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Abstract

Fetal congenital heart disease is the most common birth 
defect. In early diagnosis, the use of echocardiography is 
an important means of diagnosis, but due to the unique 
structure of the fetal heart, there are still many challenges 
in the early screening process. Hence, this study proposes 
a diagnosis model called ConvNeXt based on Attention 
Mechanism and Transfer Learning (ConvNeXt-AMTL) 
for congenital heart disease, which utilizes a large-kernel 
convolutional neural network to extract features from 
fetal echocardiography, and using attention mechanisms 
to focus and optimize key features. At the same time, in 
order to alleviate the problem that image data samples are 
too few to train the model well, this study proposes to use 
transfer learning to train the model. Numerous experiments 
have shown that the proposed model can efficiently 
diagnose fetal congenital heart disease, achieving an 
accuracy of 98.8% on the test set, effectively promoting 
prenatal screening of fetal congenital heart disease.
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1  Introduction

Fetal congenital heart disease (CHD) is the most 
common type of congenital malformation, and in recent 
years, the mortality rate of fetal congenital heart disease 
ranks first among all congenital disabilities. In addition, 
fetal CHD is still the main cause of infant death, which 
has brought more and more burdens to many families and 
society. Early detection and diagnosis of diseases can not 
only help doctors to diagnose specific conditions in time, 
but also allow patients to obtain cure of diseases through 
interventional treatment of CHD in the early stages of 
the disease. However, in areas where medical resources 
are relatively scarce, especially in remote and backward 
areas such as high-altitude areas, due to the limitation of 
medical level, it is difficult for patients with CHD to obtain 
effective early detection and diagnosis.

In  recent  decades ,  the  diagnosis  of  CHD by 

echocardiography has been one of the main means of early 
screening. Echocardiography is a non-invasive inspection 
technique that uses the special echo physical characteristics 
of ultrasound to receive and process echo signals, and 
then obtain the anatomical structure of the heart’s internal 
cardiovascular system. Because of its relatively safe 
and non-invasive characteristics to the fetus, it is widely 
used in prenatal diagnosis and disease screening. And 
echocardiography can effectively evaluate the structure 
and function of the fetal heart.

Although rapid advances have been made in fetal 
ultrasound imaging, the prenatal detection rate of fetal 
CHD remains low based on clinical population studies, 
mainly due to the following challenges: 

First of all, fetal ultrasound views usually have 
low resolution, more spots, and more artifacts, which 
bring great obstacles to the diagnosis of cardiologists. 
In addition, the experience of the physician probing the 
sonogram and the different positions of the fetus in the 
uterus may lead to inconsistency and non-reproducibility 
in obtaining echocardiograms, which poses a huge 
problem for cardiologists in diagnosing fetal CHD. Finally, 
cardiologists must be familiar with fetal cardiac anatomy 
when analyzing fetal echocardiograms to diagnose fetal 
CHD. However, due to the complex structure of the fetal 
heart, accurate identification of fetal CHD is a demanding 
task, which leads to a very long learning curve for doctors 
in this process. In this case, it is very expensive to train 
an excellent congenital heart disease diagnostic expert, 
both in terms of time cost and resource cost. Therefore, 
using deep learning to assist cardiologists can largely help 
doctors analyze and diagnose more effectively.

In the current field of computer vision, deep learning 
is arguably a state-of-the-art technique for image analysis. 
Therefore, deep learning is also widely used in the research 
of medical imaging, such as medical image segmentation 
[1-5], image classification and prediction. For example, 
in terms of medical image classification and prediction, 
work in [6-7] used deep neural networks for Alzheimer’s 
disease classification tasks, and the experimental results 
showed good performance. In [8-13], the task of using 
deep learning for pneumonia has also made good progress.

