error (MSE) between
the predicted weight vector and the MVDR (Minimum
Variance Distortionless Response) weight vector. This
choice reflects the algorithm’s specific application in
signal processing tasks, namely, accurately predicting the
MVDR weight vector. The iterative process continues until
a predetermined convergence condition is met. Finally,
based on the optimized architecture parameters α , the

algorithm determines the final network architecture. This
architecture is the most suitable structure within the given
search space to execute the specific signal processing task.

3.3 Weight Prediction Output
In the final stage, we use the optimized Transformer

model to predict the MVDR weight vector. The prediction
process of the weight vector is shown in Algorithm 3.

Algorithm 3. Weight prediction output
1: Input: Optimized Transformer model Ma*, AOA vector
θ
2: Encode the AOA vector: e = Encode(θ)
3: Process through the Transformer model: h = Ma*(e)
4: Generate weight vector through the fully connected
layer: w^ = FC(h)
5: return Predicted weight vector w^

Algorithm 3 describes the process of using an
optimized Transformer model to predict the MVDR
weight vector. The algorithm receives two key inputs: a
Transformer model Ma* optimized through architecture
search and a vector θ representing the angle of arrival
(AOA) of the signal.

First, the algorithm encodes the input AOA vector:
e = Encode(θ). This encoding process may include
positional encoding or other forms of signal representation
transformation, aiming to convert AOA information into a
format that can be effectively processed by the Transformer
model.

Next, the encoded vector is input into the optimized
Transformer model: h = Ma*(e). The Transformer model
processes this input through its self-attention mechanism
and feedforward network layers, generating a high-
dimensional feature representation h. This process allows
the model to capture complex relationships and patterns
between AOAs.

Finally, this high-dimensional feature is processed
through a fully connected layer to output the predicted
MVDR weight vector: w^ = FC(h). This weight vector
ŵ represents the model’s prediction of the optimal
beamforming strategy for the given AOA.

The entire process achieves an end-to-end mapping
from AOA information to the MVDR weight vector,
fully leveraging the optimized Transformer architecture
to capture complex patterns and relationships in signal
processing.

Automated hyperparameter optimization theoretically
enhances the performance of the A-DNNABF algorithm by
systematically exploring a larger hyperparameter space than
manual tuning. This approach leverages adaptive search
strategies to efficiently navigate the complex relationship
between hyperparameters and model performance. By
optimizing multiple objectives simultaneously, such as
accuracy and computational efficiency, it can find a better
balance in the bias-variance trade-off. The automated
process also has the potential to discover non-intuitive
hyperparameter combinations that human experts

Adaptive Beamforming Algorithm Based on Automatic Deep Neural Network Optimization for Multiple Noise Signals 749

might overlook, leading to improved generalization and
more robust performance across various operational
conditions. Ultimately, this systematic approach increases
the likelihood of finding an optimal or near-optimal
configuration, resulting in superior algorithm performance
compared to traditional manual tuning methods.

4 Experiments

4.1 Datasets
This subsection introduces the dataset used in the

experiment. It is assumed that there is 1 desired signal
and 8 interference signals incident as plane waves. The
max 9 incident signals are taken from different angles
and randomly assigned. A total of 600,000 sets of sample
data are generated, among which 400,000 sets are used
for training, 100,000 sets for model validation, and
100,000 sets for testing. This dataset is based on the
MVDR algorithm and is calculated and solved according
to formula 5. Our simulation-based approach effectively
meets the testing requirements by this dataset for this study.
Simulations allow for systematic testing under various
controlled conditions, which is crucial for rigorously
evaluating the A-DNNABF algorithm’s performance
across a wide range of scenarios. This controlled
environment enables us to isolate specific variables, test
extreme cases, and ensure reproducibility - aspects that can
be challenging to achieve in real-world settings. Moreover,
our simulations are based on well-established models that
closely mimic real-world conditions, providing a reliable
proxy for algorithm performance.

