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Abstract

Severe convective weather is a type of extreme weather 
characterized by sudden and intense conditions, often 
featuring heavy short-term rainfall, lightning, strong winds, 
hail, tornadoes, and other related disasters. The initiation 
of convection indicates that severe weather is imminent 
and is essential for short-term forecasting. However, the 
horizontal movement of clouds can hinder the precision 
of algorithms designed to detect convection initiation. 
To address this issue, a novel algorithm utilizing cloud-
top rapid cooling rates from multi-source satellite images 
has been developed. This algorithm leverages the high 
temporal resolution of the 6-minute fast scan data from 
the FY-2F satellite and includes a filter with three testing 
conditions to enhance the accuracy of detecting convective 
initiation. The algorithm significantly improves detection 
accuracy by addressing the challenge of horizontal cloud 
movement, which has been a persistent issue in previous 
detection methods. By integrating data from infrared, water 
vapor, and visible light channels, the algorithm provides a 
comprehensive approach to identifying CI signals in their 
early stages. This advancement is crucial for enhancing 
the timeliness and accuracy of short-term severe weather 
warnings, thereby contributing to more effective disaster 
prevention and mitigation efforts.
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1  Introduction

Severe convective weather, which is a form of extreme 
weather, often causes heavy rainfall, hail, and tornadoes, 
resulting in significant loss of life and damage to property. 
It also greatly affects economic development, social 
progress, and the lives of individuals [1-3]. Convection 
Initiation (CI) signifies the start of intense convective 
weather activity, and accurately detecting CI is essential 
for short-term forecasting of severe convective weather. 
The importance of CI lies in its capacity to forecast and 
reduce the potential harm from severe convective weather 
events [4-5].

A key feature of CI is the quick change in the cooling 
rate at the top of clouds over a short period. The rapid scan 
data from the FY-2F geostationary meteorological satellite, 
which has a six-minute interval and a spatial resolution of 
5 km, provides an opportunity for accurate detection of 
CI. Currently, geostationary meteorological satellites are 
the main tools for monitoring and analyzing convective 
weather due to the limited reach of traditional detectors 
and radar systems [6-8]. These satellites offer high 
temporal resolution and broad observation capabilities. 
With ongoing advancements in satellite remote sensing 
technology, the temporal and spatial resolutions of these 
satellites have greatly improved compared to earlier 
predecessors. As a result, research has increasingly focused 
on using satellite remote sensing to monitor convective 
weather, particularly in identifying CI and rapidly 
developing convective (RDC). The goal is to detect signals 
in the early phases of the convective life cycle, which 
allows for more accurate and effective predictions [9-11].

CI is defined as the image element on a satellite cloud 
map that corresponds to the first detection of reflectivity ≥ 
35dBz by Doppler weather radar, indicating the presence 
of convective clouds. The core of the CI technique involves 
analyzing convective motion [12-13]. The CI technique 
leverages the high temporal frequency of geostationary 
weather satellites to monitor rapidly developing convection 
and detect rainfall systems earlier than ground-based 
radar, thereby providing timely warnings. In recent years, 
similar algorithms and techniques have been developed 
based on the statistical relationship between convection 
and lightning, allowing for the identification of emerging 
lightning within 0 to 1 hour, which enhances proximity 
forecasting capabilities [14-16]. Given the limited 
coverage of traditional detectors and radar, geostationary 
meteorological satellites have become the primary tool for 
monitoring and analyzing convective weather activity.

