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Abstract

Federated learning aims to enable clients to jointly train 
a model with privacy without sharing the original data. 
Compared to centralized model training, federated learning 
introduces heterogeneous data among the distributed 
participants and communication bottlenecks problems. 
This article proposes a hierarchical Bayesian federated 
learning approach to achieve local model personalization 
and hierarchical model parameter aggregation, thereby 
addressing the heterogeneous data problem and reducing 
communication costs in federated learning. The variational 
inference method can effectively solve the heterogeneous 
data problem encountered by each participant in federated 
learning, demonstrating excellent robustness when 
handling different types of statistical heterogeneity 
problems, thereby effectively realizing the personalization 
of local models. Multilevel hierarchical model parameter 
aggregation and resource scheduling can also reduce 
communication costs in federated learning. Therefore, 
the hierarchical Bayesian federated learning framework 
proposed in this article controls the random variables of 
each participant’s local model with global variables, and 
the model construction process is completed hierarchically 
and collaboratively, realizing robustness improvement and 
communication optimization.

Keywords: Hierarchical asynchronous federated learning, 
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1  Introduction

Federated learning [1-5] aims to enable clients to 
jointly train a model without sharing data while protecting 
privacy. Federated learning can efficiently support data 
fusion and sharing applications across organizations, 
institutions, departments, systems, etc., under the 
conditions of ensuring information security, data privacy 
security, and policy regulation fulfillment. Federated 
learning technology may be comparable to the traditional 
centralized model training strategy [6], but it faces 
statistical and systematic challenges regarding scattered 
participants and communication bottlenecks. 

A significant statistical challenge is the non-IID 
data problem [7-8], where bias is present in the data 
between the clients and in the data aggregation and label 
allocation strategies. The most prevalent federated learning 
algorithms, FedAvg and FedProx, perform well in terms of 
training global models in highly heterogeneous scenarios 
[9] but often perform poorly with respect to addressing the 
local data distribution of each client. Recent research has 
attempted to alleviate this problem by allowing each client 
to train personalized and regional models that deviate 
from the shared global model. However, considering 
that the local data used by each client for customized 
training may be limited, building effective local models 
remains a challenging problem. Another core challenge 
in federated learning is the high cost of communication. 
In the real world, the huge number of terminal devices 
and the complex communication environment lead to the 
great communication pressure of Federated learning. In 
order to reduce the traffic in this complex environment, 
the Federated learning algorithm for communication cost 
optimization is mainly studied from these two aspects: 
reducing the communication times between client and 
server; Reduce the size of data transmitted in each 
communication.

This article introduces Bayesian theory [10-11], and by 
adopting multilevel collaborative hierarchical processing, 
the regional models are aggregated into edge models at the 
edge server, and the edge models are aggregated into global 
models at the cloud server, effectively addressing the user 
data privacy and security protection issues while reducing 
communication costs. This article elaborates on our 
research content step-by-step, starting with a background 
introduction to the current status and challenges of 
federated learning. The second part introduces layered 
federated learning, including the basic concept of 
hierarchical asynchronous federated learning, hierarchical 
model aggregation, and the hierarchical Bayesian federal 
learning framework. The third part presents the model 
training in the hierarchical Bayesian federal learning 
framework, including updating the model parameters, 
personalized model construction, and algorithm execution. 
The fourth part demonstrates the framework’s performance 
analysis, including the convergence/generalization analysis 
and the transmission optimization. In the fifth part, we 
display the simulation results. Furthermore, finally, we 
summarize the entire thesis.
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2  Layered Federated Learning

Unlike traditional two-layer Federated learning, 
multilevel collaborative hierarchical asynchronous 
federated learning applies edge computing to federated 
learning and introduces edge servers as intermediaries 
between participating nodes and cloud servers. The edge 
server receives local model parameters from participating 
nodes and aggregates edge models-multiple rounds of 
model parameter distribution and aggregation on the 
edge and terminal sides. Then, the edge server uploads 
the edge aggregation model to the cloud server for global 
model aggregation, reducing the amount of uplink data 
transmission.