4.2 Comparison Baselines
In our experiment, we selected two state-of-the-art

adaptive beamforming algorithms as our baselines to
compare with our proposed A-DNNABF beamforming
algorithm.
4.2.1 MVDR

We adopted the Minimum Variance Distortionless
Response (MVDR) proposed by Capon [22] as a baseline
algorithm to evaluate the computational efficiency of
different algorithms. This algorithm is a classic adaptive
beamforming algorithm used for processing signals
received by a sensor array. Its goal is to maximize the gain
of the received signal in a specific direction by adjusting
the weights of the array.
4.2.2 DNNABF

Ren et al. [7] proposed an adaptive beamforming
algorithm based on deep neural networks (Deep Neural
Network Adaptive Beamforming, DNNABF), which
uses a vector composed of the AOA of incident signals
as network input. The network output approximates
the weight vector obtained by the Minimum Variance
Distortionless Response (MVDR) algorithm.

4.3 Experimental Environment
The simulations in this paper are conducted using an

Intel(R) Core(TM) i7-10700K CPU @ 3.80GHz, with
96GB of memory, on the Pytorch 2.0 simulation platform.

A uniform linear array is adopted, with simulation
parameters set as follows: the number of array elements
is 12, the spacing between elements is half a wavelength,
the signal-to-noise ratio is 10dB, the interference-to-noise
ratio is 30dB, the number of snapshots is 1024, the angle of
arrival ranges from [-90°, 90°] degrees, with a step of 1°.

5 Experimental Results and Analysis

In this section, we address research questions related
to beamforming based on deep neural networks through
empirical studies. We focus on algorithm efficiency, weight
matrix accuracy, and algorithm stability, discussing these
issues by answering three research questions.

RQ1. Can our method achieve optimal computational
efficiency compared to baseline weight matrix computation
algorithms?

The primary motivation for exploring this question
stems from the urgent need for computational efficiency
in practical signal processing applications. Although
the traditional MVDR algorithm can provide high-
quality beamforming weight vectors, its computational
complexity is high, which can become a bottleneck in
scenarios requiring real-time processing of large amounts
of signal data. Our method, based on an optimized
Transformer architecture, aims to address this issue by
leveraging the parallel computing capabilities and efficient
feature extraction abilities of deep learning models,
potentially reducing computation time while maintaining
the accuracy of weight vector predictions.

To objectively evaluate the computational efficiency
of our method, we use the average running time on
a test dataset as the primary evaluation metric. This
metric directly reflects the algorithm’s response speed
in practical applications, which is particularly important
for signal systems requiring realtime processing. We
compare our method with the traditional MVDR algorithm
on the same test dataset and hardware environment to
ensure fairness and comparability of the evaluation. The
experimental results show that the traditional MVDR
algorithm takes an average of 0.3158 seconds to compute a
weight vector, whereas our method based on an optimized
Transformer takes only 0.0325 seconds, achieving a nearly
tenfold increase in computational speed. This remarkable
performance improvement can be explained from the
perspective of algorithm time complexity. The traditional
MVDR algorithm involves a matrix inversion operation
with a time complexity of O(M)3, where M is the number
of array elements. In contrast, our method primarily relies
on the forward propagation of the Transformer, with time
complexity linearly related to the input sequence length
and highly parallelizable. Furthermore, after training,
our method only requires simple matrix multiplication
operations during the inference stage, further reducing
computation time.

Our algorithm’s key advantage lies in its ability to
achieve superior execution efficiency under equivalent
hardware conditions. This efficiency stems from the fact
that the process of predicting weights is essentially a deep

750 Journal of Internet Technology Vol. 26 No. 6, November 2025

neural network inference process, which is computationally
less demanding than traditional adaptive beamforming
methods.

Theoretically, the computational complexity of our
algorithm is primarily determined by the forward pass of
the neural network, which has a time complexity of O(n),
where n is the number of parameters in the network. In
contrast, traditional MVDR has a complexity of O(M)3,
where M is the number of array elements, due to the matrix
inversion operation.

Moreover, the inference process in our algorithm can
be efficiently executed on various hardware platforms,
including CPUs. This is because deep learning frameworks
have been highly optimized for inference tasks, leveraging
techniques such as model quantization and efficient
memory management. As a result, our method can achieve
real-time performance even on resource-constrained
devices.