In the study of adult cardiology diagnosis using 
echocardiography, Arnaout [14] proposed that deep neural 
networks can be used to better interpret echocardiography, 



608   Journal of Internet Technology Vol. 26 No. 5, September 2025

thus assisting physicians in diagnosis.  Madani et al. 
[15]  proposed the use of convolutional neural networks for 
multi-view classification of echocardiography, which had 
a high accuracy in the experimental results, with an overall 
prediction accuracy of 97.8%, promoting the diagnosis of 
artificial intelligence-assisted echocardiography. Ouyang 
et al. [16] proposed a beat-to-beat deep learning method, 
using convolutional neural networks to label the left 
ventricle and extract features on echocardiographic video 
data, so as to achieve the evaluation of cardiac function.

Deep learning is also involved in the diagnosis of fetal 
congenital heart disease using echocardiography. Tan et 
al. [17] proposed a screening system for the diagnosis 
of hypoplastic left heart syndrome (HLHS), which 
includes the extraction of different standard planes and the 
identification of whether the subject has HLHS. Gong et al. 
[18] proposed a one-class classification network to classify 
patients with fetal CHD and healthy subjects, utilizing 
cycle adversarial learning and transfer learning to further 
improve the recognition accuracy and robustness of the 
model. Experiments have shown that the model achieves 
a recognition rate of 84% in identifying fetal CHD. 
Sundaresan et al. [19] proposed to use fully convolutional 
neural network to segment the fetal heart plane in the 
ultrasound video frame, and then further realize the heart 
detection and the classification of the heart plane. Komatsu 
et al. [20] used convolutional neural networks to detect 
cardiac structural abnormalities in fetal ultrasound videos. 
Its model can achieve an AUC of 0.787 in diagnosing 
cardiac abnormalities. S. Nurmaini et al. [21] proposed a 
computer-assisted echocardiographic examination of fetal 
CHD, using the deep learning network Mask-RCNN to 
segment and detect defects in standard heart views. The 
results show that the average accuracy of this method in 
classification tasks is 98.30%. S. Qiao et al. [22] proposed 
a simple yet effective residual learning diagnosis system 
and the experimental results show that the accuracy of 
this method on the test set is 93%. S. Nurmaini et al. [23] 
proposed a novel multi classification method for fetal 
CHD based on DenseNet201 and the results show that the 
sensitivity, the specificity and the accuracy are 100% for 
the intra-patient scenario. R. Arnaout et al. [24] proposed 
the use of ensemble deep neural network to classify five 
types of heart views, and used this to classify normal 
hearts and complex fetal CHD. This model achieved the 
area under curve (AUC) of 0.99, the sensitivity of 95%, 
the specificity of 96% and 100% negative predictive value 
in distinguishing normal from fetal CHD. 

Although some previous studies have achieved good 
results in the diagnosis of fetal CHD, there are still some 
shortcomings: 1) It is easy to ignore the key information of 
small lesions. 2) The ability to extract feature association 
information between different regions is insufficient.

In order to solve the above problems, this paper 
proposes a more efficient deep learning-based image 
classification model for fetal CHD, which is improved 
on ConvNeXt V1 [25] and combined with attention 
mechanism to better diagnose fetal CHD. Meanwhile, due 
to the small number of samples of fetal CHD, this study 
uses the method of transfer learning to pre-train the model 

and fine-tune it on a small sample of fetal CHD before 
predicting and diagnosing it. The contributions of this 
paper are summarized as follows:

1)	 This paper proposes an effective deep learning 
model to diagnose and predict fetal congenital 
heart disease, using ConvNeXt V1 and attention 
mechanism to process feature information in 
more detail, and adopting transfer learning to 
solve the small samples of fetal CHD. Compared 
with previous models, this model has better 
performance. 

2)	 This paper provides visual explanations for 
the model to increase its interpretability. The 
confusion matrix provides a global explanation 
on diagnosing fetal CHD and the feature map 
visualization explains the local process of the 
model learning features.

2  Related Work

2.1 Convolutional Neural Network Model (CNN)
With the continuous deepening and optimization of 

deep learning algorithm models, the computer’s ability 
to process data and large amounts of data determine the 
development of deep learning. Driven by the high-speed 
parallel computing technology of large-scale graphics 
processing units (GPU), in the field of deep learning, 
AlexNet [26] stood out in the competition of the ImageNet 
[27] data set, and AlexNet pushed the depth of the world 
for the world. The door to learning, followed by VGGNet 
[28], GoogleNet [29], ResNet [30], DenseNet [31], 
ShuffleNet [32] and other representative deep learning 
models have also been used by many studies to this day.