2.1 Hierarchical Asynchronous Federated Learning
In traditional two-layer federated learning, participating 

nodes use local data for local model training and upload 
it to the central aggregation server for global model 
aggregation. The objective function of the whole model 
training is to find the global model that minimizes the 
loss function. The objective function to minimize the loss 
function is usually defined as:
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data set, |D| is the total amount of data from all local 
participating nodes, xj is the j-th input sample, yj is the 
output label corresponding to the j-th input sample, and 
M is the total number of nodes participating in model 
training. Fm(ω) represents the local loss function of 
participating node m, and fj(ω) represents the loss function 
generated by the model with parameter ω on the instance 
(xj, yj, ω) in data set Dm. In the federated learning system, 
the participating nodes usually use the random gradient 
descent (SGD) algorithm to update the local model; η 
represents the learning rate, then the update of the local 
model in iteration t is as follows:

( ) ( ) ( )( )1 1m m m mt t F tω ω η ω= − − ∇ − (4)

The aggregation of the global model of the central 
aggregation server in the t-round iteration is as follows:
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According to the above federated learning model 
training process, many model updates need to be 
exchanged between participating nodes and the central 
aggregation server, which requires a large number of 
network resources and increases uplink communication 
costs. Hierarchical asynchronous federated learning applies 
edge computing to federated learning, uses edge servers’ 
computing and transmission capabilities to aggregate some 
models, reduces the amount of data transmitted on the 
uplink, and effectively solves the above problems.

This paper considers a typical cloud edge end three-
layer hierarchical asynchronous federated learning 
scenario, and its workflow is shown in Figure 1. There 
are three main entities in hierarchical asynchronous 
federated learning: participating nodes on the terminal 
side, edge aggregation servers on the edge side, and the 
cloud aggregation server. Participating nodes generate or 
collect data, with each node having its private dataset; The 
edge server receives local model parameters uploaded by 
participating nodes and aggregates edge models; And, after 
a T-times updating for the model parameters between the 
edge aggregation server layer and terminal client layer, 
the edge model parameters are updated to the cloud server 
from the edge server.; The cloud server stores the original 
model and shares the global model with all participating 
nodes, receiving the edge model uploaded by the edge 
server for global model aggregation.

2.2 Hierarchical Asynchronous Model Aggregation
The aggregation process is outlined as follows. 

Multilevel collaborative hierarchical asynchronous 
federated learning is implemented in a cloud-edge-end 
environment. During this process, the local partial model 
aggregation strategy generates edge models on the edge 
server, and the edge model aggregation step forms the 
global model on the cloud server. This innovative approach 
effectively addresses the issues of user data privacy and 
security protection while reducing communication costs.  
The hierarchical model aggregation process is divided into 
the following steps.

Step 1: Model Retrieval. In the hierarchical Bayesian 
Federated learning framework, the edge aggregation server 
retrieves the global model from the cloud server in a 
hierarchical Bayesian federated learning framework, while 
the terminal-side client obtains the edge model from the 
edge server. 

Step 2: The edge aggregation server layer and terminal 
client layer update the model parameters T times, and each 
update includes the following steps:
① The terminal side client uses the local data set to 

train the local model, generate a personalized local model, 
and update the model parameters;
②  The  t e rmina l  c l i en t  up loads  the  upda ted   

personalized model parameters to the edge aggregation 
server connected to it;
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③ The edge aggregation server performs Bayesian 
aggregation on the received local model parameters to 
generate an edge model;
④ The edge aggregation server sends the edge model 

parameters after Bayesian aggregation to the terminal 
client connected to it.

Step 3: The edge aggregation server uploads the edge 
model after Bayesian aggregation to the cloud side server;

Step 4: The cloud-side server performs Bayesian 
aggregation on the edge model parameters. A global model 
can be generated through Bayesian aggregation;

Step 5: The cloud server sends the aggregated global 
model parameters to the corresponding edge servers;

Step 6: The edge aggregation server performs Bayesian 

aggregation on the received global model parameters from 
the cloud side and personalized local model parameters 
from the terminal to generate a personalized edge model;

Step 7: The edge aggregation server sends the edge 
model parameters after Bayesian aggregation to the 
terminal side client connected to it;

Step 8: The terminal client receives the edge model 
from the edge server and inputs personalized training 
data for local model training. Fine-tune the edge model to 
generate a personalized local model, which is used as its 
personalized model for subsequent personalized prediction.