Answer to RQ1: Our proposed method based
on the optimized Transformer architecture significantly
surpasses the traditional MVDR algorithm in terms of
computational efficiency. This result not only validates
the effectiveness of our method but also offers a
promising solution for real-time signal processing
systems. Particularly in scenarios that require handling
large volumes of data or have very high demands on
latency, our method may bring substantial performance
improvements. However, it is noteworthy that while
computational efficiency has greatly improved, we still
need to further verify the accuracy and stability of the
method in different signal environments to ensure its
reliability in practical applications.

RQ2. Does our proposed algorithm achieve minimal
prediction error?

The main motivation for investigating this question
arises from the ongoing demand for higher accuracy in
predictions within the field of adaptive beamforming.
Although the traditional MVDR algorithm can provide
the theoretically optimal solution, its performance may
degrade in practical applications due to various factors.
The adaptive beamforming algorithm based on deep
neural networks (DNNABF) proposed by Ren et al. is
a significant breakthrough, demonstrating the potential
of deep learning in this area. However, we believe that
by optimizing the network architecture and training
strategies, further improvements in prediction accuracy
can be achieved. Our method, based on an optimized
Transformer architecture, aims to overcome the limitations
of DNNABF and explore whether more accurate weight
vector predictions can be achieved while maintaining high
computational efficiency.

When the desired signal and eight interference signals
reach the linear array, the antenna patterns obtained by
the DNNABF and A-DNNABF methods are shown in
Figure 1. It can be seen that both algorithms are capable
of forming a beam at the angle of the desired signal and

forming nulls at the angles of the interference signals. The
angle of arrival for the desired signal is 18°, and the angles
of arrival for the 8 interference signals are -32°, -20°, -14°,
-4°, 7°, 25°, 36°, and 58°. The number of test datasets is
5000.

To objectively assess the prediction accuracy of our
method, we utilized the mean square error (MSE) between
actual values and network-predicted values as the primary
evaluation metric. This metric directly reflects the accuracy
of the algorithm’s predictions and is crucial for evaluating
the network’s generalization capability. Lower MSE
indicates better generalization performance, meaning that
the algorithm can adapt better to unseen data and reduce
the risk of overfitting. We evaluated our method on test
datasets of different scales (with sample sizes of 5000,
10000, and 15000) to ensure the reliability and stability
of the results. By comparing our method’s performance
with the DNNABF algorithm on the same test sets, we
can comprehensively evaluate the prediction accuracy and
generalization capability of both methods.

Figure 1. MVDR, DNNABF, and A-DNNABF antenna
patterns

The experimental results show that our proposed
method, based on the optimized Transformer architecture,
significantly outperforms the DNNABF algorithm
across all scales of test data, with test errors consistently
remaining at a lower level. This result can be explained
from the perspective of network architecture. Our method
is based on the Transformer architecture, whose self-
attention mechanism can effectively capture long-range
dependencies between signals, which is particularly
important when dealing with complex spatial signal
distributions. In contrast, DNNABF mainly relies on
traditional feedforward neural networks, which may have
limitations in capturing complex interactions between
signals. Additionally, our method has been optimized
through architecture search, possibly finding a network
structure more suitable for beamforming tasks. Finally,
the positional encoding mechanism of the Transformer
may better preserve the spatial information of the signals,
further improving prediction accuracy. The A-DNNABF
algorithm is designed to output a weight vector that

Adaptive Beamforming Algorithm Based on Automatic Deep Neural Network Optimization for Multiple Noise Signals 751

approximates the MVDR algorithm. Theoretically, we can
represent this approximation as:

A DNNABF MVDRW w ε− − <

where w_{A − DNNABF} is the weight vector output
by the A-DNNABF algorithm, w_{MVDR} is the ideal
weight vector of the MVDR algorithm, and ε is a small
positive number representing the approximation error.

Answer to RQ2: Our method, based on an optimized
Transformer architecture, significantly outperforms the
DNNABF algorithm in terms of prediction accuracy.
This result not only verifies the effectiveness of our
method but also provides a new high-precision solution
for the field of adaptive beamforming. Particularly in
complex and variable signal environments, our method
shows stronger generalization ability and lower prediction
error. This high-precision prediction has the potential
to provide more reliable beamforming performance
in practical applications, such as improving signal
quality in communication systems or enhancing target
detection capability in radar systems. However, we also
acknowledge that while excellent performance was
achieved on test data, broader experimental validation
is needed before applying this method to real systems,
especially evaluating its stability and robustness under
various signal environments and interference conditions.

