
Journal of Internet Technology Vol. 26 No. 6, November 2025 729

*Corresponding Author: Xinying Wang; Email: wxy200888@126.com
DOI: https://doi.org/10.70003/160792642025112606002

Multi-Scenario Unified Resource Scheduling in
Edge Cloud-Native Environment

Wei Xiong1, Xinying Wang1*, Zhao Wu1, Qiaozhi Hua1, Franz Wotawa2

1 School of Computer Engineering, HuBei University of Arts and Science, China
2 Institute for Software Technology, Graz University of Technology, Austria

xwei9093@126.com, wxy200888@126.com, wuzhao73@163.com, alex2441@163.com, wotawa@ist.tugraz.at

Abstract

The development of edge computing technologies
has brought about challenges in resource management.
Traditional resource scheduling policies often prove
insufficient due to the dynamic nature of cloud-edge
collaboration. Therefore, adopting an edge cloud-native
approach becomes necessary. This paper proposed a
unified resource scheduling approach for joint optimization
across multiple scenarios in the edge cloud-native
environment. Our approach can schedule dynamically
mixed-service groups across multiple scenarios by
utilizing the adversarial learning of the environment and
agents. Our approach can address the latency issues arising
from imbalances among multiple scenarios. We conduct
experiments by considering some factors such as device-
number, communication-distance, CPU-cycle, and task-
generation-speed. The results show that our approach
can achieve a higher offloading rate and better average
performance.

Keywords: Edge cloud-native, Resource scheduling,
Imitation learning, Reinforcement learning, Tiered traffic
control

1 Introduction

As cloud-native technology matures, academia
and business communities are exploring its practical
implementation [1-2]. The integration of AI, IoT, and edge
computing enhances the variety, scale, and complexity of
business in edge computing scenarios [3]. As a result, there
is a focus on new edge cloud-native platforms [4-5].

Edge cloud-native platform is utilized in various
domains such as live video [6], cloud gaming [7], logistics
and transportation [8], intelligent manufacturing [9],
and urban brain [10]. These domains can be classified as
mobile broadband services [11], large-scale IoT services
connected to fixed sensors [12], and mission-critical IoT
services [13-15] based on mobility, billing, security, policy
control, delay and reliability. The ultra-large-scale edge
cloud-native business is complex, and it faces technical
challenges such as decentralized computing power,
heterogeneous resources, and weak network connectivity.

The principle of edge-cloud native is to combine discrete
computing power into a larger resource pool. This
optimizes resource scheduling and provides extreme
energy efficiency by balancing peak and valley loads.
When deploying mixed services and requesting resources
from the management node, the scheduler is responsible
for selecting appropriate physical machines to deploy
these containers. Since the specifications of physical
machines are not uniform and resource levels differ,
different allocation methods yield different allocation rates.
Therefore, a key task of the scheduler is to choose the most
suitable physical machine from a pool of candidates based
on a specific policy [16-17].

Scheduling computing resources is often seen as a
vector-packing problem. If the number of containers
for each application is predetermined, the scheduler can
create an optimal deployment policy for all mixed services
simultaneously. This situation can be framed as integer
programming, solvable via general-purpose solvers or
specifically designed algorithms. If requests from various
applications reach the management node sequentially,
the scheduler must generate deployment decisions
immediately (online) with each request. The problem can
be structured as a Markov Decision Process (MDP) [18],
where the optimal policy can be determined through value
iteration or policy iteration.

Scheduling policies include priority [19], DRF
(dominant resource fairness) [20], binpack [21], Gang
Scheduling [22], and other policies based on preset rules.
Generally, these policies can achieve a good allocation
rate. However, their effectiveness greatly diminishes
when the bottlenecks are not concentrated in the same
dimension [23]. In practical scheduling, considerations
go beyond the resource dimension. They include factors
such as disaster tolerance and interference isolation as
well. For instance, services of the same application should
not all be deployed on the same physical machine. Many
applications even permit only one instance per machine.
Some applications have a mutual exclusion relationship
due to resource contention, which can significantly impact
performance. For the same cluster resources, centralization
is required for the scheduler. However, when multiple
cluster schedulers exist simultaneously, decision conflicts
may arise. The only solution is to forcibly divide the
nodes using labels or deploy multiple clusters. Multiple
sets of schedulers can also complicate maintenance and

730 Journal of Internet Technology Vol. 26 No. 6, November 2025

create uncertainty in compatibility with the upstream
Kube scheduler [24]. A pressing issue to address is how
to build a unified scheduler based on the Kube-scheduler
scheduling interface. Through a single scheduling protocol
and system architecture, it should intelligently schedule
underlying computing resources, support the deployment
of mixed services, and improve resource utilization while
guaranteeing application SLA. This is crucial to meet
the high throughput, low latency service scheduling, and
orchestration requirements for big data and AI.

Resource scheduling across the cloud and the edge
utilizes prior knowledge and perceived context information
to make decisions. These decisions are dynamically
adjusted and executed, with their effectiveness determined
by an evaluation system to ensure quality. Due to the large
volume of micro-services, their wide distribution, and the
need for low latency, there is a need for an approach that
can combine perception with the lifecycle management
of deployed services. This approach will provide support
for system self-adaptation. Intelligent scheduling can be
implemented according to runtime resources, which can
reduce the complexity of the unified resource scheduler,
improve runtime stability, and decrease resource costs.

This paper’s contributions are as follows:
(1) We formulated the multi-scenario joint optimization

problem as a cooperative, partially observable multi-agent
system.

(2) We proposed a new multi-agent reinforcement
learning called multi-scenario unified resource scheduling.
This approach allows multiple agents to work together to
achieve the best performance.

(3) We developed a hybrid architecture using Karmada,
RunD, and Koordinator. We train the policy model through
the duality and adversarial learning of the environment and
agent and complete the online verification. Experiments
revealed that our model significantly enhances the
performance of resource scheduling.

The rest of this paper is organized as follows: Section
2 describes the motivation scenario. Section 3 presents
our approach. Section 4 details our experiments. Section 5
discusses related work, and Section 6 concludes the paper.

2 Motivating Scenario

In the native edge cloud, there are numerous sub-
scenarios. Each sub-scenario is optimized independently,
creating a competitive relationship between them.
Therefore, the performance improvement of each sub-
scenario does not necessarily result in an overall one.
The optimization policy addresses the sorting problem
of multiple sub-scenarios by treating it as multiple fully
cooperative and partially observable multi-agent sequential
decision problems. Hence, the deployment policy for
each scenario changes from independent to cooperative
and mutually beneficial, as illustrated in Figure 1.
Consequently, this paper studies the following topics:

(1) The dynamic equation of a time-varying system is
fitted to represent the emergence of collective intelligence.
A unified scheduler assesses overall reward through a
comprehensive and global “referee”. A communication
module generates messages shared by multi-scenario
mixed service groups. Each message encodes the
historical observation and behavior of mixed service
groups, approximating the global environment state.
Every mixed service group gets its observations of a part
of the environment and can receive messages sent by
other groups. This model allows mixed service groups in
different scenarios to work together to achieve the best
global outcome.

(2) Flow control of mixed service groups in multiple
scenarios is considered. The unified scheduler needs
to address two key issues: efficiency and fairness.
Under certain conditions, it’s possible to achieve Pareto
efficient allocation by altering the initial allocation state
of endowments among individuals, thus considering
fairness. Moreover, due to the unpredictability of mixed
service cluster behavior, the instant reward can have a
large variance, significantly impacting the learning. If the
search is conducted in the entire real number space, it may
not converge. To minimize instantaneous loss, we have
designed upper and lower limits that enable only local
search.

IoV Mobile broadband IoT

Cloud

Edge Edge Edge

Figure 1. Multi-scenario under edge cloud-native environment

Multi-Scenario Unified Resource Scheduling in Edge Cloud-Native Environment 731

3 Our Approach

In this section, we give a formal description of
the problem in Section 3.1, propose the framework in
Section 3.2, build a multi-scenario virtual environment in
Section 3.3, and train the environment and policy models
simultaneously through the dual and adversarial learning
in Section 3.4.

