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Abstract

As modern  communica t ion  sys tems  demand 
increasingly higher speed and accuracy in signal 
processing, traditional adaptive beamforming algorithms 
face challenges in real-time response to rapidly changing, 
multiple-noise signal environments. To address this issue, 
this paper proposes an Automated Deep Neural Network 
Adaptive Beamforming (A-DNNABF) algorithm for 
multiple noise signal environments. A-DNNABF uses 
the angle of arrival vector as input, employs an attention 
mechanism, and optimizes network architecture via 
Differentiable Architecture Search. Simulation results 
show A-DNNABF outperforms traditional Minimum 
Variance Distortionless Response (MVDR) and Deep 
Neural Network Adaptive Beamforming (DNNABF) 
methods in computational efficiency (10 times faster), 
prediction accuracy, and robustness to varying interference 
sources. The algorithm maintains stable performance with 
changing numbers of interference signals, demonstrating 
lower angular deviation in estimating both desired and 
interference signals. A-DNNABF provides an efficient 
solution for real-time adaptive beamforming in rapidly 
changing, multiple-noise signal environments.

Keywords: Adaptive beamforming, Hyperparameter 
optimization, Deep learning, Multiple noise signals

1  Introduction

Beamforming technology, as a core branch of array 
signal processing, plays a crucial role in various fields such 
as radar, sonar, communications, and electronic warfare. 
Traditional beamforming methods, such as algorithms 
based on the Signal-to-Noise Ratio (SNR) criterion, 
Minimum Mean Squared Error (MMSE) criterion, and 
Minimum Variance Distortionless Response (MVDR) 
criterion, require recalculating the weight vector when 
there are changes in the angle of the desired signal or 
interference signals. This process is computationally 
intensive and poses challenges for meeting the real-time 
systems’ demand for quick updates of the optimal weight 
vector. Particularly when dealing with multiple noise 
signals, deep neural networks also struggle to respond 

promptly to adaptive beamforming.
With the rapid development of artificial intelligence 

and neural network technologies, applying them to 
the field of beamforming has become a new research 
direction. This approach utilizes neural networks for 
data pre-training and then employs the trained network 
model to adaptively output weight vectors during actual 
application phases. When the Angle of Arrival (AoA) of 
incoming signals changes, the neural network method 
processes with a minimal response time compared to 
traditional beamforming algorithms, which require 
extensive computation. This enables array antennas to 
achieve fast and efficient beamforming using neural 
network technology, significantly enhancing the system’s 
realtime performance. However, the angle of arrival of 
both the desired signal received by the array antenna and 
the multiple interference signals often change rapidly. 
Traditional beamforming algorithms based on deep neural 
networks struggle to respond in real-time and provide 
optimal weight vector matrices due to the rapid variation 
of input noise sources. To address this issue, this paper 
proposes an Automated Deep Neural Network Adaptive 
Beamforming for Multiple Noise Signal (A-DNNABF) 
algorithm. This algorithm takes the AOA vector of the 
incoming signal as network input, enhances the learning 
of key features through an attention mechanism, and 
automatically learns the architecture of a deep neural 
network from large-scale input signals to output weight 
vectors that approximate the MVDR algorithm. Simulation 
results demonstrate that, compared to MVDR and 
DNNABF, the A-DNNABF algorithm not only accurately 
fits the MVDR algorithm’s weight vectors but also adapts 
more effectively to rapid changes in the AoA of incoming 
signals, adaptively forming beams and nulls. Moreover, 
the computational speed of the A-DNNABF algorithm 
is approximately 10 times faster than that of the MVDR 
algorithm.

Regarding the application scenario, our method 
primarily addresses signal processing challenges in 
complex electromagnetic environments. Specifically, it 
is applicable to high-density signal environments such as 
urban communication networks, large industrial facilities, 
or military communication systems. In these scenarios, 
issues like signal interference, multipath effects, and 
spectrum congestion are prevalent. Our approach captures 
real environmental characteristics through large-scale 
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signal collection, adaptively processes complex signals 
using DARTS-optimized neural network architectures, 
and achieves real-time signal quality optimization through 
weight prediction. This makes our technology excel 
in improving communication quality, reducing signal 
conflicts, and enhancing anti-interference capabilities, 
particularly suitable for communication systems requiring 
high reliability and real-time performance.

The remainder of this paper is organized as follows. 
Section 2 briefly introduces related work. In Section 3, 
we detail the design of the proposed method A-DNNABF. 
Section 4 describes the experimental setup, and Section 
5 presents our experimental results comparing the 
performance of A-DNNABF with some benchmarks. 
Finally, in Section 6, we summarize the paper and propose 
future work.

2  Related Work

2.1 Beamforming Algorithm Based on MVDR 
Beamformer
Consider a uniform linear array with M elements and 

an element spacing of d. Assume there are K + 1 incoming 
signals, where the angle of arrival of the desired signal is 
θ0, and the angles of arrival of the K interference signals are 
θk (k = 1, 2, ..., K). The vector composed of the angles of 
arrival (AOA) of the incoming signals is θ = [θ0, θ1, ..., θk]. 
The array output signal can be expressed as:

0
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where sk(t) is the complex envelope of the k-th signal, 
a(θk) is the corresponding array manifold vector, and n(t) is 
the additive white noise vector.

