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Abstract

The development of edge computing technologies 
has brought about challenges in resource management. 
Traditional resource scheduling policies often prove 
insufficient due to the dynamic nature of cloud-edge 
collaboration. Therefore, adopting an edge cloud-native 
approach becomes necessary. This paper proposed a 
unified resource scheduling approach for joint optimization 
across multiple scenarios in the edge cloud-native 
environment. Our approach can schedule dynamically 
mixed-service groups across multiple scenarios by 
utilizing the adversarial learning of the environment and 
agents. Our approach can address the latency issues arising 
from imbalances among multiple scenarios. We conduct 
experiments by considering some factors such as device-
number, communication-distance, CPU-cycle, and task-
generation-speed. The results show that our approach 
can achieve a higher offloading rate and better average 
performance.

Keywords: Edge cloud-native, Resource scheduling, 
Imitation learning, Reinforcement learning, Tiered traffic 
control

1  Introduction

As cloud-native technology matures, academia 
and business communities are exploring its practical 
implementation [1-2]. The integration of AI, IoT, and edge 
computing enhances the variety, scale, and complexity of 
business in edge computing scenarios [3]. As a result, there 
is a focus on new edge cloud-native platforms [4-5]. 

Edge cloud-native platform is utilized in various 
domains such as live video [6], cloud gaming [7], logistics 
and transportation [8], intelligent manufacturing [9], 
and  urban brain [10]. These domains can be classified as 
mobile broadband services [11], large-scale IoT services 
connected to fixed sensors [12], and mission-critical IoT 
services [13-15] based on mobility, billing, security, policy 
control, delay and reliability. The ultra-large-scale edge 
cloud-native business is complex, and it faces technical 
challenges such as decentralized computing power, 
heterogeneous resources, and weak network connectivity. 

The principle of edge-cloud native is to combine discrete 
computing power into a larger resource pool. This 
optimizes resource scheduling and provides extreme 
energy efficiency by balancing peak and valley loads. 
When deploying mixed services and requesting resources 
from the management node, the scheduler is responsible 
for selecting appropriate physical machines to deploy 
these containers. Since the specifications of physical 
machines are not uniform and resource levels differ, 
different allocation methods yield different allocation rates. 
Therefore, a key task of the scheduler is to choose the most 
suitable physical machine from a pool of candidates based 
on a specific policy [16-17].

Scheduling computing resources is often seen as a 
vector-packing problem. If the number of containers 
for each application is predetermined, the scheduler can 
create an optimal deployment policy for all mixed services 
simultaneously. This situation can be framed as integer 
programming, solvable via general-purpose solvers or 
specifically designed algorithms. If requests from various 
applications reach the management node sequentially, 
the scheduler must generate deployment decisions 
immediately (online) with each request. The problem can 
be structured as a Markov Decision Process (MDP) [18], 
where the optimal policy can be determined through value 
iteration or policy iteration.

Scheduling policies include priority [19], DRF 
(dominant resource fairness) [20], binpack [21], Gang 
Scheduling [22], and other policies based on preset rules. 
Generally, these policies can achieve a good allocation 
rate. However, their effectiveness greatly diminishes 
when the bottlenecks are not concentrated in the same 
dimension [23]. In practical scheduling, considerations 
go beyond the resource dimension. They include factors 
such as disaster tolerance and interference isolation as 
well. For instance, services of the same application should 
not all be deployed on the same physical machine. Many 
applications even permit only one instance per machine. 
Some applications have a mutual exclusion relationship 
due to resource contention, which can significantly impact 
performance. For the same cluster resources, centralization 
is required for the scheduler. However, when multiple 
cluster schedulers exist simultaneously, decision conflicts 
may arise. The only solution is to forcibly divide the 
nodes using labels or deploy multiple clusters. Multiple 
sets of schedulers can also complicate maintenance and 
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create uncertainty in compatibility with the upstream 
Kube scheduler [24]. A pressing issue to address is how 
to build a unified scheduler based on the Kube-scheduler 
scheduling interface. Through a single scheduling protocol 
and system architecture, it should intelligently schedule 
underlying computing resources, support the deployment 
of mixed services, and improve resource utilization while 
guaranteeing application SLA. This is crucial to meet 
the high throughput, low latency service scheduling, and 
orchestration requirements for big data and AI.

Resource scheduling across the cloud and the edge 
utilizes prior knowledge and perceived context information 
to make decisions. These decisions are dynamically 
adjusted and executed, with their effectiveness determined 
by an evaluation system to ensure quality. Due to the large 
volume of micro-services, their wide distribution, and the 
need for low latency, there is a need for an approach that 
can combine perception with the lifecycle management 
of deployed services. This approach will provide support 
for system self-adaptation. Intelligent scheduling can be 
implemented according to runtime resources, which can 
reduce the complexity of the unified resource scheduler, 
improve runtime stability, and decrease resource costs.

This paper’s contributions are as follows:
(1) We formulated the multi-scenario joint optimization 

problem as a cooperative, partially observable multi-agent 
system.

(2) We proposed a new multi-agent reinforcement 
learning called multi-scenario unified resource scheduling. 
This approach allows multiple agents to work together to 
achieve the best performance.

(3) We developed a hybrid architecture using Karmada, 
RunD, and Koordinator. We train the policy model through 
the duality and adversarial learning of the environment and 
agent and complete the online verification. Experiments 
revealed that our model significantly enhances the 
performance of resource scheduling.

The rest of this paper is organized as follows: Section 
2 describes the motivation scenario. Section 3 presents 
our approach. Section 4 details our experiments. Section 5 
discusses related work, and Section 6 concludes the paper.