3.1 Problem Formulation
This paper proposes a unified resource scheduling

approach to address the issues mentioned above. The goal
is to improve overall performance metrics. The resource
scheduling problem of multi-scenario joint optimization
is considered a fully cooperative and partially observable
multi-agent sequential decision problem. To model this
problem, we use multi-agent reinforcement learning. Each
scenario is viewed as an agent, and different resource
scheduling policies in each scenario share the same
objective. The scheduling results in one scenario consider
the user’s behavior and feedback in other scenarios. This
approach transits each scenario’s scheduling policy from
independent to cooperative and mutually beneficial. Since
we aim to utilize the user’s behavior across all scenarios,
the BiLSTM network is employed to remember historical
information and explore continuous state and action spaces
using the actor-critic method. Hence, we have named our
algorithm MS-URS (Multi-Scenario Unified Resource
Scheduling).

For the multi-agent model {A1, A1, ..., AN}, each agent
Ai corresponds to a resource scheduling scenario. It is
assumed that t

ito represents the state characteristics of all
mixed service groups observed by the agent Ai in time t.
Because the action t

ia space is very large, the decision
action space is formalized as <scene, service, op, num,
src, dst>, where service represents mixed service groups,
op∈{Push, install, offload, upload, migrate, scale}, num
represents the number of service instances, src and dst
represents the source and destination server nodes of
service migration. ai = (ωi

1, ..., ω
i
Ni), ai∈RNi

, where ωi
Ni

= {eservice, eop, enum, esrc, edst}, eservice represents the mixed
service, eop represents action, enum represents the number
of service instances, esrc and edst represents the source and
target server nodes of service migration. The reward is

t

 C1 op
(,) , 0

1
{i

ij ij
t

QoSif
r s a t

otherwise
= ∀ ≥

−
 , (1)

where QoSij opCij represents that a j-th dimension of the
service meets the agreed threshold Cij . Multiple agents will
cooperate to achieve the maximum reward.

3.2 Outline
As shown in Figure 2, the model includes a global

“referee” to assess the overall reward. A communication
module generates messages for multiple agents to share,
encoding each agent’s history of observations and

actions, which serve to estimate the global state of the
environment. Every agent processes its observations and
receives information, subsequently producing an action.
Specifically, this includes:

(1) Multi-agent: Each sub-scenario within the system
has a unique policy. Every agent formulates a policy and
simultaneously learns its policy function, mapping its state
to an action.

(2) Sequential decision making: The agent sequentially
interacts with the system, resulting in sequential actions. At
any given time, the agent interacts with the actual scenario
by executing a decision action. This current decision
influences future decisions.

(3) Full cooperation: All agents collaborate to optimize
the same target. Moreover, each agent communicates by
sending messages to others, with the integrated referee
assessing the overall reward.

(4) Partial observation: Every agent observes a segment
of the environment and can receive messages from other
agents.

Figure 2. Framework of our approach

3.3 A Multi-Agent Reinforcement Learning Framework
The Critic in Figure 2 models the “action-value”

function Q(δt−1, ot, at), which represents the overall reward
you would get from taking an action at when you receive
information δt−1 and observations ot. Each agent produces a
deterministic action, based on the function at = μi(δt−1, o

i
t).

The information is updated by the communication module,
based on observations ot and actions at.

For simplicity, we’ll focus on a case with 2 agents,
each representing a self-optimizing policy and scenario.
Our model, inspired by the Deep Policy Gradient method
(DDPG [25-26]), is also based on the Actor-Critic method
[27]. We’ve designed three crucial modules to foster
coordination and cooperation among multiple agents: a
global “Critic”, individual agents, and a communication
mechanism.

In a classical reinforcement learning problem, there
will be an optimization problem of the form (o1, r1, a1, …,
at, ot, rt). The state represents experience, i.e. st = f (o1, r1,
a1, …, at−1, ot, rt). We are addressing a challenge involving
N agents {A1, A1, ..., AN}, where each agent is associated
with a distinct scenario (e.g. mobile broadband, Internet

732 Journal of Internet Technology Vol. 26 No. 6, November 2025

of things, Internet of vehicles, etc.). The observations (ot =
(o1

t, o
2
t, ..., o

N
t)), actions (at = (a1

t, a
2
t, ..., a

N
t)), and memories

of short-term benefits (rt = r(st, a
1
t), r(st, a

2
t), ..., r(st, a

N
t)) are

all owned by the individual agents.
The agent Ai will take each decision action ai

t based
on its policy πi(st) and state st , and then it will receive a
temporary reward ri

t = r(st, a
i
t) from the environment while

the state is updated from st to st+1. The multiple agents will
cooperate to achieve the maximum reward Q(st, a

1
t, a

2
t, ...,

aN
t), which denotes the global reward due to action (a1

t, a
2
t,

..., aN
t).

The agent Ait receives the current observation ot
it from

the environment at time point t. The state is accessible to
all agents and depends not solely by the prior state, actions
and observation ot . We have developed a communication
module that employs a BiLSTM [28] network to encode
prior observations and actions into a vector. Through the
communication between the agents, the overall state can
be approximated by st ≈ {δt, ot}. Agent chooses an action
at

it = μit(st) ≈ μit(δt−1, ot
it) to maximize the future reward,

which is evaluated by a central critic Q(st, a
1
t, a

2
t, ..., a

N
t). It

is important to note that all combinations of observations
ot = (o1

t, o
2
t, ..., o

N
t) are obtained at time point t.

3.4 BiLSTM Message Mechanism
As shown in Figure 3, we have developed a messaging

mechanism based on BiLSTM to allow agents to better
cooperate by passing information to each other. More
formally, the communication module works as follows:

Figure 3. Message mechanism based on BiLSTM model

1 2, 1; 1 ;=BiLSTM([])t t t to aδ δ ϕ− − − − . (2)

Benefiting from this message δt−1, each agent can
approximate the global state of the environment st ≈ {δt−1,
ot}. This solves the problem of each agent receiving local
observations oi

t but not getting a global state st .
Loss is

[]
1:

, 1 ,

1

1 :

(|)

log (|) log (|)

((|) || ())

(, , ;)=

- E
i

Ti

T
i i i i
t t t t

t

i
KL Ti

i

i

q z x

a o z p o o z

D q z o p z

L

α ω

φ

φ

π

α ω φ τ

+

=

+

+

∑ , (3)

where BiLSTM is used to encode qϕ(z|oi
1:Ti), z is the

embedding obtained after encoder transformation, pω(oi
t+1|

oi
t, z) is the state transition decoder, πα(a

i
t| o

i
t, z) is the

decoder of the policy, DKL(.||.) is the KL distance, and
L(α, ω, ϕ; τi) is the loss function. Its overall architecture is
shown in Figure 3.

3.5 Private Actor
Each agent is an independent “actor” who takes in

local observations and shared information and initially
makes a decision. Since we are dealing with reinforcement
learning with continuous actions, we define an action as
a substantial vector ai = (ωi

1, ..., ω
i
Ni), ai∈RNi

. Thus, each
action is a vector of N i dimensions, and each dimension
is a real value. This vector will be used as a parameter to
control the multi-scenario unified resource scheduling.

Since this is a continuous behavior type, similar work
is common in control problems [12, 23, 34]. Inspired by
related work, we utilize a deterministic policy approach
rather than a random policy approach. Each agent has
an actor corresponding function μ i(st ; θ i), where the
parameters are θ i, and the function unambiguously maps a
state to an action. At time t, the agent Ait decides its action
based on the actor-network:

t t; 1, ;() ()t t t t t ti i i i i i
t ta s oµ θ µ δ θ−= ≈ , (4)

where st ≈ {δt−1, ot} denotes the communication module.
Thus, the actor’s behavior depends on both the information
δt−1 and current observation ot

it.