The goal of the MVDR beamformer is to minimize the 
output power while maintaining a unit gain in the direction 
of the desired signal. The computation of its weight vector 
is as follows:

1) Array Output Signal Model: 
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where: x(t) is the M × 1 array received signal vector, a(θ0) 
is the M × 1 array manifold vector in the direction of the 
desired signal, s0(t) is the complex envelope of the desired 
signal, a(θk) is the array manifold vector in the direction of 
the k-th interference signal, sk(t) is the complex envelope 
of the k-th interference signal, and n(t) is an M × 1 additive 
white noise vector.

2) Computing the Array Covariance Matrix:

[ ( ) ( )]HR E X t X t= (3)

Where E[∙] denotes the expectation operation, and (∙)H 

represents the conjugate transpose. R is an M × M matrix 
containing spatial correlation information of signals, 
interference, and noise.

3) MVDR Optimization Problem: The weight vector 
w of the MVDR beamformer is obtained by solving the 
following optimization problem:

0min    s.t. ( ) 1H H

w
w Rw w a θ = (4)

The goal of this optimization problem is to minimize 
the output power wHRw while maintaining a unit gain 
constraint in the direction of the desired signal, wHa(θ0) 
= 1.

4) Solution to the MVDR Weight Vector: Using the 
Lagrange multiplier method, a closed-form solution for the 
MVDR weight vector can be obtained:
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Where: R − 1  is the inverse of the array covariance 
matrix, and a(θ0) is the array manifold vector in the 
direction of the desired signal.

5) Array Output: Using the MVDR weight vector, the 
array output can be expressed as:

( ) ( )H
MVDRy t w x t= (6)

This output maintains a unit gain response for the 
desired signal while minimizing the total output power, 
effectively suppressing interference and noise. The 
MVDR can adaptively adjust the weights based on the 
statistical properties of the received signal to optimally 
suppress interference and noise. Under high signal-to-
noise ratio conditions, the MVDR can achieve higher 
spatial resolution compared to traditional beamforming 
methods. However, the MVDR requires the computation 
of the covariance matrix inverse, which may lead to high 
computational complexity when the number of array 
elements is large. To accurately estimate the covariance 
matrix, the MVDR typically requires a sufficient number 
of samples, which could be a challenge in rapidly changing 
environments.

2.2 Deep Neural Networks for Beamforming
Currently, numerous studies focus on neural network-

based beamforming technologies. Hopfield networks, 
principal component analysis networks, and multilayer 
perceptrons have been utilized for beamforming; however, 
these methods do not fully exploit the nonlinear fitting 
capabilities of neural networks [1-2]. Radial-basis 
function (RBF) networks map the relationship between the 
received signal covariance matrix and the weight vector 
for beamforming, but clustering operations are necessary 
to obtain the centers of the basis functions. The training 
process of these networks is complicated, and as RBF 
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networks are single-hidden-layer feedforward networks, 
the number of neurons in the hidden layer increases 
significantly with more training samples, resulting in an 
overly large network structure [3].

To overcome the drawbacks of RBF networks, deep 
neural network (DNN) technology has begun to be applied 
to beamforming. [4-6] used convolutional neural networks 
(CNNs) to replace complex optimization algorithms, 
predicting approximate optimal weight vectors by 
inputting the autocorrelation matrix of received signals. 
However, this method necessitates cumbersome data 
preprocessing steps for better fitting results and a simpler 
network architecture, introducing excessive angle-related 
prior assumptions. Ren et al. [7] proposed a new 
algorithm based on existing research and identified issues 
called Deep Neural Network Adaptive Beamforming 
(DNNABF). It inputs vectors composed of random 
desired and interference signal angles of arrival (AOA) 
and outputs the MVDR algorithm weight vector. It uses 
four hidden layers activated by the PReLU function, 
with the output layer activated by the tanh function. It 
employs the Adam algorithm as the optimizer, granting 
the network strong generalization capabilities. This allows 
it to adaptively form beams and nulls at the desired and 
interference signal angles when the angles of arrival 
change, performing real-time anti-interference in the spatial 
domain and accommodating more complex interference 
scenarios.

2.3 Hyperparameter Optimization Techniques
In deep learning, hyperparameter optimization (HPO) 

is finding optimal combinations of hyperparameters 
to enhance model performance. Since hyperparameters 
directly affect the model’s learning process and final 
performance, correctly selecting and adjusting them 
is crucial. The working principle of HPO algorithms 
is consistent: they iteratively propose hyperparameter 
configurations and then evaluate their performance. 
These hyperparameters and their respective evaluations 
are continuously stored in what is termed an archive, and 
if the model achieves optimal performance, the desired 
hyperparameter configuration is obtained [8]. Below 
are some commonly used hyperparameter optimization 
methods:
2.3.1 Grid Search (GS)

Grid search involves discretizing the range of each 
hyperparameter (HP) and exhaustively evaluating 
every combination of values. Numerical and integer HP 
values are typically evenly distributed within their fixed 
constraints. The number of different values for each HP 
is referred to as the grid’s resolution. For categorical 
HPs, part or all possible values are considered. This is 
an exhaustive search method that systematically explores 
multiple hyperparameter combinations within a predefined 
space. It is suitable when the number of hyperparameters 
is small, and the range of potential values for each 
hyperparameter is limited. GS is directly affected by the 
curse of dimensionality [9] since the required number of 
evaluations grows exponentially with the number of HPs 
when the grid resolution is fixed.