2  Motivating Scenario

In the native edge cloud, there are numerous sub-
scenarios. Each sub-scenario is optimized independently, 
creating a competitive relationship between them. 
Therefore, the performance improvement of each sub-
scenario does not necessarily result in an overall one. 
The optimization policy addresses the sorting problem 
of multiple sub-scenarios by treating it as multiple fully 
cooperative and partially observable multi-agent sequential 
decision problems. Hence, the deployment policy for 
each scenario changes from independent to cooperative 
and mutually beneficial, as illustrated in Figure 1. 
Consequently, this paper studies the following topics:

(1) The dynamic equation of a time-varying system is 
fitted to represent the emergence of collective intelligence. 
A unified scheduler assesses overall reward through a 
comprehensive and global “referee”. A communication 
module generates messages shared by multi-scenario 
mixed service groups. Each message encodes the 
historical observation and behavior of mixed service 
groups, approximating the global environment state. 
Every mixed service group gets its observations of a part 
of the environment and can receive messages sent by 
other groups. This model allows mixed service groups in 
different scenarios to work together to achieve the best 
global outcome.

(2) Flow control of mixed service groups in multiple 
scenarios is considered. The unified scheduler needs 
to address two key issues: efficiency and fairness. 
Under certain conditions, it’s possible to achieve Pareto 
efficient allocation by altering the initial allocation state 
of endowments among individuals, thus considering 
fairness. Moreover, due to the unpredictability of mixed 
service cluster behavior, the instant reward can have a 
large variance, significantly impacting the learning. If the 
search is conducted in the entire real number space, it may 
not converge. To minimize instantaneous loss, we have 
designed upper and lower limits that enable only local 
search. 

IoV Mobile broadband IoT

Cloud

Edge Edge Edge

Figure 1. Multi-scenario under  edge cloud-native environment
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3  Our Approach

In this section, we give a formal description of 
the problem in Section 3.1, propose the framework in 
Section 3.2, build a multi-scenario virtual environment in 
Section 3.3, and train the environment and policy models 
simultaneously through the dual and adversarial learning 
in Section 3.4.

3.1 Problem Formulation
This paper proposes a unified resource scheduling 

approach to address the issues mentioned above. The goal 
is to improve overall performance metrics. The resource 
scheduling problem of multi-scenario joint optimization 
is considered a fully cooperative and partially observable 
multi-agent sequential decision problem. To model this 
problem, we use multi-agent reinforcement learning. Each 
scenario is viewed as an agent, and different resource 
scheduling policies in each scenario share the same 
objective. The scheduling results in one scenario consider 
the user’s behavior and feedback in other scenarios. This 
approach transits each scenario’s scheduling policy from 
independent to cooperative and mutually beneficial. Since 
we aim to utilize the user’s behavior across all scenarios, 
the BiLSTM network is employed to remember historical 
information and explore continuous state and action spaces 
using the actor-critic method. Hence, we have named our 
algorithm MS-URS (Multi-Scenario Unified Resource 
Scheduling).

For the multi-agent model {A1, A1, ..., AN}, each agent  
Ai corresponds to a resource scheduling scenario. It is 
assumed that t

ito  represents the state characteristics of all 
mixed service groups observed by the agent Ai in time t. 
Because the action t

ia  space is very large, the decision 
action space is formalized as <scene, service, op, num, 
src, dst>, where service represents mixed service groups, 
op∈{Push, install, offload, upload, migrate, scale}, num 
represents the number of service instances, src and dst 
represents the source and destination server nodes of 
service migration. ai = (ωi

1, ..., ω
i
Ni), ai∈RNi

, where ωi
Ni 

= {eservice, eop, enum, esrc, edst}, eservice represents the mixed 
service, eop represents action, enum represents the number 
of service instances, esrc and edst represents the source and 
target server nodes of service migration. The reward is

t

  C1      op 
( , ) ,         0

1       
{i

ij ij
t

QoSif
r s a t

otherwise
= ∀ ≥

−
 , (1)

  
where QoSij opCij represents that a j-th dimension of the 
service meets the agreed threshold Cij . Multiple agents will 
cooperate to achieve the maximum reward.

3.2 Outline
As shown in Figure 2, the model includes a global 

“referee” to assess the overall reward. A communication 
module generates messages for multiple agents to share, 
encoding each agent’s history of observations and 

actions, which serve to estimate the global state of the 
environment. Every agent processes its observations and 
receives information, subsequently producing an action. 
Specifically, this includes:

(1) Multi-agent: Each sub-scenario within the system 
has a unique policy. Every agent formulates a policy and 
simultaneously learns its policy function, mapping its state 
to an action.

(2) Sequential decision making: The agent sequentially 
interacts with the system, resulting in sequential actions. At 
any given time, the agent interacts with the actual scenario 
by executing a decision action. This current decision 
influences future decisions.

(3) Full cooperation: All agents collaborate to optimize 
the same target. Moreover, each agent communicates by 
sending messages to others, with the integrated referee 
assessing the overall reward.

(4) Partial observation: Every agent observes a segment 
of the environment and can receive messages from other 
agents.

Figure 2. Framework of our approach

3.3 A Multi-Agent Reinforcement Learning Framework
The Critic in Figure 2 models the “action-value” 

function Q(δt−1, ot, at), which represents the overall reward 
you would get from taking an action at when you receive 
information δt−1 and observations ot. Each agent produces a 
deterministic action, based on the function at = μi(δt−1, o

i
t). 

The information is updated by the communication module, 
based on observations ot and actions at.

For simplicity, we’ll focus on a case with 2 agents, 
each representing a self-optimizing policy and scenario. 
Our model, inspired by the Deep Policy Gradient method 
(DDPG [25-26]), is also based on the Actor-Critic method 
[27]. We’ve designed three crucial modules to foster 
coordination and cooperation among multiple agents: a 
global “Critic”, individual agents, and a communication 
mechanism.

In a classical reinforcement learning problem, there 
will be an optimization problem of the form (o1, r1, a1, …, 
at, ot, rt). The state represents experience, i.e. st  = f (o1, r1, 
a1, …, at−1, ot, rt). We are addressing a challenge involving 
N agents {A1, A1, ..., AN}, where each agent is associated 
with a distinct scenario (e.g. mobile broadband, Internet 
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of things, Internet of vehicles, etc.). The observations (ot = 
(o1

t, o
2
t, ..., o

N
t)), actions (at = (a1

t, a
2
t, ..., a

N
t)), and memories 

of short-term benefits (rt = r(st, a
1
t), r(st, a

2
t), ..., r(st, a

N
t )) are 

all owned by the individual agents.
The agent Ai will take each decision action ai

t based 
on its policy πi(st) and state st , and then it will receive a 
temporary reward ri

t = r(st, a
i
t) from the environment while 

the state is updated from st to st+1. The multiple agents will 
cooperate to achieve the maximum reward Q(st, a

1
t, a

2
t, ..., 

aN
t), which denotes the global reward due to action (a1

t, a
2
t, 

..., aN
t).