3.6 Centralized Critic
We have meticulously crafted a critical network

architecture that is designed to precisely estimate the
action-value function, adopting a sophisticated approach
akin to the DDPG (Deep Deterministic Policy Gradient)
algorithm, which is renowned for its ability to learn
optimal policies in continuous action spaces. Because all
agents can share a goal, we use a global critic function
Q(st, a

1
t, a

2
t, ..., a

N
t; ϕ) to fit the future rewards.

In our approach, only one agent Ait will be active at
time t, ot = {oi

t} at = {ai
t}. Consequently, it is imperative

that we streamline the action-value function to Q(δt−1, ot,
at; ϕ), and similarly, the action selection function must be
refined to μit(δt−1, ot; θ

it).

3.7 Model Training
The Critic Network Q(δt−1, ot, at ; ϕ) is meticulously

trained employing the Bellman equation. We minimize the
following loss function:

1

2
1

,
()= [((, , ;))]E t t

t t

t t
o

L Q o a y
δ

φ δ φ
−

− − , (5)

where +1

1 1 t+1,= (, , ();)t

t t

i
t t t ty r Q o a oγ δ µ δ φ+ ++ ， . (6)

The update of the network of private actors is based on

Multi-Scenario Unified Resource Scheduling in Edge Cloud-Native Environment 733

maximizing the whole expectation. Suppose at time t, Ait is
active, then the objective function is:

1

1 1,
,

()= [((, , ;) | (;)]E
t t t

t
t t

i i i
t t t

o
J Q o a a o

δ
θ δ φ µ δ θ

−

− −= . (7)

According to the chain rule, the parameter gradient of
each actor can be expressed as follows:

1

1

1 1,
,

1 1, 1,
,

()

[(, , ;) | (;)]

 = [(, , ;) | (;) (;)]

E

E

t
it

t t
it t

t t

t t t t

t t
t t

i

i i
t t t

o

i i i i
t t t t ta i

o

J

Q o a a o

Q o a a o o

θ

θ
δ

θ
δ

θ

δ φ µ δ θ

δ φ µ δ θ µ δ θ
−

−

− −

− − −

∇

≈ ∇ =

∇ = ∇

 . (8)

The goal of communication module training is to
minimize the following functions:

1

1

2
1 1 2, 1; 1

,

1 1 2, 1; 1
,

()
= [((, , ;)) | ([;)]

[(, , ;) | ([;)]

E

E

t
t t

t
t t

t t t t t t
o

t t t t t
o

L
Q o a y BiLSTM o a

Q o a BiLSTM o a
δ

δ

ψ

δ φ δ δ ψ

δ φ δ δ ψ
−

−

− − − − −

− − − − −

− =

− =
 . (9)

We make a replay buffer [23] to store each agent’s
interactions with the environment and update them in a
minibatch. In each training, we select a set of mini-batches
and train them in parallel, updating both the actor-network
and the critic-network.

3.8 Multi-layer Flow Control Based on Cross-entropy
The optimization of competition among multiple

scenarios occurs gradually. Can the scheduling process
be personalized? We propose an intervention of various
layers, referring to the division of sub-scenario types.

Earlier algorithms may not have adequately considered
these factors. A typical method involves simple weighting,
which often results in efficiency loss, leading to mostly
meaningless outcomes. However, upon closer examination
of this issue, it’s clear that some loss is inevitable. In
a purely competitive environment, optimization will
gradually occur under the current supply and demand
dynamics, reaching a local optimum. A significant
disruption could break this local optimum, causing an
immediate loss in efficiency. However, this disruption
could potentially lead to a better position than the previous
stable point.

This prompts us to consider two questions:
(1) How can we minimize the immediate loss as much

as possible?
(2) How can we reach the new local optimum as

quickly as possible?
The corresponding solution is straightforward:
(1) We will implement personalized interventions

to minimize unnecessary losses. For instance, data flow
timeliness can be stratified for intervention, exempting
scenarios that are less sensitive to data flow.

(2) Upon further abstraction, this solution naturally
defines a reinforcement learning problem: personalized

intervention equates to taking different actions for
different states, while broader and intelligent exploration
corresponds to the learning process of reinforcement
learning.

We interpret the resource scheduling behavior of
multi-scenario joint optimization as a Markov Decision
Process (MDP) where the scenario agent interacts with
the management center. The information the management
center observes is considered the state; the traffic control
policy is regarded as the action, and the environmental
feedback is seen as the reward. The optimization
problem of traffic control policy can also be solved by
Reinforcement Learning (RL). To consider the influence
of traffic structure change, we combine the change in
hierarchical traffic proportion and environmental feedback
as the reward.

The scenario’s context typically includes the long-term
behavior preference of the agent, the real-time state, and
the behavior sequence representation, which we denote as
s∈Rd.

Suppose there are m signals that require intervention,
and each layer is abstracted into a feature. If the agent
belongs to the layer, the score is 1; otherwise, it’s 0. The
weight corresponding to each layer forms an action.
Instead of directly outputting the absolute value of the
action, a common technique involves using sigmoid (or
tanh, which are interchangeable) in the final output layer
of the neural network. This bounds the output of the actor-
network to [0, 1] in each dimension, i.e. o∈[0,1]m, That is,
a transformation is then applied as follows:

() , {1, 2,..., }k k k k ka L U L o k m= + − ∀ ∈ , (10)

Here U k and Lk are the upper bound and low bound
of the weight of the k-th dimensional hierarchical feature,
which generally comes from domain knowledge, but is
usually limited by experience.

The first element in reward design is the stratified
proportion pi(π), which represents the ratio of stratified
traffic to total traffic. However, efficiency must be
considered during traffic regulation, so the behavior
feedback of multi-scenario mixed services is a crucial
reward factor. Different actions such as push, install,
uninstall, update, migration and scale are factored into the
feedback. Each action holds varying influence factors. All
these actions in each scenario are collectively referred to as
rewards. The stratified ratio also requires a control group.
For example, since the performance difference is inherent
to the scenario and unrelated to traffic control actions, its
original value is subtracted from the stratified ratio in the
baseline bucket when calculating the actual stratified ratio
pi(πbasic), i.e

(,) Re () (() ()
m

actions i i i basic

i

r s a ward n p pλ π π= + −∑ , (11)

The above model is based on the reward of a particular
scenario. However, due to the unpredictability of scenario

734 Journal of Internet Technology Vol. 26 No. 6, November 2025

behavior, instant rewards can exhibit high variance,
which significantly impacts the learning process. Thus,
searching for the entire real number space may lead to
non-convergence. To address this, we establish upper and
lower bounds, allowing the Reinforcement Learning (RL)
algorithm to search within a local space. This approach
simplifies the learning process but introduces two new
challenges:

1. How can we ensure the validity of the upper and
lower bounds?

2. How can we avoid settling on a locally optimal
interval?

To solve these problems, we employ the Cross-Entropy
Method (CEM) to dynamically update the action’s upper
and lower bounds in real-time. Specifically, we disregard
the state and focus on a globally optimal action, which we
assume follows a Gaussian distribution ak, such as

2
* (,)k k ka N µ σ∈ , (12)

At the beginning of each iteration, we sample s
samples from this distribution, i.e. Ω1, Ω2, ..., Ωs, and then
deliver sufficiently on these actions to obtain a sufficiently
confident reward value for the corresponding action.

1

1 1

1

1
()= ()

N

i

i

R r
N

Ω Ω∑
2

2 2

1

1
()= ()

N

i

i

R r
N

Ω Ω∑
...