The hierarchical aggregation process of the model is 
shown in Figure 1:

Figure 1. The process of hierarchical aggregation for the model

2.3 The Hierarchical Bayesian Federal Learning 
Framework
In the hierarchical  Bayesian federal  learning 

framework, three types of random variables Ψ, { } 1
M

k kφ =

and { } 1
S

i iθ =  are introduced. Among them, random model 

weight variables θi are assigned to the model weights 
of the terminal-side client (where i represents the i-th 
participating party on the terminal side), and ϕk represents 
the model weights of the edge aggregation server k on 
the edge side (where k represents the k-th participant on 
the upper level, i.e., the edge side), which is responsible 

for connecting the weights θi of various clients. Ψ can be 
regarded as the global shared model weights on the higher 
level (cloud side), which are responsible for securing the 
consequences ϕk of the different edge aggregation servers 
on the edge side. Furthermore, S represents the number of 
terminal-side clients involved in the edge-side federated 
learning process under the edge aggregation server k, M 
denotes the number of participating parties involved in 
federated learning on the edge side. The Bayesian prior 
probability and Bayesian likelihood (sample distribution) 
are hierarchically formed into Formulas (6), (7), (8), (9), 
(10), (11), (12), (13) and (14). Bayesian prior probability:
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based on further deduction, we can derive the following 
formulas:
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where, N represents the total number of terminal-side 
clients participating in federated learning, and there is N = 
S × M. Sample distribution: 
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here, Di represents the local dataset of terminal client i, and 
Uk represents the sum of all local datasets of the terminal 
clients covered by edge server k during federated training. 
If S terminal clients participate in the federated training 

process under edge server k, then Uk = 1
S

ii D=∑ . In the 

above formulas, p(yk |x, θi) and p(yk |x, ϕk) represent the 
traditional neural network model. Given the datasets D1, 
D2, D3, …, DN, the Bayesian posterior probabilities can be 
inferred:
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The  Bayes i an  pos t e r i o r  p robab i l i t y  c an  be 
approximated by using the method of variational inference 
as follows:
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based on further deduction, we can derive the following 
formula: 
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here, the variational parameter L consists of L0 (the 

parameters of q(Ψ)), { } 1
M

k kL =  (the parameters of edge 

server qk(ϕk)), L00 (the parameters of q(ϕk)), and { } 1
S

i iL =  

(the parameters of client qi(θi)).
Through hierarchical processing and multilevel 

collaborative Bayesian federated learning, the variational 
inference procedure is decomposed into separable 
optimization problems involving θi, ϕk and Ψ, and practical 
Bayesian learning algorithms that are compatible with 
federated learning constraints are derived. This method 
exhibits exceptional robustness when addressing various 
statistical heterogeneity problems. It can efficiently achieve 
personalized processing for the local partial models of 
each participant on the edge side, effectively resolving the 
issue of non-IID data.

3  Model Training in the Hierarchical 
Bayesian Federal Learning Framework

3.1 Updating the Model Parameters 
Variational inference [12] is used to solve the 

difficult-to-compute true posterior distribution by 
using a convenient distribution to approximate the true 
posterior distribution. Thus, the log-likelihood function of 
parameter ϕk can be written as log p(ϕk)= DKL(q(ϕk)||p(ϕk) 
+  (ϕk). Here, DKL(q(ϕk) || p(ϕk) aims to make the learned 
distribution q(ϕk) approach the true posterior distribution 
p(ϕk), while  (ϕk) is the variational bound, which is also 
known as the evidence lower bound (ELBO).
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The ELBO objective function can be derived through 
standard variational inference techniques and hierarchical 
processing. The negative ELBO (to be minimized) can be 
represented in the form of a sum:
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Here, Di represents the local dataset of terminal-side 
client i, and Uk represents the sum of all local datasets 
covered by edge server k during the federated training 
process of the terminal-side clients. It is assumed that 
the number of terminal clients participating in federated 
activity under edge server k is S; then, Uk = 1

S
i iD=Σ . KL 

denotes the Kullback‒Leibler divergence measure, and 
Eq(ϕk) and Eq(Ψ) represent the log-likelihood estimates for 
ϕk and Ψ, respectively. In this paper, instead of jointly 
optimizing L via conventional methods, we consider 
a hierarchical and blockwise optimization strategy 
[13], which is divided into four alternating steps: (1) 
updating/optimizing all Li(i = 1, 2, …, S) while fixing 
L00; (2) updating L00 while fixing all Li(i = 1, 2, …, S); (3) 
updating/optimizing all Lk(k = 1, 2, …, M) while fixing L0; 
and (4) updating L0 while fixing all Lk(k = 1, 2, …, M).

Regarding the optimization issues encountered during 
the parameter aggregation process between the edge and 
terminal sides, the following formula holds.