The agent Ait receives the current observation ot
it from 

the environment at time point t. The state is accessible to 
all agents and depends not solely by the prior state, actions 
and observation ot . We have developed a communication 
module that employs a BiLSTM [28] network to encode 
prior observations and actions into a vector. Through the 
communication between the agents, the overall state can 
be approximated by st ≈ {δt, ot}. Agent chooses an action 
at

it = μit(st) ≈ μit(δt−1, ot
it) to maximize the future reward, 

which is evaluated by a central critic Q(st, a
1
t, a

2
t, ..., a

N
t). It 

is important to note that all combinations of observations 
ot = (o1

t, o
2
t, ..., o

N
t) are obtained at time point t.

3.4 BiLSTM Message Mechanism
As shown in Figure 3, we have developed a messaging 

mechanism based on BiLSTM to allow agents to better 
cooperate by passing information to each other. More 
formally, the communication module works as follows:

Figure 3. Message mechanism based on BiLSTM model

1 2, 1; 1 ;=BiLSTM( [ ] )t t t to aδ δ ϕ− − − −  . (2)

Benefiting from this message δt−1, each agent can 
approximate the global state of the environment st ≈ {δt−1, 
ot}. This solves the problem of each agent receiving local 
observations oi

t but not getting a global state st . 
Loss is
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1

1 :

( | )
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φ

π

α ω φ τ

+

=

+

+

∑  , (3)

where BiLSTM is used to encode qϕ(z|oi
1:Ti), z is the 

embedding obtained after encoder transformation, pω(oi
t+1| 

oi
t, z) is the state transition decoder, πα(a

i
t| o

i
t, z) is the 

decoder of the policy, DKL(.||.) is the KL distance, and 
L(α, ω, ϕ; τi) is the loss function. Its overall architecture is 
shown in Figure 3.

3.5 Private Actor
Each agent is an independent “actor” who takes in 

local observations and shared information and initially 
makes a decision. Since we are dealing with reinforcement 
learning with continuous actions, we define an action as 
a substantial vector ai = (ωi

1, ..., ω
i
Ni), ai∈RNi

. Thus, each 
action is a vector of N i dimensions, and each dimension 
is a real value. This vector will be used as a parameter to 
control the multi-scenario unified resource scheduling.

Since this is a continuous behavior type, similar work 
is common in control problems [12, 23, 34]. Inspired by 
related work, we utilize a deterministic policy approach 
rather than a random policy approach. Each agent has 
an actor corresponding function μ i(st ; θ i), where the 
parameters are θ i, and the function unambiguously maps a 
state to an action. At time t, the agent Ait decides its action 
based on the actor-network: 

t t; 1, ;( ) ( )t t t t t ti i i i i i
t ta s oµ θ µ δ θ−= ≈  , (4)

where st ≈ {δt−1, ot} denotes the communication module. 
Thus, the actor’s behavior depends on both the information 
δt−1 and current observation ot

it.

3.6 Centralized Critic
We have meticulously crafted a critical network 

architecture that is designed to precisely estimate the 
action-value function, adopting a sophisticated approach 
akin to the DDPG (Deep Deterministic Policy Gradient) 
algorithm, which is renowned for its ability to learn 
optimal policies in continuous action spaces. Because all 
agents can share a goal, we use a global critic function 
Q(st, a

1
t, a

2
t, ..., a

N
t; ϕ) to fit the future rewards. 

In our approach, only one agent Ait will be active at 
time t, ot = {oi

t} at = {ai
t}. Consequently, it is imperative 

that we streamline the action-value function to Q(δt−1, ot, 
at; ϕ), and similarly, the action selection function must be 
refined to μit(δt−1, ot; θ

it).

3.7 Model Training
The Critic Network Q(δt−1, ot, at ; ϕ) is meticulously 

trained employing the Bellman equation. We minimize the 
following loss function:

1

2
1

,
( )= [( ( , , ; ) ) ]E t t

t t

t t
o

L Q o a y
δ

φ δ φ
−

− −  , (5)

where +1

1 1 t+1,= ( , , ( ); )t

t t

i
t t t ty r Q o a oγ δ µ δ φ+ ++ ，  . (6)

 
The update of the network of private actors is based on 
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maximizing the whole expectation. Suppose at time t, Ait is 
active, then the objective function is: 

1

1 1,
,

( )= [( ( , , ; ) | ( ; )]E
t t t

t
t t

i i i
t t t

o
J Q o a a o

δ
θ δ φ µ δ θ

−

− −= . (7)

According to the chain rule, the parameter gradient of 
each actor can be expressed as follows:

1

1

1 1,
,

1 1, 1,
,

( )

[ ( , , ; ) | ( ; )]

 = [ ( , , ; ) | ( ; ) ( ; )]

E

E

t
it

t t
it t

t t

t t t t

t t
t t

i

i i
t t t

o

i i i i
t t t t ta i

o

J

Q o a a o

Q o a a o o

θ

θ
δ

θ
δ

θ

δ φ µ δ θ

δ φ µ δ θ µ δ θ
−

−

− −
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∇

≈ ∇ =

∇ = ∇

 . (8)

The goal of communication module training is to 
minimize the following functions:

1

1

2
1 1 2, 1; 1

,

1 1 2, 1; 1
,

( )
= [( ( , , ; ) ) | ( [ ; )]

[ ( , , ; ) | ( [ ; )]

E
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t t

t t t t t t
o

t t t t t
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L
Q o a y BiLSTM o a

Q o a BiLSTM o a
δ

δ

ψ

δ φ δ δ ψ

δ φ δ δ ψ
−

−

− − − − −

− − − − −

− =

− =
 . (9)

We make a replay buffer [23] to store each agent’s 
interactions with the environment and update them in a 
minibatch. In each training, we select a set of mini-batches 
and train them in parallel, updating both the actor-network 
and the critic-network.