1

1
()= ()

Ns

s i s

i

R r
N

Ω Ω∑

(13)

We then sort the pairs R(Ω1), R(Ω2), ..., R(Ωs) and pick
out the subset D of top p that maximizes the probability
that the Gaussian distribution produces these samples, i.e

* 2*

* 2* * 2*

,

 (,) log (| ,)max
k k

i
k k k k

i D

f N
µ σ

µ σ µ σ
∈

= Ω∑ (14)

The above equation has an optimal solution, that is, μ*
k

is the mean of all samples in D, σ 2*
k is the variance of all

samples, but if we solve it directly, the model will iterate
too fast. On the one hand, it will completely forget the
information of previous iterations. On the other hand, this
will be directly output to the RL learning actor above.
Therefore, the bound cannot be changed by more than one
block, otherwise, RL may not be able to keep up with the
change in time. Therefore, we adopt a slow update method,
i.e

+
k k

k

f
µ µ α

µ

∂
←

∂
 (15)

+
k k

k

f
σ σ α

σ

∂
←

∂
(16)

After the update, we use a specific method to define
the upper and lower bounds of the k-th dimensional action.
This ensures the RL-regulated action is within a globally
optimal space

2k

k k
L µ σ← − (17)

2k

k k
U µ σ← + (18)

The overall flow of our implementation is as follows:
The initial upper bound and low bound are selected to

start RL learning. At the same time, the upper bound and
low bound are dynamically adjusted.

Algorithm 1. Unified resource scheduling under
multiple scenarios

Input: The environment
Body
Initialize the actor networks θ = {θ1, ..., θN} and critic
network φ
Initialize the replay buffer R

for k steps do
for i = 0,1,2,... ,M do

while t<T and ot ≠ terminal do
 Generate Action t

1,()t ti i
th oµ θ− ； according to

agent it

Receive new observation ot+1 and get
reward rt with Equation(11)
get ht with Equation (2)
t=t+1
end
Store episode 0 1 1 1 1 2 2 2{ , , , , , , , ,...}h o a r h o a r
in R

end for
end for
sample minibatch B from R
foreach episode in B do

for i = T downto 1 do
update the critic by Equation (5)
update the it-th actor by Equation(15)(16)
update the upper bound and low bound of
action by Equation(17)(18)
update the communication component by
Equation(3)

end
end for

Output: Private Actor θ = {θ1, ..., θN}

Multi-Scenario Unified Resource Scheduling in Edge Cloud-Native Environment 735

4 Experiments

In this section, we conduct experiments to compare our
approach with other state-of-the-art approaches. We aim to
answer the following questions:

(1) How does our approach compare with published
state-of-the-art approaches?

(2) How does the number o f dev ices a ffec t
performance?

(3) What is the impact of communication distance on
performance?

(4) How does task size affect performance?
(5) What is the effect of task generation speed on

performance?
(6) How do CPU cycles impact performance?
(7) How does our approach which includes hierarchical

flow control compare with the one excluding hierarchical
flow control in terms of performance?

4.1 Experimental Design
We use an edge-cloud network composed of cloud

servers, edge nodes, and terminal devices. The cloud
server is a physical machine equipped with a 16-core
Intel Xeon E5-2620 v4 CPU, 64GB memory, 1TB hard
disk, and Ubuntu 18.04 operating system. It serves as a
cloud computing center, offering powerful computing and
storage capabilities. Edge nodes are laptops equipped with
a 4-core Intel Core i5-8250U CPU, 8GB memory, 256GB
hard disk, and Ubuntu 18.04 operating system. They form
the edge computing layer, providing close computing and
storage services. The connection between the cloud server,
edge nodes, and terminal devices is established through
wired or wireless networks, with network bandwidth and
latency dynamically changing according to the actual
situation.

We use the mixed architecture built by Karmada,
RunD, and Koordinator as the native platform of
edge cloud. Various resource scheduling policies are
implemented using its APIs and tools. The performance
of these policies is evaluated by monitoring and recording
various performance indicators.

The training process involves obtaining user behavior
logs in real time to provide training samples for our
approach. These samples are stored in a replay buffer.
Then, the model is updated and applied online. This
process is repeated, resulting in a dynamically updated
model that captures changes in user behavior.

Each agent’s localized observations are encapsulated
within a 52-dimensional vectorial space, while their
respective behaviors are characterized by vectors of 7 and
3 dimen-sions. For simplicity, a 10-dimensional vector
(with zeroes filling in the gaps) is used as the output of
BiLSTM and the evaluation network.

The communication module takes a 62-dimensional
vector (52 + 7 + 3 = 62) as input and outputs a
10-dimensional vector. The actor network also uses a
62-dimensional input, with a hidden layer size of 32/32/7.
The initial two layers of the network architecture are
equipped with Rectified Linear Unit (ReLU) activation

functions to introduce non-linearity, facilitating the
network’s ability to learn complex patterns. In contrast, the
final layer is endowed with a Softmax activation function,
which is instrumental in transforming the output into a
probability distribution, essential for making informed
decisions in the context of multi-agent systems.

The Critic network is meticulously engineered with a
dual-layered hidden architecture, each layer comprising 32
neurons, all of which are activated through the Rectified
Linear Unit (ReLU) function, enabling the network to
effectively capture and process the intricate dynamics
of the multi-agent environment. The gain attenuation
coefficient in the Bellman formula is set to γ = 0.95.
We use RMSProp to learn the network parameters, with
learning rates of 10-2-3 and 10, and a hidden layer of 128,
corresponding to the ac-tor-network and the critic-network,
respectively.

4.2 Comparison
To comprehensively assess the eff icacy and

performance of our algorithm, we conducted a rigorous
comparison against a spectrum of benchmarks, including
Ex-pert policies, SM-NE, DQN, and Random scheduling.
We consider factors such as cost and time.

We compare our approach with the following
approaches:

1. Expert policies: Experts use the ACKTR algorithm
[29], which is based on centralized management, to
address the problem. Each expert can observe the entire
instantaneous system state.

2. SM-NE [30]: This decentralized task scheduling
algorithm requires a centralized server for some
information. SM-NE has been applied to pervasive edge
computing networks through game theory and Nash
equilibrium.

3. DQN-based solution [31]: This approach considers
the nuanced dynamics of peer-to-peer offset loading.
Furthermore, it is underpinned by a centralized scheduling
paradigm, which harnesses the predictive capabilities of
Deep Q-Networks (DQN) to optimize resource allocation
and task distribution across the network.

4. Random scheduling: Devices are randomly selected
for offloading, regardless of their performance. Once a
suitable device is found, it can be used without further
search.

In this section, we undertake an exhaustive assessment
of the holistic efficacy across five distinct policy
frameworks by Expert policies, SM-NE approach, DQN-
based solutions, and Random scheduling. In Figure 4, we
present a graphical representation of the mean total cost
metrics over the final 500 epochs, utilizing this mean to
mitigate the impact of algorithmic-induced variability.
At task densities of 10, 12, and 14, the aggregate costs
for both Expert policies and our proposed methodology
are strikingly comparable and significantly lower than
those associated with DQN-based solutions. A discernible
divergence emerges at a density of 16, which intensifies
at densities 18, 20, and 22. Nonetheless, our approach
exhibits a commendable level of stability, with only a
marginal escalation in costs attributable to the escalation

736 Journal of Internet Technology Vol. 26 No. 6, November 2025

in the total volume of tasks. Our research findings indicate
that an edge offloading system reliant on a solitary high-
capacity edge server is capable of delivering consistent
service within a limited range of task densities. As the
task load increases, the efficiency of such a singular
offloading framework diminishes markedly. Although our
approach performs slightly worse than Expert policies
at low densities, this difference is negligible due to task
randomness. Our approach maintains stability as task
density increases. Therefore, our approach can effectively
perform offloading at a low cost in various scenarios.

Figure 4. Total cost comparison on different task densities

4.3 Performance Evaluation
4.3.1 Impacts of Total Device Number

Figure 5 provides a comprehensive visualization of the
performance metrics across a spectrum of device counts.
Our analysis reveals that the mean task completion times
achieved by our approach are notably superior to those of
the SM-NE, DQN-based solutions, and random scheduling
strategies, yet marginally exceed the times recorded by
the expert policy. To illustrate, in an environment with 30
devices, the average task completion times are as follows:
the expert policy is 0.19 seconds, MILP is 0.18 seconds,
SM-NE is 0.15 seconds, our DQN is 0.11 seconds, and
the random scheduling is 0.21 seconds, respectively.
This comparative analysis underscores the efficiency
and effectiveness of our approach in optimizing task
completion times across varying device configurations.