RQ3. Does our algorithm possess the strongest
robustness?

The primary motivation for studying the robustness of
algorithms stems from the complexity and variability of
real-world signal-processing environments. The number of
interference sources may change in practical applications,
and an ideal algorithm should maintain stable performance
under such variations. Robustness here specifically refers
to the algorithm’s ability to accurately estimate the
angles of arrival for both the desired and interference
signals, even when the number of interference sources
changes. High robustness means the algorithm can adapt
to different signal environments and provide reliable
beamforming performance. Our research aims to assess
whether the method based on an optimized Transformer
architecture can outperform existing DNNABF algorithms
in this regard, offering more reliable solutions for complex
and variable signal processing scenarios.

To objectively evaluate the algorithm’s robustness, we
adopted two key metrics: the absolute average angular

deviation of the desired signal 0θ∆ and the absolute

average angular deviation of the interference signal

nullθ∆ . These metrics directly reflect the accuracy

of the algorithm in estimating the angles of arrival for
signals. The absolute average angular deviation of the
desired signal is calculated as



0 ()()
00 0 0

1
/

S ii

i
Sθ θ θ

=

∆ = −∑ (10)

where S0 is the total number of desired signals, and θ0
(i)

and θ^0
(i) are the actual and estimated values, respectively.

Similarly, the absolute average angular deviation of the
interference signals is calculated as



()()

1
/

nullS jj
nullnull null null

j
Sθ θ θ

=

∆ = −∑ (11)

The smaller these metrics, the stronger the robustness
of the algorithm, indicating its ability to maintain high-
accuracy angle estimations despite changes in the number
of interference sources. The experimental results are
shown in Table 1.

Answer to RQ3: Our proposed method, based
on the optimized Transformer architecture, significantly
outperforms the DNNABF algorithm in terms of
robustness. This result not only validates the effectiveness
of our approach but also offers a more reliable solution for
complex and dynamic signal processing environments.
Particularly in application scenarios where the number
of interference sources may change frequently, such as
in mobile communications or dynamic radar systems,
our method demonstrates stronger adaptability and more
stable performance. This high robustness has the potential
to improve the reliability and efficiency of systems in
practical applications, such as in wireless communication
in complex urban environments or in military applications
with severe electromagnetic interference.

Experimental results show that for a varying number
of interference signal sources from 3 to 8, our proposed
method based on the optimized Transformer architecture
consistently exhibits significantly lower average error for
both the expected signal and interference signal compared
to the DNNABF algorithm. This result can be explained
from several perspectives. Firstly, the self-attention
mechanism of the Transformer architecture possibly
makes it more adaptable to structural changes in input
signals, effectively capturing inter-signal relationships
regardless of the number of interference sources. Secondly,
our method is optimized through architecture search,
potentially identifying a network structure that maintains
stable performance under varying interference conditions.
Furthermore, the position encoding mechanism of the
Transformer might better preserve the spatial information
of signals, accurately locating signal sources even when
the number of interference sources changes. Finally,
our training strategy may have incorporated more
diverse interference scenarios, enhancing the model’s
generalization capability.

752 Journal of Internet Technology Vol. 26 No. 6, November 2025

6 Conclusion and Future Research
Directions

6.1 Conclusion
The A-DNNABF algorithm proposed in this study

has achieved significant results in adaptive beamforming
under multiple noisy signal environments. By integrating
automated neural architecture search with attention
mechanisms, we successfully developed an algorithm
capable of efficiently handling rapidly changing signal
environments. The experimental results convincingly
demonstrate the superiority of the A-DNNABF algorithm
in several key areas: Compared to the traditional MVDR
algorithm, A-DNNABF improves computational speed
by about tenfold, enabling real-time signal processing;
relative to the DNNABF algorithm, A-DNNABF exhibits
lower prediction errors across datasets of different sizes,
proving its excellent generalization ability; when the
number of interference sources changes, A-DNNABF
consistently maintains low angle estimation error for
desired and interference signals, demonstrating strong
environmental adaptability; through automated learning of
network architecture, A-DNNABF effectively adapts to the
rapid changes in the Angle of Arrival (AOA) of incoming
signals, achieving real-time formation of beams and nulls.
These results indicate that the A-DNNABF algorithm
successfully addresses the response speed issue faced by
traditional algorithms in rapidly changing environments
while maintaining high accuracy. This research provides
a novel solution for real-time adaptive beamforming in
multiple noisy signal environments, holding significant
application value in fields like modern communication
systems and radar technology.