3.8 Multi-layer Flow Control Based on Cross-entropy
The optimization of competition among multiple 

scenarios occurs gradually. Can the scheduling process 
be personalized? We propose an intervention of various 
layers, referring to the division of sub-scenario types. 

Earlier algorithms may not have adequately considered 
these factors. A typical method involves simple weighting, 
which often results in efficiency loss, leading to mostly 
meaningless outcomes. However, upon closer examination 
of this issue, it’s clear that some loss is inevitable. In 
a purely competitive environment, optimization will 
gradually occur under the current supply and demand 
dynamics, reaching a local optimum. A significant 
disruption could break this local optimum, causing an 
immediate loss in efficiency. However, this disruption 
could potentially lead to a better position than the previous 
stable point.

This prompts us to consider two questions:
(1) How can we minimize the immediate loss as much 

as possible?
(2) How can we reach the new local optimum as 

quickly as possible?
The corresponding solution is straightforward:
(1) We will implement personalized interventions 

to minimize unnecessary losses. For instance, data flow 
timeliness can be stratified for intervention, exempting 
scenarios that are less sensitive to data flow.

(2) Upon further abstraction, this solution naturally 
defines a reinforcement learning problem: personalized 

intervention equates to taking different actions for 
different states, while broader and intelligent exploration 
corresponds to the learning process of reinforcement 
learning.

We interpret the resource scheduling behavior of 
multi-scenario joint optimization as a Markov Decision 
Process (MDP) where the scenario agent interacts with 
the management center. The information the management 
center observes is considered the state; the traffic control 
policy is regarded as the action, and the environmental 
feedback is seen as the reward. The optimization 
problem of traffic control policy can also be solved by 
Reinforcement Learning (RL). To consider the influence 
of traffic structure change, we combine the change in 
hierarchical traffic proportion and environmental feedback 
as the reward.

The scenario’s context typically includes the long-term 
behavior preference of the agent, the real-time state, and 
the behavior sequence representation, which we denote as 
s∈Rd.

Suppose there are m signals that require intervention, 
and each layer is abstracted into a feature. If the agent 
belongs to the layer, the score is 1; otherwise, it’s 0. The 
weight corresponding to each layer forms an action. 
Instead of directly outputting the absolute value of the 
action, a common technique involves using sigmoid (or 
tanh, which are interchangeable) in the final output layer 
of the neural network. This bounds the output of the actor-
network to [0, 1] in each dimension, i.e. o∈[0,1]m, That is, 
a transformation is then applied as follows:

( ) ,  {1, 2,..., }k k k k ka L U L o k m= + − ∀ ∈ , (10)

Here U k and Lk are the upper bound and low bound 
of the weight of the k-th dimensional hierarchical feature, 
which generally comes from domain knowledge, but is 
usually limited by experience.

The first element in reward design is the stratified 
proportion pi(π), which represents the ratio of stratified 
traffic to total traffic. However, efficiency must be 
considered during traffic regulation, so the behavior 
feedback of multi-scenario mixed services is a crucial 
reward factor. Different actions such as push, install, 
uninstall, update, migration and scale are factored into the 
feedback. Each action holds varying influence factors. All 
these actions in each scenario are collectively referred to as 
rewards. The stratified ratio also requires a control group. 
For example, since the performance difference is inherent 
to the scenario and unrelated to traffic control actions, its 
original value is subtracted from the stratified ratio in the 
baseline bucket when calculating the actual stratified ratio 
pi(πbasic), i.e

( , ) Re ( ) ( ( ) ( )
m

actions i i i basic

i

r s a ward n p pλ π π= + −∑ , (11)

The above model is based on the reward of a particular 
scenario. However, due to the unpredictability of scenario 
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behavior, instant rewards can exhibit high variance, 
which significantly impacts the learning process. Thus, 
searching for the entire real number space may lead to 
non-convergence. To address this, we establish upper and 
lower bounds, allowing the Reinforcement Learning (RL) 
algorithm to search within a local space. This approach 
simplifies the learning process but introduces two new 
challenges:

1. How can we ensure the validity of the upper and 
lower bounds?

2. How can we avoid settling on a locally optimal 
interval?

To solve these problems, we employ the Cross-Entropy 
Method (CEM) to dynamically update the action’s upper 
and lower bounds in real-time. Specifically, we disregard 
the state and focus on a globally optimal action, which we 
assume follows a Gaussian distribution ak, such as 

2
* ( , )k k ka N µ σ∈  , (12)

At the beginning of each iteration, we sample s 
samples from this distribution, i.e. Ω1, Ω2, ..., Ωs, and then 
deliver sufficiently on these actions to obtain a sufficiently 
confident reward value for the corresponding action.

1

1 1

1

1
( )= ( )

N

i

i

R r
N

Ω Ω∑
2

2 2

1

1
( )= ( )

N

i

i

R r
N

Ω Ω∑
...

1

1
( )= ( )

Ns

s i s

i

R r
N

Ω Ω∑  

(13)

We then sort the pairs R(Ω1), R(Ω2), ..., R(Ωs) and pick 
out the subset D of top p that maximizes the probability 
that the Gaussian distribution produces these samples, i.e

* 2*

* 2* * 2*

,

 ( , ) log ( | , )max
k k

i
k k k k

i D

f N
µ σ

µ σ µ σ
∈

= Ω∑  (14)

The above equation has an optimal solution, that is, μ*
k 

is the mean of all samples in D, σ 2*
k is the variance of all 

samples, but if we solve it directly, the model will iterate 
too fast. On the one hand, it will completely forget the 
information of previous iterations. On the other hand, this 
will be directly output to the RL learning actor above. 
Therefore, the bound cannot be changed by more than one 
block, otherwise, RL may not be able to keep up with the 
change in time. Therefore, we adopt a slow update method, 
i.e

+
k k

k

f
µ µ α

µ

∂
←

∂
 (15)

+
k k

k

f
σ σ α

σ

∂
←

∂
(16)

After the update, we use a specific method to define 
the upper and lower bounds of the k-th dimensional action. 
This ensures the RL-regulated action is within a globally 
optimal space

2k

k k
L µ σ← − (17)

2k

k k
U µ σ← + (18)

The overall flow of our implementation is as follows:
The initial upper bound and low bound are selected to 

start RL learning. At the same time, the upper bound and 
low bound are dynamically adjusted.