Our approach’s effectiveness stems from its use
of GAIL [32] to train its policy, which allows it to
approximate the performance of an expert with an
acceptable gap. The expert policy, grounded in the
overall system state, solves the optimization problem by
attaining a Nash equilibrium among different devices,
much like a centralized control approach. In comparison,
SM-NE calculates the Nash equilibrium based on factors
like average task arrival intensity and transmission rate.
However, in edge computing networks, infor-mation
updates may lag, limiting SM-NE’s performance relative
to our approach. The random scheduling algorithm,
which randomly selects devices for offloading, doesn’t
have predictable performance. Although centralized,
the DQN-based solution primarily seeks to minimize
system cost, while ensuring tasks can be executed before

their deadlines. Thus, task completion delay may not be
minimized significantly.

Figure 5. Average task completion time with different
number of devices

Figure 6 delineates the offloading ratio across
varying device numbers, which represents the proportion
of tasks offloaded relative to the total tasks generated
within the network. It is observed that the DQN-based
solution exhibits the highest offloading rate, whereas the
expert policy and our proposed methodology surpass
the offloading rates of SM-NE and random scheduling
algorithms. For instance, in a scenario with 20 devices,
the offloading ratios are as follows: the expert policy at
0.15, MILP at 0.14, SM-NE at 0.1, the DQN scheme at
0.08, and the random scheduling scheme at 0.16. This data
underscores the efficacy of our approach in effectively
distributing tasks across devices, ensuring optimal resource
utilization and performance.

10 20 30 40 50 60

Number of devices

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

O
ffl

oa
di

ng
 ra

tio
s

Expert

Our approach

SM-NE

Random

DQN-based solution

Figure 6. Offloading ratio with different numbers of
devices

In scenarios where the device number is less than
ten, the offloading rates achieved by the expert policy,
MILP, and SM-NE are surpassed by those of the DQN-
based solution and the random scheduling algorithm. This
phenomenon arises from the fact that the Nash equilibrium
conditions limit the potential for task offloading to
other devices, thereby constraining the offloading rates.
Conversely, the DQN-based solution is capable of ef-

Multi-Scenario Unified Resource Scheduling in Edge Cloud-Native Environment 737

fectively offloading tasks to edge servers or other devices,
which leads to a substantial reduction in system costs,
even when the number of devices is limited. As the device
count escalates, the offloading rates for all five algorithms
experience an uptick, attributable to the increased
opportunities for task offloading that become available
with a denser device network.

Figure 7 graphica l ly represents the average
performance enhancement across the five algorithms,
measured by the reduction in task completion time
achieved by offloading tasks between devices rather than
executing them locally. Our approach exhibits the most
significant alignment with the expert policy’s performance
and outperforms the remaining algorithms. This is
attributed to our method’s emulation of expert behavior,
which is inherently optimized for task execution. The
DQN-based solution, on the other hand, prioritizes meeting
task deadlines over performance optimization.

10 20 30 40 50 60

Number of devices

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Av
er

ag
e

pe
rfo

rm
an

ce
 im

pr
ov

em
en

ts

Expert

Our approach

SM-NE

Random

DQN-based solution

Figure 7. Average performance improvement with
different number of devices

With an increasing number of devices, the average
performance improvement for all algorithms is observed
to increase, as the collective computational resources lead
to a decrease in the average task completion time, thereby
amplifying the overall efficiency of the system.
4.3.2 Generalization Ability of Our Approach

Figure 8 provides a detailed visualization of the
average task completion time’s performance trend
concerning the communication distance. It is observed that
as the communication distance extends, the performance
metrics of all five algorithms tend to improve. For instance,
at a communication distance of 60 meters, the average
task completion times are recorded as 0.24 seconds, 0.21
seconds, 0.16 seconds, 0.12 seconds, and 0.26 seconds for
the respective algorithms. Upon increasing the distance to
80 meters, the completion times are further optimized to
0.32 seconds, 0.29 seconds, 0.20 seconds, 0.14 seconds,
and 0.35 seconds. This trend suggests that greater
communication distances may paradoxically lead to
enhanced task completion efficiency, potentially due to the
system’s ability to distribute tasks more effectively across
a wider network of devices.

This enhancement is attributed to the fact that an
extended communication range facilitates greater inter-

device connectivity, thereby providing a broader array
of options for task offloading, as more devices become
accessible for this purpose. Furthermore, our policy’s
performance aligns most closely with that of the
expert policy, reflecting a sophisticated understanding
of task distribution and offloading strategies. As the
communication distance expands, the performance
disparities among the five algorithms diminish, owing
to the augmented pool of devices that can participate in
task offloading, which levels the playing field in terms of
efficiency and effectiveness across the different algorithmic
approaches.

Figure 8. Average task completion time with different
communication distance

Figure 9 delineates the offloading rate performance
across varying communication distances. Our methodology
achieves a higher offloading rate compared to the SM-NE
and random scheduling algorithms, yet it falls short of the
DQN-based solutions. This discrepancy arises from our
approach’s capability to effectively distribute tasks across
a multitude of devices, thereby emulating the expert policy
with high fidelity. The nuanced task scheduling mechanism
inherent in our approach enables a more efficient
offloading strategy, which, while not surpassing the DQN-
based solutions, still outperforms the SM-NE and random
scheduling algorithms in terms of offloading efficiency.

50 60 70 80 90 100

communication distance(m)

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

O
ffl

oa
di

ng
 ra

tio
s

Expert

Our approach

SM-NE

Random

DQN-based solution

Figure 9. Offloading ratio with different communication
distance

The offloading ratio exhibits a positive correlation
with the expansion of communication distance. At a

738 Journal of Internet Technology Vol. 26 No. 6, November 2025

communication distance of 50 meters, the offloading ratios
for the expert policy, our approach, the SM-NE, the DQN-
based solution, and the random scheduling algorithm
are recorded as 0.22, 0.19, 0.15, 0.10, and 0.23 seconds,
respectively. Upon increasing the distance to 70 meters,
the offloading times for the aforementioned algorithms are
adjusted to 0.27, 0.23, 0.17, 0.13, and 0.31 seconds. This
trend indicates that with greater distances, the potential for
task offloading is enhanced, allowing for more efficient
resource utilization and improved system performance
across the board.

This trend can be attributed to the limited inter-device
communication opportunities at shorter communication
distances, which consequently restricts the scheduling and
processing of tasks across various devices.
4.3.3 Convergence Time

We evaluated the convergence time of schemes based
on our approach, SM-NE, and DQN with varying numbers
of devices, as depicted in Figure 10. When the network
has a small number of devices, our approach and SM-NE
show little difference in convergence time. Nonetheless,
with an escalation in the number of devices, the merits of
our approach become increasingly evident. It consistently
demonstrates the shortest solution convergence time.

In our methodology, while individual devices may
not have access to the comprehensive real-time network
state, the learning agent is capable of emulating a
centralized policy through training within a decentralized
environment. The expert data thus gathered can be
leveraged within a Generative Adversarial Network (GAN)
to forecast rewards, effectively reducing the variability in
the distribution of observation-action pairs.

10 20 30 40 50 60

Number of devices

0

200

400

600

800

1000

1200

1400

1600

1800

C
on

ve
rg

en
cy

 ti
m

es
(s

)

Our approach

SM-NE

DQN-based solution

Figure 10. Convergence time with different number of
devices

On the other hand, the SM-NE algorithm struggles
to obtain immediate system state information in parallel
and distributed systems. This includes device connections
and updated average task arrival rates. Consequently, this
could lead to decision-making based on outdated data.
Furthermore, with an increasing number of devices, the
computational time to determine the Nash Equilibrium
(NE) also escalates, exacerbated by the latency in
information synchronization across the network.