2.3.2 Random Search (RS)
U n l i k e  g r i d  s e a r c h ,  r a n d o m  s e a r c h  s e l e c t s 

hyperparameter combinations within the possible 
range. This method is often faster than grid search, 
especially when the hyperparameter space is large. In its 
simplest form, each hyperparameter value is sampled 
independently from a pre-specified (usually uniform) 
distribution, applicable to numeric, integer, or categorical 
parameters with box constraints. RS performs better than 
GS in high-dimensional HPO settings [10].
2.3.3 Bayesian Optimization

Bayesian optimization uses Bayesian statistics to 
select hyperparameters to optimize the objective function 
(typically the model’s performance on the validation set). 
It builds a probabilistic model between hyperparameters 
and the objective function and selects hyperparameters 
that are most likely to improve performance. Bayesian 
Optimization (BO), as a global optimization technique 
for black-box functions, especially for HPO [11-13], has 
become increasingly popular.
2.3.4 Evolutionary Algorithms

Evolutionary Strategies (ES) are a class of stochastic 
population-based optimization methods, inspired by the 
concept of biological evolution, falling under the broader 
category of Evolutionary Algorithms. In ES terminology, 
an individual is a single HPC, a population is the 
currently maintained set of HPCs, and the fitness of an 
individual is its (inverted) generalization error. Mutation 
is a (random) change of one or several hyperparameter 
values in a configuration. Crossover creates a new 
HPC by (randomly) combining values from two other 
configurations. An ES follows iterative steps to find 
individuals with high fitness values. Using so-called 
nested ES, ES are less likely to get stuck in local minima 
[14], and they can be directly modified to improve noise 
resilience [15]. Furthermore, ES can be applied to settings 
with complex search spaces and thus can work in spaces 
where other optimizers might fail [16]. ES is more efficient 
than RS and GS but still typically requires many iterations 
to find good solutions, making them perform poorly in 
expensive optimization settings like HPO.
2.3.5 Gradient-Based Methods

Gradient-based hyperparameter  opt imizat ion 
techniques use gradient information to optimize 
h y p e r p a r a m e t e r s ,  m a i n l y  f o r  d i f f e r e n t i a b l e 
hyperparameters. The core idea of this approach is to 
directly optimize hyperparameters by computing their 
gradients to improve model performance. This method 
requires hyperparameters to be differentiable concerning 
the loss function; compared to random search and 
evolutionary algorithms, using gradient information can 
find optimal solutions more quickly. It can continually 
adjust hyperparameters during training. Differentiable 
Architecture Search (DARTS) [17] defines a continuous 
search space and optimizes architecture parameters using 
gradient descent. This method is increasingly used in 
deep learning, particularly in automated machine learning 
(AutoML).

When performing hyperparameter optimization, the 
introduction of hyperparameter optimization libraries such 
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as Hyper-opt, Optuna, Ray Tune, and Scikit-optimize [18-
21] can facilitate rapid hyperparameter optimization. These 
libraries provide tools for executing the aforementioned 
methods and sometimes include more advanced features. 
Factors to consider during the optimization process 
include:

•	 Evaluation Metrics: Clearly define evaluation 
metrics for model performance. This will determine 
the objective of the optimization process.

•	 Validation Strategy: Use methods like cross-
va l ida t ion  to  assess  the  pe r fo rmance  o f 
hyperparameter combinations.

•	 C o m p u t a t i o n a l  R e s o u r c e s  a n d  T i m e : 
Hyperparameter optimization is  typically 
computation-intensive. Plan the allocation of 
computational resources and time reasonably.

•	 Over f i t t ing  Avoidance :  Pay  a t t en t ion  to 
performance on the validation set to avoid 
choosing hyperparameter combinations that lead 
to overfitting.

Hyperparameter optimization is an iterative process 
requiring multiple experiments to find the optimal 
combination. In practice, experience and intuition also play 
important roles.

3  Method

Our method consists of three core components: Large-
Scale Signal Collection, Signal Processing Neural Network 
Architecture Optimization Based on DARTS, and Weight 
Prediction Output. First, we collect and preprocess large-
scale signal data. Then, this data is input into a DARTS-
based optimization module to automatically search for the 
optimal neural network architecture. Finally, the optimized 
network is used for weight prediction, outputting optimal 
processing weights based on input signal characteristics. 
These three components form a closed-loop system, with 
data flowing sequentially between stages while allowing 
feedback optimization, continuously improving the 
efficiency and accuracy of signal processing.

The motivation behind our proposed new signal 
processing method stems from several key challenges faced 
by current technologies. Firstly, existing beamforming 
methods based on convolutional neural networks are 
ineffective in handling dynamically changing interference 
signal sources. Secondly, while the MVDR algorithm 
is widely used in signal processing, its computational 
efficiency is relatively low, making it difficult to meet 
real-time processing requirements. Additionally, the 
rapid development of deep neural networks, especially 
the significant advantages demonstrated by Transformer 
models based on attention mechanisms in capturing 
temporal signals, has provided us with new research 
directions.

3.1 Large-Scale Signal Collection
Algorithm 1 describes a large-scale signal collection 

process aimed at providing training data for subsequent 
neural network architecture optimization. The algorithm 

first defines the basic parameters of an array antenna, 
modeled as a linear array, including the number of linear 
antenna elements M and spacing d, as well as signal 
sampling parameters such as sampling frequency fs and 
sampling time T.