6.2 Future Research Directions
1) Algorithm Optimization: Further explore more

advanced automated neural architecture search techniques
and more efficient variants of attention mechanisms
to enhance algorithm performance and computational
efficiency.

2) Robustness Enhancement: Introduce adversarial
training or more complex interference models to improve
algorithm performance under extreme interference
conditions.

3) Multi-task Learning: Explore multi-task learning

frameworks that combine beamforming with other related
tasks (such as channel estimation and signal classification)
to improve the overall system performance.

4) Hardware Implementation: Investigate the
implementation of the A-DNNABF algorithm on dedicated
hardware (such as FPGA or ASIC) to further enhance real-
time processing capabilities.

5) Application Expansion: Explore the potential
applications of the algorithm in other fields, such as
acoustic signal processing and medical imaging.

6) Theoretical Analysis: Conduct in-depth research
into the theoretical foundations of the algorithm, including
its convergence, stability, and generalization bounds,
to provide theoretical guidance for further algorithm
improvement.

7) Dynamic Environment Adaptation: Study how
to enable the algorithm to learn and adapt online to
cope with dynamically changing signal environments.

8) Low-resource Scenarios: Explore how to deploy
and optimize the A-DNNABF algorithm in scenarios with
limited computational resources, such as mobile devices or
IoT devices.

Acknowledgment

This work is supported by the sixth “333 High-level
Talents Training Project” in Jiangsu Province of China.

References

[1]	 S. Fiori, Neural minor component analysis approach to
robust constrained beamforming, IEE Proceedings-Vision,
Image and Signal Processing, Vol. 150, No. 4, pp. 205-218,
August, 2003.

[2]	 A. B. Suksmono, A. Hirose, Intelligent beamforming
by using a complex-valued neural network, Journal of
Intelligent & Fuzzy Systems, Vol. 15, No. 3-4, pp. 139-147,
2004.

[3]	 W. Guo, T. Qiu, H. Tang, W. Zhang, Performance of RBF
neural networks for array processing in impulsive noise
environment, Digital Signal Processing, Vol. 18, No. 2, pp.
168-178, March, 2008.

[4]	 P. Ramezanpour, M. J. Rezaei, M. R. Mosavi, Deep-
learning-based beamforming for rejecting interferences,
IET Signal Processing, Vol. 14, No. 7, pp. 467-473,
September, 2020.

Table 1. Comparison of error for different algorithms with varying number of interference sources

Number of interferences 0θ∆ nullθ∆

DNNABF A-DNNABF DNNABF A-DNNABF
3 0.04 0.021 1.08 0.973
4 0.09 0.075 1.255 1.148
5 0.09 0.064 1.412 0.955
6 - 0.063 - 1.579
7 - 0.078 - 1.325
8 - 0.067 - 1.457

Adaptive Beamforming Algorithm Based on Automatic Deep Neural Network Optimization for Multiple Noise Signals 753

[5]	 S. Singh, A. Sharma, State of the art convolutional
neural networks, International Journal of Performability
Engineering, Vol. 19, No. 5, pp. 342-347, May, 2023.

[6]	 V. Sudha, A. S. Vijendran, OSD-DNN: Oil spill detection
using deep neural networks, International Journal of
Performability Engineering, Vol. 20, No. 2, pp. 57-67,
February, 2024.

[7]	 Y. Ren, Y. Du, J. Zhang, An adaptive beamforming
a l g o r i t h m b a s e d o n d e e p n e u r a l n e t w o r k ,
Telecommunication Engineering, Vol. 62, No. 7, pp. 852-
858, July, 2022.

[8]	 B. Bischl, M. Binder, M. Lang, T. Pielok, J. Richter,
S. Coors, J. Thomas, T. Ullmann, M. Becker, A.-L.
Boulesteix, D. Deng, M. Lindauer, Hyperparameter
optimization: Foundations, algorithms, best practices, and
open challenges, Wiley Interdisciplinary Reviews: Data
Mining and Knowledge Discovery, Vol. 13, No. 2, Article
No. 1484, March/April, 2023.