Currently, numerous research findings have been 
made utilizing remote sensing methods to monitor CI and 
RDC [17-19]. To investigate the influence of double low-
level jets on CI, [20] conducted convective-permitting 
simulations with a non-hydrostatic mesoscale model. 
The main features of this algorithm include a significant 
bright temperature gradient in the fluid, where the bright 
temperature at the center of the convection is considerably 
lower than that at the edges, along with a substantial 
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cooling rate. These two features illustrate the spatial and 
temporal development patterns of the cloud masses. The 
primary data for the RDC algorithm is sourced from 
the MSG satellite, utilizing its five channels for RDC 
detection. In 2002, [21] conducted extensive experiments 
with this algorithm, achieving an accuracy of 90% and a 
false detection rate of just 15%. For rapidly developing 
convection, the Japan Meteorological Agency created the 
RDCA detection algorithm [22], which established 13 
criteria based on five channels of data from the Japanese 
MTSAT-1R satellite (with a temporal resolution of 5 
minutes) to identify and forecast RDC areas through a 
four-step process: selecting candidate convective clouds, 
eliminating horizontal cloud movement, re-detection, 
and consistency verification. This algorithm successfully 
detected all four RDC cases in Japan on August 18, 
2010, although one was a false alarm. The University 
of Wisconsin’s Convective Initiation (UWCI) algorithm 
utilized two bright temperature images taken 15 minutes 
apart to create a fast cooling rate image of cloud tops, 
passing through seven screening conditions, with the final 
one meeting the criteria indicating incipient convection 
[23]. The University of Alabama employs a multispectral 
detection approach for CI and RDC [24], focusing on 
extracting eight key indicators from satellite channel 
data, such as IR cloud top bright temperature, IR multi-
channel differences, and trends in IR cloud top bright 
temperature over time. This algorithm was validated by 
analyzing 213 convective events that occurred in Europe 
in 2007, achieving a detection accuracy of 80.75%. 
Additionally, [25] introduced a new CI nowcasting system 
called the Rapidly Developed Convection Monitoring 
System (RDCMS), which utilizes data from the advanced 
geosynchronous radiation imager on the China Fengyun-
4A (FY-4A) satellite.

In conclusion, the existing algorithms for identifying 
CI utilize high temporal resolution satellite data, taking 
advantage of the rapid cooling observed at the tops of 
large CI clouds and recognizing CI through a mix of multi-
channel data criteria. Many domestic detection algorithms 
are modified versions of international algorithms, with 
thresholds adjusted to fit the specific regional characteristics 
of China. A crucial aspect of satellite-based CI detection is 
the requirement for frequent satellite observations, which 
is supported by the rapid scan capabilities of China’s FY-
2F geostationary meteorological satellite. The proposed 
method aims to effectively identify CI and RDC by 
analyzing the cloud-top cooling rate through multi-channel 
discrimination using the FY-2F’s rapid scan data. Cirrus 
clouds often affect the effectiveness of the CI detection 
algorithm. To solve this problem, a cloud-top fast cooling 
rate-based convective initiation detection algorithm was 
developed. Unlike previous studies that primarily rely 
on single-channel data or lower temporal resolution, this 
study introduces a novel algorithm that integrates FY-
2F satellite’s 6-minute rapid scan data and multi-channel 
information to address the challenge of horizontal cloud 
movement, thereby enhancing CI detection accuracy.

2  Data and Methods

2.1 Satellite Data
The data of four channels, namely IR1 (10.3~11.3μm), 

IR2  (11 .5~12 .5μm) ,  IR3  (6 .3~7 .6μm)  and  VIS 
(0.55~0.90μm), from FY-2F satellite were utilized to 
initially filter out warm clouds, cirrus clouds, and thin 
clouds that could impact detection accuracy (Table 1). The 
initial filtering process uses a threshold method, primarily 
eliminating temperature values above 280K for the IR1 
channel (indicating warm clouds), above 2K for the IR1-
IR2 channel (indicating cirrus clouds), and reflectivity 
values below 0.45 for the VIS channel. This preliminary 
filtering is essential for enhancing the accuracy of cloud 
detection.

Table 1. Wavelength and spatial resolution of FY-2F 
satellite imager radiometric channels

Channel Wavelength 
(µm)

Spatial 
resolution 

(km)
Used

IR1 10.3-11.3 5 √
IR2 11.5-12.5 5 √
IR3 6.3-7.6 5 √
IR4 3.5-4.0 5
VIS 0.55-0.90 1.25 √

2.2 Preliminary Filtering
To better grasp the concept of CI, an example is chosen 

to showcase its particular development process. As shown 
in Figure 1, the bright white region signifies CI, while 
the leftmost IR grayscale image in the top row depicts CI 
during its initial life cycle phase. It is noticeable that the 
bright temperature of CI gradually diminishes, resulting in 
an increase in brightness over time. At the same time, the 
area slowly expands.

Figure 1. Illustration of CI development process

Assuming that the size of the image I is m × n, the 
initially filtered image can be defined as

f w c vI I I I I= − − − (1)
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where Iw represents the warm cloud region, Ic represents 
the cirrus region, and Iv represents the area where the 
reflectance of VIS channel which is less than 0.45.