Algorithm 1. A large-scale signal collection process
1: Define array antenna parameters: number of array 
elements M , spacing between elements d
2: Define sampling parameters: sampling frequency fs, 
sampling time T
3: Initialize signal set S = {}
4: for each scenario i = 1 to N do
5: Generate expected signal AOA  θ0

(i) and K interference 

signal AOAs { }( )

1

Ki
k k

θ
=

6: Construct AOA vector ( ) ( ) ( ) ( )
0 1, , ,i i i i

Kθ θ θ θ =  

7: Generate corresponding signal x(i)(t), t∈[0, T]
8: Compute MVDR weight vector w (i)

MVDR

9: ( ){ }( ) ( ) ( ), ( ),i i i
MVDRS S x t wθ= 

10: end for
11: return signal set S

In the main loop, the algorithm simulates N different 
signal scenarios. For each scenario i , it generates an 
expected signal angle of arrival (AOA) θ 0

(i) and K 

interference signal AOAs { }( )

1

Ki
K k

θ
=

. These AOA values 

are combined into a vector θ (i), representing the spatial 
signal distribution of the current scenario.

Based on these AOAs, the algorithm generates 
the corresponding time-domain signal x(i)(t), t∈[0, T]. 
This signal contains a mix of the expected signal and 
interference, simulating a real complex signal environment. 
Simultaneously, the algorithm computes the minimum 
variance distortionless response (MVDR) weight vector 
w (i)

MVDR for the scenario.
Finally, the algorithm adds the AOA vector θ (i), the 

time-domain signal x(i)(t), and the MVDR weight 
vector w (i)

MVDR as a whole to the signal set S . This process 
is repeated N times, ultimately generating a signal set 
containing a large number of different scenarios.

The signal set S  will serve as input for subsequent 
neural network architecture optimization algorithms, 
used to train and evaluate the network’s performance in 
different signal processing scenarios.

3.2 Signal Processing Neural Network Architecture 
Optimization Based on DARTS
We will use the Transformer based on the attention 

mechanism as the basic network architecture and 
incorporate Neural Architecture Search (NAS) technology 
to automatically optimize the network structure, primarily 
designing an automated deep neural network architecture 
optimization algorithm using Differentiable Architecture 
Search (DARTS).
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Compared to Progressive Neural Architecture Search 
(PNAS), DARTS is generally faster because it does not 
need to gradually expand the search space. DARTS might 
be easier to implement and adjust because it employs 
standard gradient descent methods; compared to Efficient 
Neural Architecture Search (ENAS), DARTS is usually 
easier to implement because it does not require a complex 
reinforcement learning controller. The search process 
in DARTS may be more stable because it is based on 
gradient methods rather than sampling methods. The 
hyperparameter optimization process, based on DARTS, 
effectively explores the entire hyperparameter landscape. 
This search process implicitly evaluates the algorithm’s 
sensitivity to different hyperparameter combinations. The 
optimal hyperparameters reported in our study represent 
the best configuration found after exploring a wide 
range of possibilities, ensuring both robustness and high 
performance.
3.2.1 Problem Formulation

Given the input signal set S={(θ(i),x(i)(t),w(i)
MVDR)}N

i=1, 
where θ (i) is the angle of arrival (AOA) vector, x(i)(t) is 
the time-domain signal, and w (i)

MVDR is the MVDR weight 
vector. Our goal is to find an optimal neural network 
architecture A* such that:

A* = arg minA Lval (A, w*(A)) (7)

where w*(A) represents the optimal network weights for 
a given architecture A, and Lval is the loss function on 
the validation set.
3.2.2 Search Space Definition

This method was proposed in the original Transformer 
paper. It uses sine and cosine functions of different 
frequencies to encode positional information. (1) Learnable 
Position Encoding: This method treats positional encoding 
as learnable parameters. The model can adaptively 
learn position representations best suited for the task 
during training. (2) Relative Position Encoding: Unlike 
absolute position encoding, this method encodes the 
relative distances between elements. This is particularly 
useful when dealing with variable-length sequences 
and can help the model better capture local structures. 
(3) Rotary Position Encoding (RoPE): This is a newer 
method that encodes relative positional information 
through complex number rotation. It theoretically offers 
infinite extrapolability and is more robust to variations 
in sequence length. (4) ALiBi (Attention with Linear 
Biases): This method introduces linear biases in attention 
computation to implicitly encode positional information. 
It does not require explicit position embeddings and is 
especially effective for long sequences. (5) Fourier 
Position Encoding: This utilizes the Fourier series to 
encode positional information, which can better handle 
periodic signals or data with multi-scale structures.

Skip Connections, also known as Residual Connections 
or Shortcut Connections, are a widely-used technique in 
deep neural networks. Skip connections allow the direct 
transmission of input from one layer to a deeper layer, 
bypassing some intermediate layers. This connection 

enables information to flow more freely through the 
network, not strictly following a hierarchical forward 
propagation path. They can be used to alleviate the 
vanishing gradient problem, promote feature reuse, and 
simplify the optimization process. In DARTS-based 
neural network architecture optimization for signal 
processing, skip connections can serve as an option in 
the search space. We can include various types of skip 
connections in the search space, such as simple identity 
mappings, skip connections with linear transformations, 
or those with lightweight convolutions. The algorithm can 
automatically decide where to add skip connections within 
the network. This may include adding skip connections 
between Transformer blocks, between self-attention 
layers and feedforward network layers, or long-range skip 
connections across multiple layers. By including skip 
connection options in the search space, our algorithm can 
automatically discover the network topology that is best 
suited for specific signal-processing tasks. This flexibility 
allows the algorithm to balance between different network 
depths and complexities while maintaining good gradient 
flow and feature propagation. In signal processing tasks, 
skip connections can be particularly useful because they 
help models better handle information across different time 
scales or frequency ranges while retaining direct access 
to the original input signal. This could be beneficial for 
accurate prediction of MVDR weight vectors and AOA 
estimation.
3.2.3 Mixed Operation Definition

A mixed operation is the weighted sum of all candidate 
operations in the search space. For each learnable 
connection in the network, we define a mixed operation 
that includes all possible candidate operations (such as 
multi-head self-attention, feedforward networks, etc.), with 
each operation having an associated weight parameter. In 
our signal processing task, mixed operations may include 
different types of attention mechanisms (such as multi-head 
self-attention with different numbers of heads), various 
configurations of feedforward networks, and various 
positional encoding methods and skip connection options. 
By optimizing the weights of these mixed operations, the 
algorithm can automatically discover the network structure 
that best handles the given signal data, thereby achieving 
superior performance in tasks like MVDR weight vector 
prediction.