• Optimizing L1, L2, …, LS (with L00 fixed)

{ }

( ) ( ) ( )( )
( ) ( )1 1

min
log

k

S
i i

i i

S i i i kq

L i i iq

q p

p D

φ

θ

θ θ φ

θ= =

  
   
   + −  

∑




KL
(23)

Formula (23) is completely separable in i, so we can 
independently optimize each addend. The following 
procedure can be obtained:
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Hence, Formula (24) represents the local optimization 
process of the clients. Each client only needs to access its 
local private data Di without relying on the data of other 
participants, which satisfies the requirements of federated 
learning.

• Optimizing L00 (with L1, L2, …, LS fixed)
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The above process establishes the update criterion for 
the edge-side edge aggregation server parameters, and the 
edge aggregation server does not need to access any local 
data on the terminal side, which is in line with federated 
learning.

Regarding the optimization issues encountered during 
the process of parameter aggregation between the cloud 
and edge sides, the following formula holds.

• Optimizing L1, L2, …, LM (with L0 fixed)
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Formula (26) is completely separable in k, so we 
can independently optimize each addend. The following 
formula can be obtained:
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Thus, edge aggregation server k is optimized, and the 
edge aggregation server does not need to access any local 
data. This rule is compatible with federated learning.

• Optimizing L0 (with L1, L2, …, LM fixed)

( )

( ) ( ) ( )

( ) ( )( )

0

0

0 0

; ;
1

0

min :

log

;

i k k

L

M

kq L q L
k

L

p

q L p

ψ φ φ ψ

ψ ψ
=

 = −  

+

∑

KL

L

(28)

The above process determines the specification for 
the server-side parameter updates, and the server does not 
need to access any local data, making this step consistent 
with federated learning.
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Therefore, the specification for updating federated 
model parameters derived from variational inference forms 
the update specifications for the local model parameters 
at the terminal-side client, the edge aggregation model 
parameters at the edge-side edge aggregation server, and 
the global model parameters at the cloud server, guiding 
the construction of multilevel hierarchical asynchronous 
federated learning models.

3.2 Personalized Model Construction
The two core objectives of federated learning are 

global prediction and personalized adjustment. Global 
forecasting aims to evaluate the performance of the 
training model on new test data that may have a different 
distribution from that of the training data. On the other 

hand, personalized adjustment optimizes the training 
model on local, customized datasets. Due to the non-
IID nature of the data distributed on the client side, it is 
difficult to train a single global model that applies to all 
clients. Therefore, constructing personalized models for 
each client is crucial. Personalized federated learning 
algorithm [14] is usually combined with Transfer learning 
[15-16], knowledge distillation, meta-learning, multi-task 
learning [17], and other machine learning technologies. 
Transfer learning enables the deep learning model to use 
the knowledge obtained when solving one problem to 
solve another related problem. The principles of global 
prediction and personalized prediction are illustrated in 
Figure 2.

Figure 2. Regarding global and personalized prediction as probabilistic reasoning problems 

(D1, D2, …, DN represents the training set, y* and yp denote the target values to be predicted, x* and xp represent the test 
inputs for global prediction and personalized model adjustment, respectively, and Dp signifies the personalized training 
data.)

• Global Prediction. In the global prediction task, the 
model needs to generate a prediction result for a new 
test input x*. The input value x* comes from the dataset 
D*, and the data distribution of D* may be the same as or 
different from that of the training dataset D1, D2, …, DN. 
In this case, N represents the total number of terminal-side 
client devices participating in federated learning model 
training. Under the framework of the hierarchical Bayesian 
model, this problem can be transformed into a probabilistic 
inference problem Pk(y

*|x*, D1:S) and p(y*|x*, ∅ 1:M). In this 
context, the local model θ is responsible for receiving the 
input x* and generating an output y*. The probability can be 
described by the following formula:
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In the above equation, p( k∅ |D1:S)≈q( k∅ ).
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In the above equation, p(Ψ | ∅ 1:M) ≈ q(Ψ).
• Personalized Model Adjustment. The task of training 