The cloud pixel mean filter was employed to compute 
the average bright temperature of the cloud pixels within 
a window that meets the preliminary filtering criteria. 
The time interval between two consecutive images, I1 
and I2, is 12 minutes, and the window size is 5x5 pixels, 
corresponding to an actual distance of 25x25 kilometers 
given a resolution of 5 kilometers. The fundamental 
principle of mean filtering is to replace the gray value 
of each pixel point in an image with the average of the 
gray values of several neighboring pixel points. Given an 
image with a gray value of I(m,n), a window neighborhood 
designated as Smn, and a window containing W points, the 
mean-filtered image f(m,n) can be expressed as:

( )
( , )

1, ( , )
mnx y S

f m n I x y
W ∈

= ∑ (2)

Figure 2 depicts the schematic diagram for the 
preliminary filtering of two sequential images. Specifically, 
Figure 2(a) displays the grayscale image of the IR1 
channel at 2312 UTC on August 1, 2013, while Figure 2(b) 
shows the grayscale image of the same channel at 2324 
UTC on the same date. Given the short interval between 
the two images, they are very similar, with only slight 
variations in cloud size and shape. Figure 2(c) depicts the 
filtered image derived from Figure 2(a), and Figure 2(d) 
shows the filtered image corresponding to Figure 2(b).

Figure 2. Preliminary filtering of two images: (a) IR1 channel grayscale image at 2312 UTC on August 1, 2013; (b) IR1 
channel grayscale image at 2324 UTC on August 1, 2013; (c) Preliminarily filtered image of (a); (d) Preliminarily filtered 
image of (b)

Subsequently, the difference between the filtered image 
( ),f m n  at the current moment and the filtered image 

( ),f m n′  at the previous moment (12 min ago) is utilized 
to derive the Cloud-Top Cooling rate (CTC) image. 
CTC is defined as the difference in cloud-top brightness 
temperature between consecutive time steps

( ) ( )CTC , ,f m n f m n′= − (3)

2.3 CTC Filter
The CTC filter aims to identify regions in the CTC 

image that satisfy specific criteria. If a region fails the test, 
it is classified as a CI region. The CTC filter includes three 
assessments. The three testing conditions are implemented 
as follows: (1) Limiting horizontal cloud movement: 
This condition is enforced by calculating the cloud-top 
brightness temperature change rate between consecutive 
images. (2) Restricting cold cloud advection toward 
warm submatrices: This condition involves analyzing the 

spatial distribution of cloud-top brightness temperatures 
to identify local minima. (3) Filtering based on CI 
discrimination criteria: This condition combines data from 
IR1, IR2, and IR3 channels to apply a set of thresholds that 
distinguish CI regions from non-CI regions. Subsequently, 
filtering is carried out according to the CI discrimination 
criteria.

Figure 3 depicts the CTC image. The presence of non-
zero image elements can be attributed to two factors: 
(1) The vertical development of the cloud that has not 
yet matured, necessitating retention; (2) The horizontal 
movement of the cloud, where a region that was previously 
cloud-free may have cold clouds in the next moment, 
resulting in errors that must be corrected.

Figure 4 clearly shows that when the average bright 
temperature is at or below 225K, the variations in bright 
temperature across the IR1, IR2, and IR3 channels are 
minimal. In particular, the bright temperature differences 
between IR1 and IR3 range from -5.5K to -2.5K, while 
the difference between IR1 and IR2 spans from -2.4K 
to -1.6K. These slight variations in bright temperatures 
indicate a more stable convection pattern.
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Figure 3. Display of the CTC image superimposed on the original image after subtracting the two images (with color 
stretching applied) 
(The bright temperature difference ranges from -71K to -2K, with red indicating the lowest temperature difference and 
green indicating the highest.)

Figure 4. Statistical results of the average bright temperature less than or equal to 225K: (a) IR1 channel; (b) IR1-IR3; (c) 
IR1-IR2

Figure 5. Statistical results for average bright temperature greater than 225K: (a) IR1 channel; (b) IR1-IR3; (c) IR1-IR2
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2.4 CI Discernment Conditions
Figure 5 presents statistics of the average bright 

temperature exceeding 225 K. The temperature difference 
between IR1 and IR3 varies from -10 K to 20 K, whereas 
the difference between IR1 and IR2 ranges from -3 K to 
2 K. This notable variation in temperature indicates that 
convection activity occurs frequently.