Algorithm 1. Unified resource scheduling under 
multiple scenarios

Input: The environment
Body
Initialize the actor networks θ = {θ1, ..., θN} and critic 
network φ  
Initialize the replay buffer R

for k steps do
for i = 0,1,2,... ,M do

while t<T and ot ≠ terminal do
           Generate Action t

1,( )t ti i
th oµ θ− ； according to 

agent it

Receive new observation ot+1 and get 
reward rt with Equation(11) 
get ht with Equation (2)
t=t+1
end
Store episode 0 1 1 1 1 2 2 2{ , , , , , , , ,...}h o a r h o a r
in R

end for
end for
sample minibatch B from R
foreach episode in B do

for i = T downto 1 do
update the critic by Equation (5) 
update the it-th actor by Equation(15)(16)
update the upper bound and low bound of 
action by Equation(17)(18)
update the communication component by 
Equation(3)

end
end for

Output: Private Actor θ = {θ1, ..., θN}
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4  Experiments

In this section, we conduct experiments to compare our 
approach with other state-of-the-art approaches. We aim to 
answer the following questions:

(1) How does our approach compare with published 
state-of-the-art approaches?

(2 )  How does  the  number  o f  dev ices  a ffec t 
performance?

(3) What is the impact of communication distance on 
performance?

(4) How does task size affect performance?
(5) What is the effect of task generation speed on 

performance?
(6) How do CPU cycles impact performance?
(7) How does our approach which includes hierarchical 

flow control compare with the one excluding hierarchical 
flow control in terms of performance?

4.1 Experimental Design
We use an edge-cloud network composed of cloud 

servers, edge nodes, and terminal devices. The cloud 
server is a physical machine equipped with a 16-core 
Intel Xeon E5-2620 v4 CPU, 64GB memory, 1TB hard 
disk, and Ubuntu 18.04 operating system. It serves as a 
cloud computing center, offering powerful computing and 
storage capabilities. Edge nodes are laptops equipped with 
a 4-core Intel Core i5-8250U CPU, 8GB memory, 256GB 
hard disk, and Ubuntu 18.04 operating system. They form 
the edge computing layer, providing close computing and 
storage services. The connection between the cloud server, 
edge nodes, and terminal devices is established through 
wired or wireless networks, with network bandwidth and 
latency dynamically changing according to the actual 
situation.

We use the mixed architecture built by Karmada, 
RunD, and Koordinator as the native platform of 
edge cloud. Various resource scheduling policies are 
implemented using its APIs and tools. The performance 
of these policies is evaluated by monitoring and recording 
various performance indicators.

The training process involves obtaining user behavior 
logs in real time to provide training samples for our 
approach. These samples are stored in a replay buffer. 
Then, the model is updated and applied online. This 
process is repeated, resulting in a dynamically updated 
model that captures changes in user behavior.

Each agent’s localized observations are encapsulated 
within a 52-dimensional vectorial space, while their 
respective behaviors are characterized by vectors of 7 and 
3 dimen-sions. For simplicity, a 10-dimensional vector 
(with zeroes filling in the gaps) is used as the output of 
BiLSTM and the evaluation network.

The communication module takes a 62-dimensional 
vector (52 + 7 + 3 = 62) as input and outputs a 
10-dimensional vector. The actor network also uses a 
62-dimensional input, with a hidden layer size of 32/32/7. 
The initial two layers of the network architecture are 
equipped with Rectified Linear Unit (ReLU) activation 

functions to introduce non-linearity, facilitating the 
network’s ability to learn complex patterns. In contrast, the 
final layer is endowed with a Softmax activation function, 
which is instrumental in transforming the output into a 
probability distribution, essential for making informed 
decisions in the context of multi-agent systems.

The Critic network is meticulously engineered with a 
dual-layered hidden architecture, each layer comprising 32 
neurons, all of which are activated through the Rectified 
Linear Unit (ReLU) function, enabling the network to 
effectively capture and process the intricate dynamics 
of the multi-agent environment. The gain attenuation 
coefficient in the Bellman formula is set to γ = 0.95. 
We use RMSProp to learn the network parameters, with 
learning rates of 10-2-3 and 10, and a hidden layer of 128, 
corresponding to the ac-tor-network and the critic-network, 
respectively.

4.2 Comparison
To comprehensively  assess  the  eff icacy and 

performance of our algorithm, we conducted a rigorous 
comparison against a spectrum of benchmarks, including 
Ex-pert policies, SM-NE, DQN, and Random scheduling. 
We consider factors such as cost and time.

We compare our approach with the following 
approaches:

1. Expert policies: Experts use the ACKTR algorithm 
[29], which is based on centralized management, to 
address the problem. Each expert can observe the entire 
instantaneous system state.

2. SM-NE [30]: This decentralized task scheduling 
algorithm requires a centralized server for some 
information. SM-NE has been applied to pervasive edge 
computing networks through game theory and Nash 
equilibrium.

3. DQN-based solution [31]: This approach considers 
the nuanced dynamics of peer-to-peer offset loading. 
Furthermore, it is underpinned by a centralized scheduling 
paradigm, which harnesses the predictive capabilities of 
Deep Q-Networks (DQN) to optimize resource allocation 
and task distribution across the network.

4. Random scheduling: Devices are randomly selected 
for offloading, regardless of their performance. Once a 
suitable device is found, it can be used without further 
search.