a prediction model p̂ (y| x) is given a new and locally 
(privately) owned training dataset D p with an unknown 
distribution p p(x, y). Existing methods typically rely only 
on fine-tuning to balance the fitting of the initial federated 
learning model and the private local data to avoid 
underfitting and overfitting issues. However, practical 
solutions are still lacking. In the hierarchical Bayesian 
federated learning framework proposed in this paper, 
personalized model adjustment can be regarded as another 
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posterior probability inference problem with locally owned 
training data D p. Predicting the test data x p is equivalent 
to conducting Bayesian posterior probability inference. 
Therefore, personalized model adjustment can be reduced 
to the task of inferring the Bayesian posterior probability 
pk(θ| Dp, D1:S ) and p(θ| D p, D1:S, 1:M∅  )  given a locally 
owned training dataset D p and a federated learning model 
training dataset D1:N. Under the hierarchical Bayesian 
model, the posterior probability can be linked to the 
federated learning training step q(Ψ). 
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In the above equations, p( k∅ | D1:S) ≈ q( k∅ ) and 
p(Ψ | ∅ 1:M) ≈ q(Ψ), furthermore we introduce a tractable 
variational distribution f(θ) ≈ p(θ| Dp,Ψ*) by utilizing 
variational inference. After going through the typical 
variational inference process, we obtain the negative 
ELBO objective for personalized model calibration.  

( ) ( ) ( ) ( )* min log p
ff

f p p Dθθ θ ψ θ   + −     
KL (33)

The predictive distribution becomes:
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∅
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(34)

Here, the MC (Monte Carlo) symbol is the Monte 
Carlo sample. The Monte Carlo approach is often used 
in various optimization scenarios, including optimization 
applications involving neural networks. The hierarchical 
Bayesian federated learning framework discussed above 
demonstrates how the variational inference of hierarchical 
Bayesian models applies to federated learning problems. 

3.3 Hierarchical Bayesian Federated Learning 
Algorithm Execution
To more comprehensively elaborate the implementation 

steps of the proposed hierarchical asynchronous update 
strategy, we demonstrate its operation mode in the form of 
pseudocode for a cloud server, edge aggregation servers, 
and terminal-side clients. The cloud server initializes 
the parameters of the federated model and broadcasts 
parameter ω0 to all edge aggregation servers. Then, the 
edge servers broadcast parameter ω1 to all terminal clients 
participating in the federated learning process. The clients 
locally perform model training in parallel and send the 
updated parameters 1

k
tω +  obtained from training to the edge 

aggregation servers. After receiving the model parameters 
from all participants, the edge aggregation servers 
aggregate the model parameters and upload the aggregated 
edge model parameters to the central cloud server. Finally, 
the current training round t updates the parameters of each 
edge server and each client. The federal learning algorithm 
developed in this article is shown as Algorithm 1 below.

Algorithm 1. Multi-level cooperative hierarchical 
Bayesian FL algorithm
We define the following hyperparameters: 
•  Nf ( ≤ S) = The number of terminal-side clients 
participating in each round.
• TS = the number of iterations per round for updating the 
(participating) clients. 
• Let QS  = the number of iterations per round for updating 
the edge server. 
• TM  = the number of iterations per round for updating the 
(participating) edge serves. 
• Let QM  = the number of iterations per round for 
updating the cloud server. 
• Let ηt  = the reciprocal of the learning rate at iteration t. 
Initialize the global iteration counter  t = 0.
for each round do
• Select Nf  clients uniformly at random from ut {1, ..., S} 
without replacement. Let blocks ut ∈{1, ..., S} be the set 
of the participants (|ut | = Nf).
Terminal clients update:
• for each of T iterations,
1. Perform an update for the block ut. Thus,

( )1 1 1 1: ; ,  
t t t t t

t t t t t t
u u u u u t

t
x x x where x x f x

η
+ + +

− = = − ∇ 

where ft is the mini batch version of f defined on the 
mini batch data. Note that this update is actually done 
independently over the participating clients i ∈ ut due to 
the separable objective.
2. t ← t + 1.
end 
Edge servers update:
• for each of QS iterations,
1. Perform update for the index 0. Thus,

( )1 1 1
0 0 0 0 0

1: ; ,  t t t t t t
t

t
x x x where x x f x

η
+ + +

− = = − ∇ 
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2. t ← t + 1.
end 
Cloud server update:
• for each of QM iterations,
1. Perform update for the index 0. Thus,

( )1 1 1
0 0 0 0 0

1: ; ,  t t t t t t
t

t
x x x where x x f x

η
+ + +

− = = − ∇ 

2. t ← t + 1.
end

• Training algorithm 
Algorithm 2. Training algorithm 
Input: Initial parameters L0 in the variational posterior 
q(Ψ, L0).
Output: Training parameters L0.
For each epoch r = 1, 2, 3, …, R do:
1. Sample a Γ subset of participating clients (|Γ |= Nf ≤ N).
2. Amount of edge servers is M.
3. Amount of clients at the lower level of edge server k is 
S.
4. Cloud sever sends L0 to all edge servers k ∈ M.
5. Each edge sever sends L00 to all the clients at its lower 
level i ∈ S.
6. For each edge server k ∈ M in parallel do:

Solve with L0 fixed:
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;

;
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



KL

The initial data Lk can be sourced either from a previous 
iteration L0.
7. For each terminal clients i ∈ k in parallel do:

Solve with L00 fixed:
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;

;
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



KL

The initial data Li can be sourced either from a 
previous iteration L00 or from local storage Li if the client 
has that capability.
8. Each client i ∈ S sends the updated Lk back to the edge 
server.
9. Each client k ∈ M sends the updated Lk back to the 
cloud server.
10. Upon receiving {Li} ∈ S, the server updates L00 by 
solving (with {Li} ∈ S fixed): 
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11. Upon receiving {Lk} ∈M, the server updates L0 by 
solving (with {Lk} ∈M fixed): 

( ) ( )( )

( ) ( ) ( )
0

0

0

; ;

min ;

log
k i k k

L

k M kq L q L
f

q L p

N p
N φ φ φ∈

Ψ Ψ

 − Ψ ∑  

KL

• Prediction algorithm
Algorithm 3. Prediction algorithm
Global prediction:
Sample 
( ) ( ) ( ) ( ) ( )00 0; ; ,

 1, 2,3, , .

s
i k k kp q L p q L d

for s S

θ θ φ φ φ Ψ Ψ Ψ

=
∫∫



Input: Test input x*. Trained model L0 in the variational 
posterior q(Ψ, L0).
Output: Predictive distribution p(y*|x*, D1:S, ∅1:M).

Return p(y*|x*, D1:S, ∅1:M ≈
( )( )* *

1

1 , .
S s
s

p y x
S

θ
=∑

Personalization:
• Estimate the variational density f (θ) ≈ p (θ|D p, ϕ*).
• Sample θ(s) ~ f (θ), for s = 1, 2, 3, ..., S.
Input: Personal training data D p, test input xp. Trained 
model L0 in the variational posterior q(Ψ, L0).
Output: Predictive distribution p(y p|x p, D p, D1:N, ∅1:M).

Return p(y p|x p, D p, D1:N, ∅1:M)≈ ( )
1

1 ,
S sp p
s

p y x
S

θ
=

 
 
 ∑ .

• Cloud server-side algorithm execution
Algorithm 4. Cloud server-side algorithm execution
Input: K, ρ.
Initialize ω0 and broadcast ω0 to all edge servers.
m ← max (k * ρ, 1).
Ci ← {random set of m edge servers}.
for each edge server k ∈ Ci in parallel do: 

( )1 Edge server - update ,k
t pkω ω+ ←

end

• Edge server-side algorithm execution
Algorithm 5. Edge server-side algorithm execution
Input: K, ρ.
Initialize ω0 and broadcast ω0 to all clients.
m ← max (k * ρ, 1).
Ci ← {random set of m Client}.
for each edge server k ∈ Ci in parallel do:

( )1 Client - update ,k
t pkω ω+ ←

end

• Client-side algorithm execution
Algorithm 6. Client-side algorithm execution
Input: K, ω.
Output: ω.
Get newest ω from the server.
Initialize I, M.
for each iteration i=1, 2, 3, ..., S do:

B ← split the dataset into batches of size M.
        for batch b  B do:

calculate gradient gk; 
ω ← ω ← η *gk;

end
end
Return ω to the edge server.
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4  Performance Analysis for the 
Framework

4.1 Analysis of the Convergence and Generalization
The proposed hierarchical Bayesian federated learning 

algorithm is evaluated through two theoretical analyses, 
which provide insights into the algorithm’s convergence 
and generalization error. (1) Convergence analysis: The 
developed algorithm, as a special hierarchical block-
coordinate optimization algorithm, is theoretically proven 
to converge to a local optimum. (2) Generalization error 
analysis: Theoretically, the optimal model trained on test 
data exhibits predictive capabilities.