DQN-based solutions, which operate in a centralized

manner, train a learning model that relies on the
comprehensive state of the system to concurrently
determine actions for all tasks at each time interval.
However, the vastness of the state and action space
necessitates extended training periods for the model, a
duration that is further prolonged with an increase in the
number of devices.
4.3.4 Impacts of Task Generation Speed

Figure 11 illustrates the average task completion
time for the five algorithms in response to variations
in task generation velocity. Task generation velocity is
defined as the maximum quantity of tasks that a device
can generate within a specific timeframe. As the task
generation velocity intensifies, the average completion
time for these algorithms correspondingly ascends. This
escalation is attributed to the increased volume of tasks in
each device’s local queue at lower generation velocities.
When the task generation rate surpasses 4 tasks per time
slot, the completion time experiences a steep ascent due to
the cumulative impact of computational and transmission
delays.

Figure 11. Average task completion time with different
task generation speeds

4.3.5 Impact of CPU Cycles
This study delves into the performance trajectory of the

average task completion time for five distinct algorithms,
contingent upon varying CPU cycle counts. Here, CPU
cycles denote the peak computational capacity that a
device can deliver. With an augmentation in CPU cycles,
the performance ratio diminishes.

As depicted in Figure 12, at a CPU cycle rate of 9
gigacycles, the average task completion times for the
expert policy, our approach, the SM-NE algorithm, the
DQN solution, and random scheduling are recorded at
0.14 seconds, 0.15 seconds, 0.20 seconds, 0.32 seconds,
and 0.17 seconds, respectively. Upon elevating the CPU
cycle to 12 gigacycles, these times are reduced to 0.09
seconds, 0.10 seconds, 0.12 seconds, 0.15 seconds, and
0.13 seconds, respectively.

This trend is attributable to the fact that an increase
in CPU cycles equips each device with enhanced
computational capabilities. As a result, the processing
latency for individual tasks is mitigated, culminating in a
reduction in the average task completion time.

Multi-Scenario Unified Resource Scheduling in Edge Cloud-Native Environment 739

Figure 12. Average task completion time with different
CPU cycles

However, there is a noticeable performance gap
compared to the expert policy due to the imitation
capability of our approach.
4.3.6 Impact of Hierarchical Flow Control

We examine the effects of managing the proportion
of multi-layered traffic in a real environment. Figure 13
displays the increase in the offloading rate of our approach
including layered traffic control compared to our approach
without layered traffic control. Hierarchical traffic control
policy consistently outperforms our standard policy.

00
:00

02
:24

04
:48

07
:12

09
:36

12
:00

14
:24

16
:48

19
:12

21
:36

00
:00

0

0.05

0.1

0.15

0.2

0.25

Im
pr

.o
f H

ie
ra

rc
hi

ca
l f

lo
w

co
nt

ro
l

Figure 13. Average performance improvements with our
approach including hierarchical flow control compared to
our approach without hierarchical flow control

5 Related Work and Discussion

Resource management plays a pivotal role in both
cloud and edge computing environments. The strategic
allocation and deployment of storage, network bandwidth,
and computing resources are instrumental in achieving
substantial reductions in energy consumption. Offloading,
as a technique, is designed to bolster the Quality of Service
(QoS) by judiciously distributing the computational
burden, thereby optimizing resource utilization and
enhancing overall system efficiency.

Considering the inherent complexity and dynamism
of real-world scenarios, the offloading algorithms
and computing architectures must exhibit exceptional

scalability to adapt effectively. Nonetheless, the majority of
existing models grapple with the challenge of addressing
issues across diverse scenarios due to the inherent
limitations of both the models and the offloading strategies
they employ.

In single-user edge computing systems, offloading
is facilitated between an individual user and a single
edge server or a cluster of edge servers. The distinction
between deterministic and stochastic tasks necessitates the
development of distinct task models and corresponding
solutions. For example, Wang et al. [33] concentrate on
reducing energy expenditure and execution latency by
meticulously tuning the transmission power and rate. They
transform the inherently non-convex optimization problem
into a convex form, leveraging variable substitution
methodologies to achieve a solution.

Mahmoodi et al. [34] address the challenges of
energy and cost optimization in intricate scenarios
characterized by arbitrary task dependencies, as opposed
to linear sequences. They delineate task relation graphs
that incorporate both parallel and sequential elements
and devise a comprehensive offloading strategy aimed at
reducing energy con-sumption and latency.

The stochastic task model presents a heightened
level of complexity. Dong et al. [35] have crafted an
adaptive offloading algorithm that adeptly balances power
consumption with application execution duration, while
maintaining a low computational complexity.

In reference [36], several dynamic issues are
considered jointly, including resource allocation and
control of the network interface. A DREAM algorithm is
proposed to solve these problems and is verified in terms
of energy saving and latency reduction on the Android
platform.

In the realm of multi-user systems, cooperative
resource management encompasses the strategic allocation
and utilization of both radio and computing resources to
optimize system performance. Different offloading schemes
are required for centralized and distributed systems. In a
centralized system, the MEC server processes computing
requests and distributes resources among mobile devices.

The diversity of devices inherent in edge computing
environments introduces complexities that challenge
the efficiency of offloading processes. Conventional
approaches frequently struggle to deliver optimal solutions
when confronted with dynamic offloading challenges that
entail multiple constraints. Nonetheless, the integration
of reinforcement learning has marked a significant
advancement in tackling these complexities.

Research such as [37] has constructed a simple
Q-Learning-based offloading model, where an edge server
receives several tasks from a single device. Despite the
model’s reliance on the Q-function to determine the most
advantageous offloading decisions, contingent upon device
capabilities and energy availability, it is not endowed with
sufficient robustness. Consequently, the Deep Q-Network
(DQN) has emerged as a favored instrument in the field
of edge computing offloading research, offering a more
resilient approach to decision-making.

740 Journal of Internet Technology Vol. 26 No. 6, November 2025

Duc Van Le and Chen-Khong Tham have devised
an algorithm that integrates Deep Q-Network (DQN) to
concurrently account for task loss probability and user
mobility when making optimal offloading decisions [38].
Parallel studies, such as [39] and [40], have also embraced
DQN-based algorithms, with an emphasis on task
allocation that takes into account radio resources, thereby
crafting a more holistic model. Notably, [39] introduces an
innovative action selection technique aimed at enhancing
efficiency by partitioning the optimization problem
into offloading and allocation components, effectively
mitigating computational complexity.

While these studies demonstrate the potential of
deep reinforcement learning for offloading optimization,
their models do not reveal their adaptability to different
scenarios, which is our main interest.

In response to this challenge, we have architected a
two-tier framework that facilitates load offloading from
the terminal devices to the edge servers and among the
edge servers themselves. This system enables a rational
distribution of regional resources at a more elevated
level, thereby enhancing the efficiency of dynamic task
offloading and averting the wastage of resources.

Subsequently, we implemented a deep reinforcement
learning algorithm that is particularly tailored to the
nuances of edge computing environments. In contrast to
Q-learning, which is limited to addressing a finite number
of states, our algorithm is adept at optimizing sequential
decision-making processes within a significantly broader
state space.

In contrast to policies derived from Deep Q-Networks
(DQN) , our approach demands a more modes t
computational footprint and achieves convergence at a
more expedited pace. DQN-based policies rely on powerful
GPUs, while our policy can be implemented on devices
with only multi-core CPUs, making it more suitable for
edge devices with limited computing resources.

In the realm of Multi-Agent Reinforcement Learning
(MARL) [41], a collective of autonomous and interactive
agents inhabit a shared environment. Each agent, leveraging
its unique information, formulates actions through its
policy function. The interactions among these agents span
a spectrum: from complete cooperation, where all agents
pursue a unified objective, to full competition, where goals
are opposed. Hybrid models represent a nuanced blend that
straddles these polarities.

6 Conclusion and Future Work

In conclusion, the approach we have developed
presents a highly scalable and robust offloading solution
that is well-suited for dynamic edge computing scenarios.
This is accomplished by harnessing the transformative
capabilities of deep reinforcement learning within the task-
scheduling paradigm. Our two-tier architecture, combined
with the use of Generative Adversarial Imitation Learning
(GAIL), allows for efficient and strategic allocation of
resources. This is achieved while maintaining a high level
of adaptability across a variety of different scenarios,

making our policy not only effective but also more feasible
for implementation in edge devices that have limited
resources. This is particularly important when compared to
policies based on Deep Q-Network (DQN), which can be
more demanding in terms of resources. Looking forward,
we aim to enhance our model’s gen-eralization capability
as part of our future work. This is an important aspect
that we believe will further improve the effectiveness of
our approach. Moreover, we also plan to investigate the
potential benefits of integrating federation learning into our
framework. We hypothesize that this could further improve
resource utilization and overall system performance,
enhancing the robustness and scalability of our solution.