In this section, we undertake an exhaustive assessment 
of the holistic efficacy across five distinct policy 
frameworks by Expert policies, SM-NE approach, DQN-
based solutions, and Random scheduling. In Figure 4, we 
present a graphical representation of the mean total cost 
metrics over the final 500 epochs, utilizing this mean to 
mitigate the impact of algorithmic-induced variability. 
At task densities of 10, 12, and 14, the aggregate costs 
for both Expert policies and our proposed methodology 
are strikingly comparable and significantly lower than 
those associated with DQN-based solutions. A discernible 
divergence emerges at a density of 16, which intensifies 
at densities 18, 20, and 22. Nonetheless, our approach 
exhibits a commendable level of stability, with only a 
marginal escalation in costs attributable to the escalation 
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in the total volume of tasks. Our research findings indicate 
that an edge offloading system reliant on a solitary high-
capacity edge server is capable of delivering consistent 
service within a limited range of task densities. As the 
task load increases, the efficiency of such a singular 
offloading framework diminishes markedly. Although our 
approach performs slightly worse than Expert policies 
at low densities, this difference is negligible due to task 
randomness. Our approach maintains stability as task 
density increases. Therefore, our approach can effectively 
perform offloading at a low cost in various scenarios.

Figure 4. Total cost comparison on different task densities

4.3 Performance Evaluation
4.3.1 Impacts of Total Device Number

Figure 5 provides a comprehensive visualization of the 
performance metrics across a spectrum of device counts. 
Our analysis reveals that the mean task completion times 
achieved by our approach are notably superior to those of 
the SM-NE, DQN-based solutions, and random scheduling 
strategies, yet marginally exceed the times recorded by 
the expert policy. To illustrate, in an environment with 30 
devices, the average task completion times are as follows: 
the expert policy is 0.19 seconds, MILP is 0.18 seconds, 
SM-NE is 0.15 seconds, our DQN is 0.11 seconds, and 
the random scheduling is 0.21 seconds, respectively. 
This comparative analysis underscores the efficiency 
and effectiveness of our approach in optimizing task 
completion times across varying device configurations.

Our approach’s effectiveness stems from its use 
of GAIL [32] to train its policy, which allows it to 
approximate the performance of an expert with an 
acceptable gap. The expert policy, grounded in the 
overall system state, solves the optimization problem by 
attaining a Nash equilibrium among different devices, 
much like a centralized control approach. In comparison, 
SM-NE calculates the Nash equilibrium based on factors 
like average task arrival intensity and transmission rate. 
However, in edge computing networks, infor-mation 
updates may lag, limiting SM-NE’s performance relative 
to our approach. The random scheduling algorithm, 
which randomly selects devices for offloading, doesn’t 
have predictable performance. Although centralized, 
the DQN-based solution primarily seeks to minimize 
system cost, while ensuring tasks can be executed before 

their deadlines. Thus, task completion delay may not be 
minimized significantly.

Figure 5. Average task completion time with different 
number of devices

Figure 6 delineates the offloading ratio across 
varying device numbers, which represents the proportion 
of tasks offloaded relative to the total tasks generated 
within the network. It is observed that the DQN-based 
solution exhibits the highest offloading rate, whereas the 
expert policy and our proposed methodology surpass 
the offloading rates of SM-NE and random scheduling 
algorithms. For instance, in a scenario with 20 devices, 
the offloading ratios are as follows: the expert policy at 
0.15, MILP at 0.14, SM-NE at 0.1, the DQN scheme at 
0.08, and the random scheduling scheme at 0.16. This data 
underscores the efficacy of our approach in effectively 
distributing tasks across devices, ensuring optimal resource 
utilization and performance.
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Figure 6. Offloading ratio with different numbers of 
devices

In scenarios where the device number is less than 
ten, the offloading rates achieved by the expert policy, 
MILP, and SM-NE are surpassed by those of the DQN-
based solution and the random scheduling algorithm. This 
phenomenon arises from the fact that the Nash equilibrium 
conditions limit the potential for task offloading to 
other devices, thereby constraining the offloading rates. 
Conversely, the DQN-based solution is capable of ef-
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fectively offloading tasks to edge servers or other devices, 
which leads to a substantial reduction in system costs, 
even when the number of devices is limited. As the device 
count escalates, the offloading rates for all five algorithms 
experience an uptick, attributable to the increased 
opportunities for task offloading that become available 
with a denser device network.

Figure  7  graphica l ly  represents  the  average 
performance enhancement across the five algorithms, 
measured by the reduction in task completion time 
achieved by offloading tasks between devices rather than 
executing them locally. Our approach exhibits the most 
significant alignment with the expert policy’s performance 
and outperforms the remaining algorithms. This is 
attributed to our method’s emulation of expert behavior, 
which is inherently optimized for task execution. The 
DQN-based solution, on the other hand, prioritizes meeting 
task deadlines over performance optimization.
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Figure 7. Average performance improvement with 
different number of devices

With an increasing number of devices, the average 
performance improvement for all algorithms is observed 
to increase, as the collective computational resources lead 
to a decrease in the average task completion time, thereby 
amplifying the overall efficiency of the system. 
4.3.2 Generalization Ability of Our Approach

Figure 8 provides a detailed visualization of the 
average task completion time’s performance trend 
concerning the communication distance. It is observed that 
as the communication distance extends, the performance 
metrics of all five algorithms tend to improve. For instance, 
at a communication distance of 60 meters, the average 
task completion times are recorded as 0.24 seconds, 0.21 
seconds, 0.16 seconds, 0.12 seconds, and 0.26 seconds for 
the respective algorithms. Upon increasing the distance to 
80 meters, the completion times are further optimized to 
0.32 seconds, 0.29 seconds, 0.20 seconds, 0.14 seconds, 
and 0.35 seconds. This trend suggests that greater 
communication distances may paradoxically lead to 
enhanced task completion efficiency, potentially due to the 
system’s ability to distribute tasks more effectively across 
a wider network of devices.