• Convergence analysis. We denote the objective 
function as f(x), where x = [x0, x1, …, xS] corresponds to 
the variational parameters x0 := L0, x1 := L1, x2 := L2, …, 
xS:= LS. Let ηt = L t+  for some constant L , and let Tx

= 1
1 T t

t x
T =Σ  , where t is the batch iteration counter, x is the 

iteration at t following the hierarchical Bayesian federated 
learning algorithm, and Nf (≤S) is the number of clients 
participating in each round. For any T, the following 
formula holds:

( ) ( )
2 2

* 2

1

ffT

f

T L D R TN N
f x f x

N T

O
T

+
++ − ≤ ⋅  

 
=  

 



(35)

Here, x* denotes the local optima, and D and Rf are 
some constants. tx  converges to the expected optimal 

point x* at a rate of O(1/ t ), and this rate approaches 
the rate of the standard stochastic gradient descent (SGD) 
algorithm.

• Generalization error analysis. Given d 2(Pθi
, P i) as 

the square of the expected Hellinger distance between the 
true class distribution P i(y|x) and the model distribution 
Pθi

(y|x), the optimal solution ( *
1{ ( )}N

i i iq θ = , q*(ϕk)) of the 
optimization problem satisfies the following criteria:

( ) ( )2
*

1

2 *

1

1 ,

1 1

N
i

iqi ii
N

n n i
i

d P P
N

O C C r
n N

θθ

ε λ

=

=

 
  

   ′≤ + ⋅ + +       

∑

∑



(36)

Here, C and Cꞌ are constants such that ≥ 0, λ*
i = 

minθ∈Θ||fθ – f i||2
∞, and rn, ϵn → 0 when the amount of 

training data n → ∞, which means that the optimal 
solution is asymptotically optimal.

4.2 Analysis of Transmission Optimization in the 
Framework
The mobil i ty  of  nodes and the instabi l i ty  of 

communication links also challenge the training of the 
hierarchical asynchronous federated learning model. 
Combining federated learning, homomorphic encryption, 
and secure multi-party computation technologies can 
enhance privacy protection. However, at the same time, 
it will also cause large communication transmission 
overhead for model training [18-21]. In edge networks, 
there are thousands or hundreds of users participating in 
model training, and a large number of nodes and servers 
require continuous model update transmission, making 
network transmission efficiency a key bottleneck for 
model training convergence [22-25]. In the whole model 
training process, the local model update and model update 
upload of a large number of participating nodes will cause 
excessive network transmission overhead, and the privacy 
technologies such as homomorphic encryption and secure 
multi-party computation applied in the privacy security 
research field mentioned above will cause large network 
transmission overhead for model training. 

Therefore, it is necessary to study network transmission 
optimization technology to reduce network transmission 
overhead in model training in federated learning research. 
Researchers have studied the typical problems in federated 
learning, such as massive participation nodes, limited 
network bandwidth, data heterogeneity, heterogeneous 
computing power, node collaboration selfishness, 
improving efficiency, reducing energy consumption, and 
improving model accuracy. The main solutions include 
node selection, enhanced local computing, reduced 
number of model updates uploaded, model compression, 
decentralized training, parameter aggregation transmission 
oriented, and each method focuses on a particular problem. 
We present the relevant research information in Table 1.

The overall goal of local model updates is to use 
local datasets for machine learning model training on the 
distributed node side of the terminal. However, performing 
local model calculations in a single communication round 
and sharing local model updates on edge servers can 
result in low communication efficiency. A transmission 
optimization method to address this issue is to enhance 
local computing to reduce communication frequency, 
thereby reducing the number of communication rounds 
required for model training. 

The Bayesian hierarchical asynchronous federated 
learning framework described in this paper achieves 
transmission optimization based on enhanced local 
computing. In the framework, participating nodes achieve 
local model accuracy through multiple iterations of local 
model calculation and then upload it to the edge server; 
The edge server undergoes multiple iterations of edge 
model aggregation to achieve edge model accuracy and 
then uploads it to the cloud server for a global model 
aggregation. Before the participating nodes upload the 
local model updates to the edge server, they must carry 
out multiple rounds of local iterations to reduce the 
number of communications with the server. The edge 
aggregation model is subject to multiple edge iterations 
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before uploading to the cloud  server, thus reducing 
communication overhead, model training time, and 
energy consumption of the Edge device. Furthermore, 
the hierarchical Bayesian algorithm in this paper can 
correct the ‘drift’ introduced in the local model update 
of equipment when the local data is not Independent 
and identically distributed random variables and form a 
personalized local model. 

5  Simulation Results 

We evaluate the sensitivity of our models to critical 
hyperparameter K (Figure 3). Table 2 shows the parameter 
settings as follows.