For each learnable connection (i, j) in the network, we 
define the mixed operation as:

( ) ( )
( )( )

( )( ) ( )
,

,
,

exp

exp

i j
oi j

o i j
o o

o o
α

α′ ′

∈

∈

= ∑
∑

x xO

O

(8)

Where αo
(i,j) is a learnable architecture parameter.

3.2.4 Architecture Design
The final network architecture will consist of the 

following components:
•	 Input Layer: Processes the time-domain signal   

x(i)(t)
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•	 Feature Extraction Layer: Utilizes the attention 
mechanism obtained through search

•	 Transformer Encoder: Employs the optimal self-
attention mechanism and feedforward network 
obtained through search

•	 Output Layer: Predicts the weight vector w^  

3.2.5 Optimization Algorithm
We propose Algorithm 2 to optimize the neural net-

work architecture: The loss function L  can be defined as:

 L = MSE (w^  , wMVDR) (9)

where w^  is the weight vector predicted by the network, 
and MSE stands for mean squared error.

Algorithm 2. DARTS-based signal processing neural 
network architecture optimization
1: Input: Signal set S , search space O 
2: Initialize architecture parameters α  and network 
weights w
3: while convergence condition is not met do
4: Sample batch data B t ra in , Bval  from S
5: Update weights: w ← w − η w∇ w  L t r a i n  ( w * ,  α ;  
B t ra in)
6: Update architecture: α ← α − η α∇ α  Lval  (w *(α ) ,  α ;  
Bval )
7: end while
8: Determine final architecture A based on α
9: return A

Algorithm 2 first takes a set of signals and a predefined 
search space as input. The search space includes 
various possible network operations, such as different 
configurations of multihead self-attention mechanisms, 
feedforward network layers, position encoding methods, 
and skip connections. By introducing the concept of 
mixed operations, the algorithm transforms these discrete 
choices into a continuous optimization problem. During 
the initialization phase, the algorithm randomly sets the 
architecture parameters α and network weights w . 

The algorithm then enters an iterative optimization 
process. In each iteration, it samples training and validation 
batch data from the input signal set. The optimization 
process consists of two alternating steps: first, the network 
weights w are updated using the training batch to minimize 
the training loss. Next, the architecture parameters 
α are updated using the validation batch to minimize 
validation loss. This bilevel optimization strategy allows 
the algorithm to simultaneously consider both network 
performance and structural efficiency. The loss function 
is defined as the mean squared error (MSE) between 
the predicted weight vector and the MVDR (Minimum 
Variance Distortionless Response) weight vector. This 
choice reflects the algorithm’s specific application in 
signal processing tasks, namely, accurately predicting the 
MVDR weight vector. The iterative process continues until 
a predetermined convergence condition is met. Finally, 
based on the optimized architecture parameters α , the 

algorithm determines the final network architecture. This 
architecture is the most suitable structure within the given 
search space to execute the specific signal processing task.

3.3 Weight Prediction Output
In the final stage, we use the optimized Transformer 

model to predict the MVDR weight vector. The prediction 
process of the weight vector is shown in Algorithm 3.

Algorithm 3. Weight prediction output
1: Input: Optimized Transformer model Ma*, AOA vector 
θ
2: Encode the AOA vector: e = Encode(θ)
3: Process through the Transformer model: h = Ma*(e)
4: Generate weight vector through the fully connected 
layer: w^  = FC(h)
5: return Predicted weight vector w^ 

Algorithm 3 describes the process of using an 
optimized Transformer model to predict the MVDR 
weight vector. The algorithm receives two key inputs: a 
Transformer model Ma* optimized through architecture 
search and a vector θ representing the angle of arrival 
(AOA) of the signal.

First, the algorithm encodes the input AOA vector: 
e = Encode(θ). This encoding process may include 
positional encoding or other forms of signal representation 
transformation, aiming to convert AOA information into a 
format that can be effectively processed by the Transformer 
model.

Next, the encoded vector is input into the optimized 
Transformer model: h = Ma*(e). The Transformer model 
processes this input through its self-attention mechanism 
and feedforward network layers, generating a high-
dimensional feature representation h. This process allows 
the model to capture complex relationships and patterns 
between AOAs.

Finally, this high-dimensional feature is processed 
through a fully connected layer to output the predicted 
MVDR weight vector: w^  = FC(h). This weight vector  
ŵ represents the model’s prediction of the optimal 
beamforming strategy for the given AOA.

The entire process achieves an end-to-end mapping 
from AOA information to the MVDR weight vector, 
fully leveraging the optimized Transformer architecture 
to capture complex patterns and relationships in signal 
processing.