Based on the statistics and analysis results, four CI 
discernment conditions were established (Table 2). For 
regions with an average bright temperature exceeding 
225K, the following conditions must be met: 0K < M_
IR1-M_IR3 < 35K, 0K < M_IR1-M_IR2 < 3K, VM_

IR1-VM_IR3 (rate of change of IR1-IR3) < -1K, and M_
IR1 < 243K to account for the low bright temperature in 
convective regions. For regions with an average bright 
temperature of 225K or below, CI within the mesoscale 
convective system (MCS) is indicated when M_IR1-M_
IR3 < 0K and M_IR1-M_IR2 < 0K.

Figure 6(a) shows the filtered effect of the CTC 
filter test1; (b) illustrates the restraining effect of test2; 
(c) presents the filtered effect of the test3 discriminant 
condition. The image elements marked with red circles 
indicate the local minimum temperature points of CI.

Table 2. CI discernment conditions

Discernment conditions M_IR1−M_IR3 M_IR1−M_IR2 VM_IR1−VM_IR3 M_IR1
M_IR1>225K (0K,35K) ( 0,3K) (−∞, −1K) (-∞, 243K)
M_IR1≤225K (-∞,0K) (-∞,0K) N/A N/A

Figure 6. Images after passing three tests in the CTC filter in sequence: (a) Image after test1; (b) Image after test2; (c) 
Image after test3 (red circles indicate CI bright temperature minima points)

The specific procedure of the proposed algorithm is as 
follows.

Algorithm. Detection of Convective Initiation (DCI) using 
multi-source satellite images

Input: IR1 channel adjacent moment grayscale images I1, I2
Output: Incipient convection CI
Step 1: Initialization. Bright temperature threshold Tb, Extended 
maximum transformation threshold th is set to 0.03.
       When Tb>241K
       Tb← 0
       until the end.
Step 2: Initial filtering of I1, I2.using f w c vI I I I I= − − − .
Step 3: The mean filtering of I1, I2 is performed using 

( )
( , )

1, ( , )
mnx y S

f m n I x y
W ∈

= ∑ .

Step 4: Differentiate the two images before and after to get the 

CTC images, ( ) ( )CTC , ,f m n f m n′= − .

Step 5: Remove the horizontal movement of the clouds.
Step 6: Reject the cold cloud advection to the warm submatrix 
and obtain the local bright temperature minimum image element.
Step 7: Combine the IR1, IR2 and IR3 channels for filtering 
according to the CI discrimination conditions in Table 1.
Step 8: Use the EMTRG algorithm to fill the fluid.

3  Results and Discussion

The validation of the algorithm’s performance was 
conducted using a comprehensive dataset comprising 
150 CI events observed over a two-year period. The 
dataset was carefully curated to include a diverse range of 
meteorological conditions, cloud types, and geographical 
locations to ensure the results’ generalizability. 

3.1 IR Channel
In our earlier research, the EMTRG algorithm was 

employed to fill the convective cells region of CI identified 
by the proposed DCI algorithm [26]. The EMTRG 
algorithm first detected the convective cells and then 
filled in the local bright temperature minima of CI that 
had successfully passed the three tests mentioned earlier. 
Figure 7 illustrates the CI detection results on the IR1 
grayscale image, showing both the detection outcomes and 
the locations of CIs, with the filled convective cell regions 
marked in blue. Notably, a total of 18 CIs were identified 
in this instance, which corresponds to the number of CI 
local bright temperature minimum points found by test3 in 
Figure 6(c). Both figures indicate a count of 18. The results 
indicate that the DCI algorithm is effective in detecting CI. 
The IR channel effectively detects cloud-top cooling but is 
less sensitive to low-level convection.
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Figure 7. Results of DCI method, the blue part is the 
region of convective cells where CI is located

3.2 Water Vapor Channel
The image sequences from the water vapor channel 

(IR3) were selected for experiments on CI detection. To 
assess the proposed algorithm’s effectiveness, the results 
were compared with those obtained from the IR1 channel 
image sequence. The chosen image sequences are from the 
water vapor channel at 0000UTC and 0100UTC on May 
19, 2015, with a one-hour interval and a spatial resolution 
of 5 km.