This enhancement is attributed to the fact that an 
extended communication range facilitates greater inter-

device connectivity, thereby providing a broader array 
of options for task offloading, as more devices become 
accessible for this purpose. Furthermore, our policy’s 
performance aligns most closely with that of the 
expert policy, reflecting a sophisticated understanding 
of task distribution and offloading strategies. As the 
communication distance expands, the performance 
disparities among the five algorithms diminish, owing 
to the augmented pool of devices that can participate in 
task offloading, which levels the playing field in terms of 
efficiency and effectiveness across the different algorithmic 
approaches.

Figure 8. Average task completion time with different 
communication distance

Figure 9 delineates the offloading rate performance 
across varying communication distances. Our methodology 
achieves a higher offloading rate compared to the SM-NE 
and random scheduling algorithms, yet it falls short of the 
DQN-based solutions. This discrepancy arises from our 
approach’s capability to effectively distribute tasks across 
a multitude of devices, thereby emulating the expert policy 
with high fidelity. The nuanced task scheduling mechanism 
inherent in our approach enables a more efficient 
offloading strategy, which, while not surpassing the DQN-
based solutions, still outperforms the SM-NE and random 
scheduling algorithms in terms of offloading efficiency.
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Figure 9. Offloading ratio with different communication 
distance

The offloading ratio exhibits a positive correlation 
with the expansion of communication distance. At a 
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communication distance of 50 meters, the offloading ratios 
for the expert policy, our approach, the SM-NE, the DQN-
based solution, and the random scheduling algorithm 
are recorded as 0.22, 0.19, 0.15, 0.10, and 0.23 seconds, 
respectively. Upon increasing the distance to 70 meters, 
the offloading times for the aforementioned algorithms are 
adjusted to 0.27, 0.23, 0.17, 0.13, and 0.31 seconds. This 
trend indicates that with greater distances, the potential for 
task offloading is enhanced, allowing for more efficient 
resource utilization and improved system performance 
across the board.

This trend can be attributed to the limited inter-device 
communication opportunities at shorter communication 
distances, which consequently restricts the scheduling and 
processing of tasks across various devices.
4.3.3 Convergence Time

We evaluated the convergence time of schemes based 
on our approach, SM-NE, and DQN with varying numbers 
of devices, as depicted in Figure 10. When the network 
has a small number of devices, our approach and SM-NE 
show little difference in convergence time. Nonetheless, 
with an escalation in the number of devices, the merits of 
our approach become increasingly evident. It consistently 
demonstrates the shortest solution convergence time.

In our methodology, while individual devices may 
not have access to the comprehensive real-time network 
state, the learning agent is capable of emulating a 
centralized policy through training within a decentralized 
environment. The expert data thus gathered can be 
leveraged within a Generative Adversarial Network (GAN) 
to forecast rewards, effectively reducing the variability in 
the distribution of observation-action pairs.
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Figure 10. Convergence time with different number of 
devices

On the other hand, the SM-NE algorithm struggles 
to obtain immediate system state information in parallel 
and distributed systems. This includes device connections 
and updated average task arrival rates. Consequently, this 
could lead to decision-making based on outdated data. 
Furthermore, with an increasing number of devices, the 
computational time to determine the Nash Equilibrium 
(NE) also escalates, exacerbated by the latency in 
information synchronization across the network.

DQN-based solutions, which operate in a centralized 

manner, train a learning model that relies on the 
comprehensive state of the system to concurrently 
determine actions for all tasks at each time interval. 
However, the vastness of the state and action space 
necessitates extended training periods for the model, a 
duration that is further prolonged with an increase in the 
number of devices.
4.3.4 Impacts of Task Generation Speed

Figure 11 illustrates the average task completion 
time for the five algorithms in response to variations 
in task generation velocity. Task generation velocity is 
defined as the maximum quantity of tasks that a device 
can generate within a specific timeframe. As the task 
generation velocity intensifies, the average completion 
time for these algorithms correspondingly ascends. This 
escalation is attributed to the increased volume of tasks in 
each device’s local queue at lower generation velocities. 
When the task generation rate surpasses 4 tasks per time 
slot, the completion time experiences a steep ascent due to 
the cumulative impact of computational and transmission 
delays.

Figure 11. Average task completion time with different 
task generation speeds

4.3.5 Impact of CPU Cycles
This study delves into the performance trajectory of the 

average task completion time for five distinct algorithms, 
contingent upon varying CPU cycle counts. Here, CPU 
cycles denote the peak computational capacity that a 
device can deliver. With an augmentation in CPU cycles, 
the performance ratio diminishes.

As depicted in Figure 12, at a CPU cycle rate of 9 
gigacycles, the average task completion times for the 
expert policy, our approach, the SM-NE algorithm, the 
DQN solution, and random scheduling are recorded at 
0.14 seconds, 0.15 seconds, 0.20 seconds, 0.32 seconds, 
and 0.17 seconds, respectively. Upon elevating the CPU 
cycle to 12 gigacycles, these times are reduced to 0.09 
seconds, 0.10 seconds, 0.12 seconds, 0.15 seconds, and 
0.13 seconds, respectively.

This trend is attributable to the fact that an increase 
in CPU cycles equips each device with enhanced 
computational capabilities. As a result, the processing 
latency for individual tasks is mitigated, culminating in a 
reduction in the average task completion time.
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Figure 12. Average task completion time with different 
CPU cycles

However, there is a noticeable performance gap 
compared to the expert policy due to the imitation 
capability of our approach.
4.3.6 Impact of Hierarchical Flow Control

We examine the effects of managing the proportion 
of multi-layered traffic in a real environment. Figure 13 
displays the increase in the offloading rate of our approach 
including layered traffic control compared to our approach 
without layered traffic control. Hierarchical traffic control 
policy consistently outperforms our standard policy.
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Figure 13. Average performance improvements with our 
approach including hierarchical flow control compared to 
our approach without hierarchical flow control

5  Related Work and Discussion

Resource management plays a pivotal role in both 
cloud and edge computing environments. The strategic 
allocation and deployment of storage, network bandwidth, 
and computing resources are instrumental in achieving 
substantial reductions in energy consumption. Offloading, 
as a technique, is designed to bolster the Quality of Service 
(QoS) by judiciously distributing the computational 
burden, thereby optimizing resource utilization and 
enhancing overall system efficiency.