Acknowledgment

This work was supported by the Natural Science
Foundation Innovation and Development Joint Fund of
Hubei Province in China (2025AFD031), Hubei Province
Science and Technology Plan Project (2025DJC021), and
Hubei Superior and Distinctive Discipline Group of “New
Energy Vehicle and Smart Transportation”.

References

[1]	 A. Damiani, G. Fiscaletti, M. Bacis, R. Brondolin, M. D.
Santambrogio, BlastFunction: A Full-stack Framework
Bringing FPGA Hardware Acceleration to Cloud-native
Applications, ACM Transactions on Reconfigurable
Technology and Systems (TRETS), Vol. 15, No. 2, pp. 1-27,
June, 2022.
https://doi.org/10.1145/3472958

[2]	 S. Pardeshi, C. Khairnar, K. Alfatmi, Analysis of data
handling challenges in edge computing, International
Journal of Performability Engineering, Vol. 18, No. 3, pp.
176-187, March, 2022.
https://doi.org/10.23940/ijpe.22.03.p4.176187

[3]	 A. Boudi, M. Bagaa, P. Poyhonen, T. Taleb, H. Flinck, AI-
Based Resource Management in Beyond 5G Cloud Native
Environment, IEEE Network, Vol. 35, No. 2, pp. 128-135,
March/April, 2021.
https://doi.org/10.1109/MNET.011.2000392

[4]	 G. A. Jimenez-Maggiora, S. Bruschi, H. Qiu, J. So, P.
S. Aisen, Corrigendum to: ATRI EDC: a novel cloud-
native remote data capture system for large multicenter
Alzheimer’s disease and Alzheimer’s disease-related
dementias clinical trials, JAMIA Open, Vol. 5, No. 1, pp.
1-14, April, 2022.
https://doi.org/10.1093/jamiaopen/ooac008

[5]	 M. Al-Quraan, L. Mohjazi, L. Bariah, A. Centeno, A. Zoha,
K. Arshad, K. Assaleh, S. Muhaidat, M. Debbah, M. Imran,
Edge-Native Intelligence for 6G Communications Driven
by Federated Learning: A Survey of Trends and Challenges,
IEEE Transactions on Emerging Topics in Computational
Intelligence, Vol. 7, No. 3, pp. 957-979, June, 2023.
https://doi.org/10.1109/TETCI.2023.3251404

[6]	 H. Wang, G. Tang, K. Wu, J. Wang, PLVER: Joint Stable
Allocation and Content Replication for Edge-assisted
Live Video Delivery, IEEE Transactions on Parallel and
Distributed Systems, Vol. 33, No. 1, pp. 218-230, January,
2022.
https://doi.org/10.1109/TPDS.2021.3090784

Multi-Scenario Unified Resource Scheduling in Edge Cloud-Native Environment 741

[7]	 S. Kassir, G. Veciana, N. Wang, X. Wang, P. Palacharla,
Joint Update Rate Adaptation in Multiplayer Cloud-Edge
Gaming Services: Spatial Geometry and Performance
Tradeoffs, Twenty-second International Symposium on
Theory, Algorithmic Foundations, and Protocol Design for
Mobile Networks and Mobile Computing, Shanghai, China,
2021, pp. 191-200.
https://doi.org/10.1145/3466772.3467048

[8]	 N. Sreekumar, A. Chandra, J. Weissman, Position Paper:
Towards a Robust Edge-Native Storage System, IEEE/
ACM Symposium on Edge Computing (SEC), San Jose, CA,
USA, 2020, pp. 285-292.
https://doi.org/10.1109/SEC50012.2020.00040

[9]	 G. Nain, K. K. Pattanaik, G. K. Sharma, Towards edge
computing in intelligent manufacturing: Past, present and
future, Journal of Manufacturing Systems, Vol. 62, pp. 588-
611, January, 2022.
https://doi.org/10.1016/j.jmsy.2022.01.010

[10]	 Q. Huang, Y. Huang, The Significance of Urban Cockpit for
Urban Brain Construction, 11th International Conference
on E-business, Management and Economics, Beijing,
China, 2020, pp. 70-73.
https://doi.org/10.1145/3414752.3414800

[11]	 L. Loven, T. Leppnen, E. Peltonen, J. Partala, E. Harjula, P.
Porambage, M. Ylianttila, J. Riekki, EdgeAI: A Vision for
Distributed, Edge-native Artificial Intelligence in Future 6G
Networks, 6G Wireless Summit, Levi, Finland, 2019, pp.
1-2.

[12]	 J. Okwuibe, J. Haavisto, E. Harjula, I. Ahmad, M.
Ylianttila, SDN Enhanced Resource Orchestration of
Containerized Edge Applications for Industrial IoT, IEEE
Access, Vol. 8, pp. 229117-229131, December, 2020.
https://doi.org/10.1109/ACCESS.2020.3045563

[13]	 X. He, H. Lu, Y. Mao, K. Wang, QoE-driven Task
Offloading with Deep Reinforcement Learning in Edge
intelligent IoV, IEEE Global Communications Conference,
Taipei, Taiwan, 2020, pp. 1-6.
https://doi.org/10.1109/GLOBECOM42002.2020.9348050

[14]	 Y. Zhai, W. Sun, J. Wu, L. Zhu, J. Shen, X. Du, M. Guizani,
An Energy Aware Offloading Scheme for Interdependent
Applicat ions in Software-Defined IoV With Fog
Computing Architecture, IEEE Transactions on Intelligent
Transportation Systems, Vol. 22, No. 6, pp. 3813-3823,
June, 2021.
https://doi.org/10.1109/TITS.2020.3044177

[15]	 M. Liwang, R. Chen, X. Wang, Resource Trading in Edge
Computing-enabled IoV: An Efficient Futures-based
Approach, IEEE Transactions on Services Computing,
Vol. 15, No. 5, pp. 2994-3007, September-October, 2022.
https://doi.org/10.1109/TSC.2021.3070746

[16]	 M. C. Ogbuachi, A. Reale, P. Suskovics, B. Kovacs,
Context-Aware Kubernetes Scheduler for Edge-native
Applications on 5G, Journal of Communications Software
and Systems, Vol. 16, No. 1, pp. 85-94, March, 2020.
https://doi.org/10.24138/jcomss.v16i1.1027

[17]	 S. H. VanderLeest, ARINC 653 hypervisor, 29th Digital
Avionics Systems Conference, Salt Lake City, UT, USA,
2010, pp. 5.E.2-1-5.E.2-20.
https://doi.org/10.1109/DASC.2010.5655298

[18]	 Y. Zhou, B. Li, T. R. Lin, Maintenance optimisation of
multicomponent systems using hierarchical coordinated
reinforce-ment learning, Reliability Engineering and
System Safety, Vol. 217, Article No. 108078, January, 2022.
https://doi.org/10.1016/j.ress.2021.108078

[19]	 C. Li, J. Liu, W. Li, Y. Luo, Adaptive priority-based data

placement and multi-task scheduling in geo-distributed
cloud systems, Knowledge-Based Systems, Vol. 224, Article
No. 107050, July, 2021.
https://doi.org/10.1016/j.knosys.2021.107050

[20]	 C. You, C. Ren, L. Li, Online Multi-resource Social Welfare
Maximization for Non-Preemptive Jobs, IEEE Access, Vol.
8, pp. 97920-97934, May, 2020.
https://doi.org/10.1109/ACCESS.2020.2996630

[21]	 Y. Jeon, H. Baek, S. Pack, Mobility-Aware Optimal Task
Offloading in Distributed Edge Computing, International
Conference on Information Networking (ICOIN), Jeju
Island, Korea, 2021, pp. 65-68.
https://doi.org/10.1109/ICOIN50884.2021.9334008