Firstly, the threshold method was applied to perform 
preliminary filtering, removing warm clouds, cirrus 
clouds, and thin clouds that could disrupt the detection 
process. Secondly, a mean filtering of cloud pixels was 
performed, which involved calculating the average bright 
temperature for all cloud pixels within a 5×5 pixel window 
that satisfied the preliminary filtering criteria. Thirdly, the 
difference between the filtered image at the current time 
and the previous time was computed to create the CTC 
image. Fourthly, The CTC filter was then evaluated using 
the same approach as the IR1 channel. 

Figure 8. Filtering results based on CI discrimination 
conditions (colored points represent local bright 
temperature minima): (a) IR1 channel results; (b) IR3 
channel results

Figure 8 illustrates the results after filtering based 
on the CI discrimination criteria, with the colored area 
representing the minimum bright temperature point. It is 
evident that the IR1 channel identifies bright temperature 
minima compared to the water vapor channel, highlighting 
the unique characteristics of the water vapor channel. 
Since primary convective water vapor is limited, the water 
vapor channel is not able to effectively detect primary 

convection. The water vapor channel offers advantages in 
detecting high-level convection but struggles with low-
level detection.

Finally, by incorporating the EMTRG algorithm, 
the local bright temperature minima of CI that have 
successfully undergone the three tests mentioned earlier 
are filled with the regions of convective cells identified by 
the proposed algorithm. As depicted in Figure 9, the blue 
area indicates the filled regions of convective cells.

Figure 9. Comparison of CI detection results for IR1 
channel and water vapor channel: (a) Results of IR1 
channel; (b) Results of water vapor channel

3.3  VIS Channel
The performance of the proposed algorithm was 

evaluated using visible channel data from the FY-2F 
satellite, which has a spatial resolution of 1 km. The 
selected case study focuses on the image sequence captured 
between 0106-0506UTC on August 2, 2013, with a two-
hour interval between VIS images. The high resolution 
of the VIS channel provides a clearer view of convective 
cloud textures, allowing for more precise observation of 
CI detection results compared to the IR channel. Figure 10 
offers an initial visualization of CI locations and shows that 
CI can occur either individually or as part of an MCS. A 
total of 36 CI cases, indicated as blue areas, were identified 
in these three VIS sequence images, demonstrating high 
detection accuracy and a low false alarm rate. The VIS 
channel provides higher spatial resolution for clearer cloud 
textures but is limited by daylight conditions.

3.4 Statistical Analysis
To provide a comprehensive evaluation of the 

algorithm’s performance, we conducted a detailed 
statistical analysis using a dataset of 150 CI events. The 
analysis included the calculation of several key metrics:

Precision: The ratio of true positive detections to 
the total number of positive detections (including false 
alarms).

Recall: The ratio of true positive detections to the total 
number of actual CI events.

The results showed that our algorithm achieved a 
precision of 82%, and a recall of 77%. These metrics 
indicate that the algorithm effectively balances the trade-
off between minimizing false alarms and maximizing 
detection accuracy. This analysis reinforces the algorithm’s 
reliability and effectiveness in real-world applications.
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4  Conclusion

A new algorithm for detecting convective initiation, 
called DCI, has been developed using images from the 
FY-2F satellite. This algorithm takes advantage of the 
satellite’s high temporal resolution, which provides 
fast scan data every 6 minutes, and the rapid cooling 
rate of cloud tops. The threshold method is employed 
for initial filtering to remove warm, cirrus, and thin 
clouds. Furthermore, a CTC filter with three specific test 
conditions is implemented to improve the accuracy of CI 
detection. The algorithm’s design prioritizes computational 
efficiency and modularity to ensure its viability for real-
time implementation in operational weather forecasting 
systems. To further enhance real-time performance, 
we have implemented several software optimizations, 
including parallel processing of image data and efficient 
memory management techniques. The effectiveness of this 
algorithm is validated through comparison experiments 
with both the water vapor and VIS channels. This study’s 
main contribution is the development of a novel CI 
detection algorithm using multi-source satellite images, 
which significantly enhances detection accuracy and 

warning lead time. Future work will integrate machine 
learning techniques to further optimize algorithm 
performance and explore broader meteorological 
applications.
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