Automated hyperparameter optimization theoretically 
enhances the performance of the A-DNNABF algorithm by 
systematically exploring a larger hyperparameter space than 
manual tuning. This approach leverages adaptive search 
strategies to efficiently navigate the complex relationship 
between hyperparameters and model performance. By 
optimizing multiple objectives simultaneously, such as 
accuracy and computational efficiency, it can find a better 
balance in the bias-variance trade-off. The automated 
process also has the potential to discover non-intuitive 
hyperparameter combinations that human experts 
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might overlook, leading to improved generalization and 
more robust performance across various operational 
conditions. Ultimately, this systematic approach increases 
the likelihood of finding an optimal or near-optimal 
configuration, resulting in superior algorithm performance 
compared to traditional manual tuning methods.

4  Experiments

4.1 Datasets
This subsection introduces the dataset used in the 

experiment. It is assumed that there is 1 desired signal 
and 8 interference signals incident as plane waves. The 
max 9 incident signals are taken from different angles 
and randomly assigned. A total of 600,000 sets of sample 
data are generated, among which 400,000 sets are used 
for training, 100,000 sets for model validation, and 
100,000 sets for testing. This dataset is based on the 
MVDR algorithm and is calculated and solved according 
to formula 5. Our simulation-based approach effectively 
meets the testing requirements by this dataset for this study. 
Simulations allow for systematic testing under various 
controlled conditions, which is crucial for rigorously 
evaluating the A-DNNABF algorithm’s performance 
across a wide range of scenarios. This controlled 
environment enables us to isolate specific variables, test 
extreme cases, and ensure reproducibility - aspects that can 
be challenging to achieve in real-world settings. Moreover, 
our simulations are based on well-established models that 
closely mimic real-world conditions, providing a reliable 
proxy for algorithm performance.

4.2 Comparison Baselines
In our experiment, we selected two state-of-the-art 

adaptive beamforming algorithms as our baselines to 
compare with our proposed A-DNNABF beamforming 
algorithm.
4.2.1 MVDR

We adopted the Minimum Variance Distortionless 
Response (MVDR) proposed by Capon [22] as a baseline 
algorithm to evaluate the computational efficiency of 
different algorithms. This algorithm is a classic adaptive 
beamforming algorithm used for processing signals 
received by a sensor array. Its goal is to maximize the gain 
of the received signal in a specific direction by adjusting 
the weights of the array.
4.2.2 DNNABF

Ren et al. [7] proposed an adaptive beamforming 
algorithm based on deep neural networks (Deep Neural 
Network Adaptive Beamforming, DNNABF), which 
uses a vector composed of the AOA of incident signals 
as network input. The network output approximates 
the weight vector obtained by the Minimum Variance 
Distortionless Response (MVDR) algorithm.

4.3 Experimental Environment
The simulations in this paper are conducted using an 

Intel(R) Core(TM) i7-10700K CPU @ 3.80GHz, with 
96GB of memory, on the Pytorch 2.0 simulation platform. 

A uniform linear array is adopted, with simulation 
parameters set as follows: the number of array elements 
is 12, the spacing between elements is half a wavelength, 
the signal-to-noise ratio is 10dB, the interference-to-noise 
ratio is 30dB, the number of snapshots is 1024, the angle of 
arrival ranges from [-90°, 90°] degrees, with a step of 1°.

5  Experimental Results and Analysis

In this section, we address research questions related 
to beamforming based on deep neural networks through 
empirical studies. We focus on algorithm efficiency, weight 
matrix accuracy, and algorithm stability, discussing these 
issues by answering three research questions.

RQ1. Can our method achieve optimal computational 
efficiency compared to baseline weight matrix computation 
algorithms?

The primary motivation for exploring this question 
stems from the urgent need for computational efficiency 
in practical signal processing applications. Although 
the traditional MVDR algorithm can provide high-
quality beamforming weight vectors, its computational 
complexity is high, which can become a bottleneck in 
scenarios requiring real-time processing of large amounts 
of signal data. Our method, based on an optimized 
Transformer architecture, aims to address this issue by  
leveraging the parallel computing capabilities and efficient 
feature extraction abilities of deep learning models, 
potentially reducing computation time while maintaining 
the accuracy of weight vector predictions.

To objectively evaluate the computational efficiency 
of our method, we use the average running time on 
a test dataset as the primary evaluation metric. This 
metric directly reflects the algorithm’s response speed 
in practical applications, which is particularly important 
for signal systems requiring realtime processing. We 
compare our method with the traditional MVDR algorithm 
on the same test dataset and hardware environment to 
ensure fairness and comparability of the evaluation. The 
experimental results show that the traditional MVDR 
algorithm takes an average of 0.3158 seconds to compute a 
weight vector, whereas our method based on an optimized 
Transformer takes only 0.0325 seconds, achieving a nearly 
tenfold increase in computational speed. This remarkable 
performance improvement can be explained from the 
perspective of algorithm time complexity. The traditional 
MVDR algorithm involves a matrix inversion operation 
with a time complexity of O(M)3, where M is the number 
of array elements. In contrast, our method primarily relies 
on the forward propagation of the Transformer, with time 
complexity linearly related to the input sequence length 
and highly parallelizable. Furthermore, after training, 
our method only requires simple matrix multiplication 
operations during the inference stage, further reducing 
computation time.

Our algorithm’s key advantage lies in its ability to 
achieve superior execution efficiency under equivalent 
hardware conditions. This efficiency stems from the fact 
that the process of predicting weights is essentially a deep 
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neural network inference process, which is computationally 
less demanding than traditional adaptive beamforming 
methods.