In summary, this paper proposes a hierarchical 
Bayesian federated learning method, thus realizing local 

model personalization, solving the problem concerning 
non-IID data in federated learning, and effectively reducing 
communication costs through multilevel hierarchical 
model parameter aggregation and resource scheduling.

In this paper, the developed model obtained by local 
model personalization and hierarchical model parameter 
aggregation processing exhibits outstanding robustness, 
effectively addressing different types of statistical 
heterogeneity and communication bottleneck problems. 
The progress of building a hierarchical asynchronous 
federated learning model enables the participating parties 
to achieve efficient personalized local model processing 
at the edge side while solving the issue of non-IID data. 
Therefore, this article addresses the non-IID data and 
communication bottlenecks issues encountered in federated 
learning. 

Table 1.  Different optimization method
Optimization method Faced challenge  Optimization objective

Massive 
participation 
nodes

Limited 
network 
bandwidth

Data 
heterogeneity

Heterogeneous 
computing 
power

Node 
collaboration 
selfishness

Improving 
efficiency

Reduce 
energy 
consumption

Improve 
model 
accuracy

Node 
selection








  


  

Enhance 
local 
computing

   

Reduce the 
number of model 
updates uploaded

   

Model 
compression





  

Decentralized 
training

    

Parameter 
aggregation 
transmission oriented

   

Table 2. Parametric configuration for simulation

Parameter Numeric Describe
K 2/5/10 The number of networks
B 1MHZ Bandwidth
δb 5MB Block size
n0 -125dBM/HZ Noise power
D 2MB Training sample size
ck 15cycles/bits Frequency required for training completion
pk 30W Transmission power
max

kf  0.5GHz-1.0GHz Maximum computing power

s 100 Sharding parameter
f 0.1 Participating client fraction
τ 1 Number of local epochs
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(a) Global prediction (s = 100)

(b) Personalisation (s = 100)

Figure 3. Hyperparameter sensitivity analysis

Other researchers are also endeavoring to incorporate 
Bayesian theory into federated learning modeling [26-
27] to address the formidable issue of non-IID data. 
By incorporating the distribution of the model weight 
parameters into the global model’s posterior probability 
calculation, we can derive the global model’s parameters 
from the posterior probability calculations of the local 
models. However, these methods regard the model weight 
parameters as random variables shared by all clients, and 
they still face challenges in terms of handling local models 
when each participant receives non-IID distributed data 
from each client [28].

For instance, FedPA [9] aims to establish the product-
of-experts decomposition to allow client-wise inference. 
However, this decomposition does not hold in general 
unless a strong assumption of uninformative prior is 
made. FedBE (Bayesian Ensemble) [26] aims to build the 
global posterior distribution from the individual posteriors. 
pFedBayes [27] can be seen as an implicit regularisation-
based method to approximate from individual posteriors. 
To this end, they introduce the so-called global distribution 
ω(θ), which essentially serves as a regulariser to prevent 
local posteriors from deviating from it. The introduction 
of ω(θ) and its update strategy appears to be a hybrid 
treatment rather than solely Bayesian perspective. FedPop 
[29] has a similar hierarchical Bayesian model  structure 
as ours, but their model is limited to a linear deterministic 
model for the shared variate.

6  Conclusion

In this article, we propose a novel research method, 
a hierarchical Bayesian federated learning framework, 
with the aim of solving the communication and non-
IID data problems that are commonly encountered in 
federated learning. Through this framework, we can 
achieve collaborative machine learning model training 
for distributed nodes, use global variables to control the 
random local model variables of the participants and 
achieve hierarchical collaborative model construction 
to optimize communication. In addition, we adopt the 
variational inference method to effectively solve the non-
IID data problem of federated learning for each participant. 
This framework exhibits strong robustness in terms of 
coping with different types of statistical heterogeneity and 
realizes personalized local models. Although some aspects 
of this article still need to be improved, we plan to continue 
our in-depth research in future work and release relevant 
results in subsequent papers. Such as, in the process of 
model aggregation, when the central server receives model 
information uploaded by all participants, how to evaluate 
the participants’ model information, give higher weights to 
parameter information that is more valuable and conducive 
to joint model training, improve model convergence rate, 
reduce communication between local models with smaller 
contributions and global models to enhance effective 
communication efficiency between different levels. That 
is one of the subsequent research focuses of this article’s 
related research content.
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