[22]	 M. S. Mastoori, G. Rahmanian, The improved greedy gang
scheduling by minimizing context switch condition, 26th
International Computer Conference, Computer Society of
Iran (CSICC), Tehran, Iran, 2021, pp. 1-5.
https://doi.org/10.1109/CSICC52343.2021.9420557

[23]	 Y. Mao, Y. Fu, W. Zheng, L. Cheng, Q. Liu, D. Tao,
Speculative Container Scheduling for Deep Learning
Applications in a Kuber-netes Cluster, IEEE Systems
Journal, Vol. 16, No. 3, pp. 3770-3781, September, 2022.
https://doi.org/10.1109/JSYST.2021.3129974

[24]	 L. Xu, K. Wang, Z. Ouyang, X. Qi, An improved
binary PSO-based task scheduling algorithm in green
cloud computing, 9th International Conference on
Communications and Networking, Maoming, China, 2014,
pp. 126-131.
https://doi.org/10.1109/CHINACOM.2014.7054272

[25]	 Y. Liu, H. Liang, Y. Xiao, H. Zhang, J. Zhang, L. Zhang,
L. Wang, Logistics-involved service composition in a
dynamic cloud manufacturing environment: A DDPG-
based approach, Robotics and Computer-Integrated
Manufacturing, Vol. 76, Article No. 102323, August, 2022.
https://doi.org/10.1016/j.rcim.2022.102323

[26]	 H. S. Chauhan, H. Babbar, S. Rani, D2PG: Deep
Deterministic Policy Gradient-Based Vehicular Edge
Caching Scheme for Digital Twin-Based Vehicular
Networks, International Journal of Performability
Engineering, Vol. 19, No. 5, pp. 350-358, May, 2023.
https://doi.org/10.23940/ijpe.23.05.p7.350358

[27]	 Q. Yang, R. Parasuraman, A Strategy-Oriented Bayesian
Soft Actor-Critic Model, arXiv, arXiv:2303.04193, March,
2023.
https://arxiv.org/abs/2303.04193

[28]	 T. Chen, R. Xu, Y. He, X. Wang, Improving sentiment
analysis via sentence type classification using BiLSTM-
CRF and CNN, Expert Systems with Applications, Vol. 72,
pp. 221-230, April, 2017.
https://doi.org/10.1016/j.eswa.2016.10.065

[29]	 Y. Wu, E. Mansimov, S. Liao, R. Grosse, J. Ba, Scalable
trust-region method for deep reinforcement learning using
Kronecker-factored approximation, 31st International
Conference on Neural Information Processing Systems,
Long Beach, California, USA, 2017, pp. 5285-5294.

[30]	 S. Josilo, G. Dan, Decentralized algorithm for randomized
task allocation in fog computing systems, IEEE/ACM
Transactions on Networking, Vol. 27, No. 1, pp. 85-97,
February, 2019.
https://doi.org/10.1109/TNET.2018.2880874

[31]	 Q. Luo, C. Li, T. H. Luan, W. Shi, Collaborative data
scheduling for vehicular edge computing via deep
reinforcement learning, IEEE Internet of Things Journal,
Vol. 7, No. 10, pp. 9637-9650, October, 2020.
https://doi.org/10.1109/JIOT.2020.2983660

742 Journal of Internet Technology Vol. 26 No. 6, November 2025

[32]	 X. Wang, J. Zhou, T. Song, D. Liu, Q. Wang, FlotGAIL:
An operational adjustment framework for flotation circuits
using generative adversarial imitation learning, Minerals
Engineering, Vol. 183, Article No. 107598, June, 2022.
https://doi.org/10.1016/j.mineng.2022.107598

[33]	 Y. Wang, M. Sheng, X. Wang, L. Wang, J. Li, Mobile-edge
computing: Partial computation offloading using dynamic
voltage scaling, IEEE Transactions on Communications,
Vol. 64, No. 10, pp. 4268-4282, October, 2016.
https://doi.org/10.1109/TCOMM.2016.2599530

[34]	 S. E. Mahmoodi, R. N. Uma, K. P. Subbalakshmi,
Optimal joint scheduling and cloud offloading for mobile
applications, IEEE Transactions on Cloud Computing, Vol.
7, No. 2, pp. 301-313, April-June, 2019.
https://doi.org/10.1109/TCC.2016.2560808

[35]	 D. Huang, P. Wang, D. Niyato, A dynamic offloading
algorithm for mobile computing, IEEE Transactions on
Wireless Communications, Vol. 11, No. 6, pp. 1991-1995,
June, 2012.
https://doi.org/10.1109/TWC.2012.041912.110912

[36]	 J. Kwak, Y. Kim, J. Lee, S. Chong, DREAM: Dynamic
resource and task allocation for energy minimization in
mobile cloud systems, IEEE Journal on Selected Areas
in Communications, Vol. 33, No. 12, pp. 2510-2523,
December, 2015.
https://doi.org/10.1109/JSAC.2015.2478718

[37]	 S. Nath, J. Wu, Deep reinforcement learning for dynamic
computation offloading and resource allocation in cache-
assisted mobile edge computing systems, Intelligent
and Converged Networks, Vol. 1, No. 2, pp. 181-198,
September, 2020.
https://doi.org/10.23919/ICN.2020.0014

[38]	 D. V. Le, C. K. Tham, A deep reinforcement learning
based offloading scheme in ad-hoc mobile clouds, IEEE
Conference on Computer Communications Workshops,
Honolulu, HI, USA, 2018, pp. 760-765.
https://doi.org/10.1109/INFCOMW.2018.8406881

[39]	 X. Chen, H. Zhang, C. Wu, S. Mao, Y. Ji, M. Bennis,
Performance optimization in mobile-edge computing via
deep reinforcement learning, arXiv, arXiv:1804.00514,
March, 2018.
https://arxiv.org/abs/1804.00514

[40]	 L. Huang, S. Bi, Y. J. A. Zhang, Deep reinforcement
learning for online computation offloading in wireless
powered mobile-edge computing networks, IEEE
Transactions on Mobile Computing, Vol. 19, No. 11, pp.
2581-2593, November, 2020.
https://doi.org/10.1109/TMC.2019.2928811

[41]	 L. Schfer, O. Slumbers, S. Mcaleer, Y. Du, S. V. Albrecht,
D. Mguni, Ensemble Value Functions for Efficient
Exploration in Multi-Agent Reinforcement Learning, arXiv,
arXiv:2302.03439, February, 2023.
https://arxiv.org/abs/2302.03439

Biographies

Wei Xiong is an associate professor at
Hubei University of Arts and Science,
China. He received his Ph.D. degree
in computer science from Wuhan
University, China in 2015. His research
interest includes edge computing and AI,
as well as autonomous driving vehicles.

Xinying Wang is an associate professor
a t Hube i Univers i ty o f Ar t s and
Science, China. He received his B.S.
in education technology from Central
China Normal University in 2000, M.S.
degree in automatic control from Wuhan
University of Technology in 2008.
His research interest includes service

computing and software engineering.

Zhao Wu is the professor at Hubei
University of Arts and Science, China.
He received his B.S. in computer
application from China University
of Geoscience in 1999, M.S. degrees
in computer application from Wuhan
University of Technology in 2003 and
his Ph.D. degree in computer science

from Wuhan University in 2007. He is a member of the
China Computer Federation. His research interests include
cloud computing, service computing and internet of
things.

Qiaozhi Hua is an associate professor
at Hubei University of Arts and Science,
China. He received the PhD from Waseda
University, Tokyo, Japan in 2019. His
main fields of research interests include
mobile communications, wireless sensor
networks, intelligent transportation
systems and optical communications.

Franz Wotawa is a PhD graduate from
the Vienna University of Technology
in Aus t r ia . He cur ren t ly ho lds a
professorship at Graz University of
Technology. Professor Wotawa’s
research focuses on intelligent systems,
software verification, system testing, and
autonomous driving vehicles.