Theoretically, the computational complexity of our 
algorithm is primarily determined by the forward pass of 
the neural network, which has a time complexity of O(n), 
where n is the number of parameters in the network. In 
contrast, traditional MVDR has a complexity of O(M)3, 
where M is the number of array elements, due to the matrix 
inversion operation.

Moreover, the inference process in our algorithm can 
be efficiently executed on various hardware platforms, 
including CPUs. This is because deep learning frameworks 
have been highly optimized for inference tasks, leveraging 
techniques such as model quantization and efficient 
memory management. As a result, our method can achieve 
real-time performance even on resource-constrained 
devices.

Answer to RQ1: Our proposed method based 
on the optimized Transformer architecture significantly 
surpasses the traditional MVDR algorithm in terms of 
computational efficiency. This result not only validates 
the effectiveness of our method but also offers a 
promising solution for real-time signal processing 
systems. Particularly in scenarios that require handling 
large volumes of data or have very high demands on 
latency, our method may bring substantial performance 
improvements. However, it is noteworthy that while 
computational efficiency has greatly improved, we still 
need to further verify the accuracy and stability of the 
method in different signal environments to ensure its 
reliability in practical applications.

RQ2. Does our proposed algorithm achieve minimal 
prediction error?

The main motivation for investigating this question 
arises from the ongoing demand for higher accuracy in 
predictions within the field of adaptive beamforming. 
Although the traditional MVDR algorithm can provide 
the theoretically optimal solution, its performance may 
degrade in practical applications due to various factors. 
The adaptive beamforming algorithm based on deep 
neural networks (DNNABF) proposed by Ren et al. is 
a significant breakthrough, demonstrating the potential 
of deep learning in this area. However, we believe that 
by optimizing the network architecture and training 
strategies, further improvements in prediction accuracy 
can be achieved. Our method, based on an optimized 
Transformer architecture, aims to overcome the limitations 
of DNNABF and explore whether more accurate weight 
vector predictions can be achieved while maintaining high 
computational efficiency.

When the desired signal and eight interference signals 
reach the linear array, the antenna patterns obtained by 
the DNNABF and A-DNNABF methods are shown in 
Figure 1. It can be seen that both algorithms are capable 
of forming a beam at the angle of the desired signal and 

forming nulls at the angles of the interference signals. The 
angle of arrival for the desired signal is 18°, and the angles 
of arrival for the 8 interference signals are -32°, -20°, -14°, 
-4°, 7°, 25°, 36°, and 58°. The number of test datasets is 
5000.

To objectively assess the prediction accuracy of our 
method, we utilized the mean square error (MSE) between 
actual values and network-predicted values as the primary 
evaluation metric. This metric directly reflects the accuracy 
of the algorithm’s predictions and is crucial for evaluating 
the network’s generalization capability. Lower MSE 
indicates better generalization performance, meaning that 
the algorithm can adapt better to unseen data and reduce 
the risk of overfitting. We evaluated our method on test 
datasets of different scales (with sample sizes of 5000, 
10000, and 15000) to ensure the reliability and stability 
of the results. By comparing our method’s performance 
with the DNNABF algorithm on the same test sets, we 
can comprehensively evaluate the prediction accuracy and 
generalization capability of both methods.

Figure 1. MVDR, DNNABF, and A-DNNABF antenna 
patterns

The experimental results show that our proposed 
method, based on the optimized Transformer architecture, 
significantly outperforms the DNNABF algorithm 
across all scales of test data, with test errors consistently 
remaining at a lower level. This result can be explained 
from the perspective of network architecture. Our method 
is based on the Transformer architecture, whose self-
attention mechanism can effectively capture long-range 
dependencies between signals, which is particularly 
important when dealing with complex spatial signal 
distributions. In contrast, DNNABF mainly relies on 
traditional feedforward neural networks, which may have 
limitations in capturing complex interactions between 
signals. Additionally, our method has been optimized 
through architecture search, possibly finding a network 
structure more suitable for beamforming tasks. Finally, 
the positional encoding mechanism of the Transformer 
may better preserve the spatial information of the signals, 
further improving prediction accuracy. The A-DNNABF 
algorithm is designed to output a weight vector that 
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approximates the MVDR algorithm. Theoretically, we can 
represent this approximation as:

A DNNABF MVDRW w ε− − <

where w_{A − DNNABF} is the weight vector output 
by the A-DNNABF algorithm, w_{MVDR} is the ideal 
weight vector of the MVDR algorithm, and ε is a small 
positive number representing the approximation error.

Answer to RQ2: Our method, based on an optimized 
Transformer architecture, significantly outperforms the 
DNNABF algorithm in terms of prediction accuracy. 
This result not only verifies the effectiveness of our 
method but also provides a new high-precision solution 
for the field of adaptive beamforming. Particularly in 
complex and variable signal environments, our method 
shows stronger generalization ability and lower prediction 
error. This high-precision prediction has the potential 
to provide more reliable beamforming performance 
in practical applications, such as improving signal 
quality in communication systems or enhancing target 
detection capability in radar systems. However, we also 
acknowledge that while excellent performance was 
achieved on test data, broader experimental validation 
is needed before applying this method to real systems, 
especially evaluating its stability and robustness under 
various signal environments and interference conditions.

RQ3. Does our algorithm possess the strongest 
robustness?