Considering the inherent complexity and dynamism 
of real-world scenarios, the offloading algorithms 
and computing architectures must exhibit exceptional 

scalability to adapt effectively. Nonetheless, the majority of 
existing models grapple with the challenge of addressing 
issues across diverse scenarios due to the inherent 
limitations of both the models and the offloading strategies 
they employ. 

In single-user edge computing systems, offloading 
is facilitated between an individual user and a single 
edge server or a cluster of edge servers. The distinction 
between deterministic and stochastic tasks necessitates the 
development of distinct task models and corresponding 
solutions. For example, Wang et al. [33] concentrate on 
reducing energy expenditure and execution latency by 
meticulously tuning the transmission power and rate. They 
transform the inherently non-convex optimization problem 
into a convex form, leveraging variable substitution 
methodologies to achieve a solution.

Mahmoodi et al. [34] address the challenges of 
energy and cost optimization in intricate scenarios 
characterized by arbitrary task dependencies, as opposed 
to linear sequences. They delineate task relation graphs 
that incorporate both parallel and sequential elements 
and devise a comprehensive offloading strategy aimed at 
reducing energy con-sumption and latency.

The stochastic task model presents a heightened 
level of complexity. Dong et al. [35] have crafted an 
adaptive offloading algorithm that adeptly balances power 
consumption with application execution duration, while 
maintaining a low computational complexity.

In reference [36],  several dynamic issues are 
considered jointly, including resource allocation and 
control of the network interface. A DREAM algorithm is 
proposed to solve these problems and is verified in terms 
of energy saving and latency reduction on the Android 
platform.

In the realm of multi-user systems, cooperative 
resource management encompasses the strategic allocation 
and utilization of both radio and computing resources to 
optimize system performance. Different offloading schemes 
are required for centralized and distributed systems. In a 
centralized system, the MEC server processes computing 
requests and distributes resources among mobile devices.

The diversity of devices inherent in edge computing 
environments introduces complexities that challenge 
the efficiency of offloading processes. Conventional 
approaches frequently struggle to deliver optimal solutions 
when confronted with dynamic offloading challenges that 
entail multiple constraints. Nonetheless, the integration 
of reinforcement learning has marked a significant 
advancement in tackling these complexities.

Research such as [37] has constructed a simple 
Q-Learning-based offloading model, where an edge server 
receives several tasks from a single device. Despite the 
model’s reliance on the Q-function to determine the most 
advantageous offloading decisions, contingent upon device 
capabilities and energy availability, it is not endowed with 
sufficient robustness. Consequently, the Deep Q-Network 
(DQN) has emerged as a favored instrument in the field 
of edge computing offloading research, offering a more 
resilient approach to decision-making.
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Duc Van Le and Chen-Khong Tham have devised 
an algorithm that integrates Deep Q-Network (DQN) to 
concurrently account for task loss probability and user 
mobility when making optimal offloading decisions [38]. 
Parallel studies, such as [39] and [40], have also embraced 
DQN-based algorithms, with an emphasis on task 
allocation that takes into account radio resources, thereby 
crafting a more holistic model. Notably, [39] introduces an 
innovative action selection technique aimed at enhancing 
efficiency by partitioning the optimization problem 
into offloading and allocation components, effectively 
mitigating computational complexity.

While these studies demonstrate the potential of 
deep reinforcement learning for offloading optimization, 
their models do not reveal their adaptability to different 
scenarios, which is our main interest.

In response to this challenge, we have architected a 
two-tier framework that facilitates load offloading from 
the terminal devices to the edge servers and among the 
edge servers themselves. This system enables a rational 
distribution of regional resources at a more elevated 
level, thereby enhancing the efficiency of dynamic task 
offloading and averting the wastage of resources.

Subsequently, we implemented a deep reinforcement 
learning algorithm that is particularly tailored to the 
nuances of edge computing environments. In contrast to 
Q-learning, which is limited to addressing a finite number 
of states, our algorithm is adept at optimizing sequential 
decision-making processes within a significantly broader 
state space.

In contrast to policies derived from Deep Q-Networks 
(DQN) ,  our  approach  demands  a  more  modes t 
computational footprint and achieves convergence at a 
more expedited pace. DQN-based policies rely on powerful 
GPUs, while our policy can be implemented on devices 
with only multi-core CPUs, making it more suitable for 
edge devices with limited computing resources.

In the realm of Multi-Agent Reinforcement Learning 
(MARL) [41], a collective of autonomous and interactive 
agents inhabit a shared environment. Each agent, leveraging 
its unique information, formulates actions through its 
policy function. The interactions among these agents span 
a spectrum: from complete cooperation, where all agents 
pursue a unified objective, to full competition, where goals 
are opposed. Hybrid models represent a nuanced blend that 
straddles these polarities.

6  Conclusion and Future Work

In conclusion, the approach we have developed 
presents a highly scalable and robust offloading solution 
that is well-suited for dynamic edge computing scenarios. 
This is accomplished by harnessing the transformative 
capabilities of deep reinforcement learning within the task-
scheduling paradigm. Our two-tier architecture, combined 
with the use of Generative Adversarial Imitation Learning 
(GAIL), allows for efficient and strategic allocation of 
resources. This is achieved while maintaining a high level 
of adaptability across a variety of different scenarios, 

making our policy not only effective but also more feasible 
for implementation in edge devices that have limited 
resources. This is particularly important when compared to 
policies based on Deep Q-Network (DQN), which can be 
more demanding in terms of resources. Looking forward, 
we aim to enhance our model’s gen-eralization capability 
as part of our future work. This is an important aspect 
that we believe will further improve the effectiveness of 
our approach. Moreover, we also plan to investigate the 
potential benefits of integrating federation learning into our 
framework. We hypothesize that this could further improve 
resource utilization and overall system performance, 
enhancing the robustness and scalability of our solution.
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