[9]	 R. Bellman, R. Kalaba, On adaptive control processes, IRE
Transactions on Automatic Control, Vol. 4, No. 2, pp. 1-9,
November, 1959.

[10]	 J. Bergstra, Y. Bengio, Random search for hyper-
parameter optimization, Journal of machine learning
research, Vol. 13, No. 2, pp. 281-305, February, 2012.

[11]	 D. R. Jones, M. Schonlau, W. J. Welch, Efficient global
optimization of expensive black-box functions, Journal
of Global optimization, Vol. 13, No. 4, pp. 455-492,
December, 1998.

[12]	 J. Snoek, H. Larochelle, R. P. Adams, Practical bayesian
optimization of machine learning algorithms, Advances
in neural information processing systems, Lake Tahoe,
Nevada, 2012, pp. 25-34.

[13]	 F. Hutter, H. H. Hoos, K. Leyton-Brown, Sequential model-
based optimization for general algorithm configuration,
5th international conference on Learning and intelligent
optimization, LION 5, Rome, Italy, 2011, pp. 507-523.

[14]	 H.-G. Beyer, H.-P. Schwefel, Evolution strategies–a
comprehensive introduction, Natural computing, Vol. 1,
No. 1, pp. 3-52, March, 2002.

[15]	 H.-G. Beyer, B. Sendhoff, Evolution strategies for robust
optimization, 2006 IEEE international conference on
evolutionary computation, Vancouver, Canada, 2006, pp.
1346-1353.

[16]	 X. He, K. Zhao, X. Chu, AutoML: A survey of the state-
of-the-art, Knowledge-based systems, Vol. 212, Article No.
106622, January, 2021.

[17]	 H. Liu, K. Simonyan, Y. Yang, Darts: Differentiable
architecture search, arXiv preprint, arXiv:1806.09055,
June, 2018. https://arxiv.org/abs/1806.09055

[18]	 J. Bergstra, D. Yamins, D. Cox, Making a science of model
search: Hyperparameter optimization in hundreds of
dimensions for vision architectures, The 30th International
conference on machine learning, Atlanta, USA, 2013, pp.
115-123.

[19]	 T. Akiba, S. Sano, T. Yanase, T. Ohta, M. Koyama, Optuna:
A next-generation hyperparameter optimization framework,
Proceedings of the 25th ACM SIGKDD international
conference on knowledge discovery & data mining,
Anchorage, AK, USA, 2019, pp. 2623-2631.

[20]	 R. Liaw, E. Liang, R. Nishihara, P. Moritz, J. E. Gonzalez,
I. Stoica, Tune: A research platform for distributed model
selection and training, arXiv preprint, arXiv:1807.05118,
July, 2018. https://arxiv.org/abs/1807.05118

[21]	 T. Bartz-Beielstein, Hyperparameter tuning cookbook:

a guide for scikit-learn, PyTorch, river, and spotPython,
arXiv preprint, arXiv:2307.10262, July, 2023. https://arxiv.
org/abs/2307.10262

[22]	 J. Capon, High-resolution frequency-wavenumber
spectrum analysis, Proceedings of the IEEE, Vol. 57, No. 8,
pp. 1408-1418, August, 1969.

Biographies

Zheng Xu received the M.S. degree
from Soochow University in 2012. He
is currently pursuing the Ph.D. degree
in the Army Engineering University of
PLA, China. He is also the chief designer
in Nanjing Panda Handa Technology
Co., Ltd., China. His research interests
include beamforming technology and

satellite communication.

Zihao Pan received the M.S. degree
in electronic information from the
Army Engineering University of PLA,
Nanjing, China, in 2022, where he is
currently pursuing the Ph.D. degree
in communication and information
system. His research interests include
array s ignal processing, sa te l l i te

communication, and channel estimation and equalization.

Daoxing Guo i s current ly a Ful l
Professor with Army Engineering
University of PLA, Nanjing, China.
He received the M.S. degree and Ph.D.
degree from Institute of Communications
Engineering, Nanjing, China, in 1999
and 2002 respectively. He has authored
and coauthored more than 40 refereed

professional research papers.