The primary motivation for studying the robustness of 
algorithms stems from the complexity and variability of 
real-world signal-processing environments. The number of 
interference sources may change in practical applications, 
and an ideal algorithm should maintain stable performance 
under such variations. Robustness here specifically refers 
to the algorithm’s ability to accurately estimate the 
angles of arrival for both the desired and interference 
signals, even when the number of interference sources 
changes. High robustness means the algorithm can adapt 
to different signal environments and provide reliable 
beamforming performance. Our research aims to assess 
whether the method based on an optimized Transformer 
architecture can outperform existing DNNABF algorithms 
in this regard, offering more reliable solutions for complex 
and variable signal processing scenarios. 

To objectively evaluate the algorithm’s robustness, we 
adopted two key metrics: the absolute average angular 

deviation of the desired signal 0θ∆  and the absolute 

average angular deviation of the interference signal 

nullθ∆ . These metrics directly reflect the accuracy 

of the algorithm in estimating the angles of arrival for 
signals. The absolute average angular deviation of the 
desired signal is calculated as


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where S0 is the total number of desired signals, and θ0
(i) 

and θ^0
(i) are the actual and estimated values, respectively. 

Similarly, the absolute average angular deviation of the 
interference signals is calculated as
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The smaller these metrics, the stronger the robustness 
of the algorithm, indicating its ability to maintain high-
accuracy angle estimations despite changes in the number 
of interference sources. The experimental results are 
shown in Table 1.

Answer to RQ3: Our proposed method, based 
on the optimized Transformer architecture, significantly 
outperforms the DNNABF algorithm in terms of 
robustness. This result not only validates the effectiveness 
of our approach but also offers a more reliable solution for 
complex and dynamic signal processing environments. 
Particularly in application scenarios where the number 
of interference sources may change frequently, such as 
in mobile communications or dynamic radar systems, 
our method demonstrates stronger adaptability and more 
stable performance. This high robustness has the potential 
to improve the reliability and efficiency of systems in 
practical applications, such as in wireless communication 
in complex urban environments or in military applications 
with severe electromagnetic interference.

Experimental results show that for a varying number 
of interference signal sources from 3 to 8, our proposed 
method based on the optimized Transformer architecture 
consistently exhibits significantly lower average error for 
both the expected signal and interference signal compared 
to the DNNABF algorithm. This result can be explained 
from several perspectives. Firstly, the self-attention 
mechanism of the Transformer architecture possibly 
makes it more adaptable to structural changes in input 
signals, effectively capturing inter-signal relationships 
regardless of the number of interference sources. Secondly, 
our method is optimized through architecture search, 
potentially identifying a network structure that maintains 
stable performance under varying interference conditions. 
Furthermore, the position encoding mechanism of the 
Transformer might better preserve the spatial information 
of signals, accurately locating signal sources even when 
the number of interference sources changes. Finally, 
our training strategy may have incorporated more 
diverse interference scenarios, enhancing the model’s 
generalization capability.
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6  Conclusion and Future Research 
Directions

6.1 Conclusion
The A-DNNABF algorithm proposed in this study 

has achieved significant results in adaptive beamforming 
under multiple noisy signal environments. By integrating 
automated neural architecture search with attention 
mechanisms, we successfully developed an algorithm 
capable of efficiently handling rapidly changing signal 
environments. The experimental results convincingly 
demonstrate the superiority of the A-DNNABF algorithm 
in several key areas: Compared to the traditional MVDR 
algorithm, A-DNNABF improves computational speed 
by about tenfold, enabling real-time signal processing; 
relative to the DNNABF algorithm, A-DNNABF exhibits 
lower prediction errors across datasets of different sizes, 
proving its excellent generalization ability; when the 
number of interference sources changes, A-DNNABF 
consistently maintains low angle estimation error for 
desired and interference signals, demonstrating strong 
environmental adaptability; through automated learning of 
network architecture, A-DNNABF effectively adapts to the 
rapid changes in the Angle of Arrival (AOA) of incoming 
signals, achieving real-time formation of beams and nulls. 
These results indicate that the A-DNNABF algorithm 
successfully addresses the response speed issue faced by 
traditional algorithms in rapidly changing environments 
while maintaining high accuracy. This research provides 
a novel solution for real-time adaptive beamforming in 
multiple noisy signal environments, holding significant 
application value in fields like modern communication 
systems and radar technology.

6.2 Future Research Directions
1) Algorithm Optimization: Further explore more 

advanced automated neural architecture search techniques 
and more efficient variants of attention mechanisms 
to enhance algorithm performance and computational 
efficiency.

2) Robustness Enhancement: Introduce adversarial 
training or more complex interference models to improve 
algorithm performance under extreme interference 
conditions.

3) Multi-task Learning: Explore multi-task learning 

frameworks that combine beamforming with other related 
tasks (such as channel estimation and signal classification) 
to improve the overall system performance.

4) Hardware Implementation: Investigate the 
implementation of the A-DNNABF algorithm on dedicated 
hardware (such as FPGA or ASIC) to further enhance real-
time processing capabilities.

5) Application Expansion: Explore the potential 
applications of the algorithm in other fields, such as 
acoustic signal processing and medical imaging.

6) Theoretical Analysis: Conduct in-depth research 
into the theoretical foundations of the algorithm, including 
its convergence, stability, and generalization bounds, 
to provide theoretical guidance for further algorithm 
improvement.

7) Dynamic Environment Adaptation: Study how 
to enable the algorithm to learn and adapt online to 
cope with dynamically changing signal environments.

8) Low-resource Scenarios: Explore how to deploy 
and optimize the A-DNNABF algorithm in scenarios with 
limited computational resources, such as mobile devices or 
IoT devices.
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