However, since most models expand the receptive field 
by stacking smaller convolutions, each output contains a 
smaller area of information. In the process of continuous 
hardware development, convolutional neural networks 
using large convolution kernels have also been proposed 
in the field of deep learning to improve model efficiency, 
such as ReplkNet [33] and ConvNeXt. Compared with 
a small convolution kernel network, the use of a large 
convolution kernel can improve the effective receptive 
field more efficiently, which is conducive to the extraction 
of contextual information. Compared with small-kernel 
CNNs, large-kernel CNNs have higher-level shape biases 
rather than texture biases. Therefore, this paper proposes to 
use a large-kernel convolution method to extract detailed 
features from congenital heart disease images, so as to 
learn context information more efficiently.

2.2 Attention Mechanism
The attention mechanism was first used in the field of 

Natural Language Processing (NLP), and was later widely 
used in the field of Computer Vision (CV). Generally 
speaking, the purpose of the attention mechanism is 
to enable the model to pay more attention to the key 
information in the image, thereby improving the ability 
of feature representation. For example, CBAM [34] is 
a simple and effective attention module, which not only 
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considers the channel dimension, but also the spatial 
dimension. The CBAM module can be seamlessly 
incorporated into any CNN model and can improve the 
performance of the backbone network.

In the medical field, experts can clearly understand 
the correlation of lesion characteristics based on years 
of clinical experience. Therefore, when analyzing 
images, they can independently ignore information 
that is not important for diagnosis, and focus on those 
key information features, and the attention mechanism 
coincides with this idea, so it is feasible to use the attention 
mechanism for diagnosis.

In recent years, attention modules have also been 
widely used in medical imaging. In [35], CBAM was used 
to extract the most informative features from pneumonia 
images. In order to improve the model’s ability to extract 
feature information, Zhan et al. [36] proposed a new CNN 
structure based on the combination of DenseNet and 
attention for arrhythmia diagnosis.

In the study of CHD, because the fetal heart is small, 
it is not conducive to the key information extraction of the 
image, so this paper proposes an improved CBAM module 
to analyze the features of the image more efficiently.

2.3 Transfer Learning
With the continuous development of deep learning, 

transfer learning, as a main learning method of deep 
learning, has become an indispensable part of many 
application fields, especially in medical imaging research. 
There are fewer datasets, which may lead to overfitting of 
the deep learning model during training. Transfer learning 
can reduce the occurrence of this situation. Therefore, the 
learning method using transfer learning is widely used 
in the field of medical imaging. For example, Gajendran 
et al. [37] utilized transfer learning to transfer features 
learned from general natural image classification to ECG 
classification. Saito et al. [38] used a large number of 
heart disease images to pre-train the model in a simple 
CNN model. Y. Gao et al. [39] demonstrated that a 
CNN initialized with a large-scale pre-trained network 
outperforms a CNN trained directly with small-scale 

ultrasound data. Swati et al. [40] used Vgg19 for transfer 
learning, which can have a higher classification effect in 
MRI brain tumors. They also proposed in their research 
that because medical images are different from natural 
images, if only the last few layers of the model are fine-
tuned, it will be difficult for the model to learn medical 
image features, and the performance will be improved by 
deep fine-tuning. Therefore, this paper also proposes to use 
deep fine-tuning to train the model.

3  Models

In this section, the basic network architecture of the 
proposed model ConvNeXt-AMTL is firstly described 
in detail, and then the Large-kernel Convolution Module 
(LM) and the Attention Module (AM) of the network is 
introduced, finally the transfer learning and the deep fine-
tuning method of ConvNeXt-AMTL is discussed.

3.1 Overall Structure
The architecture of ConvNeXt-AMTL is shown 

in Figure 1. The framework of ConvNeXt-AMTL is 
improvement on the ConvNeXt network, and which 
combines the attention mechanism to extract the key 
information of the lesion area. ConvNeXt-AMTL takes 
the fetal echocardiography that need to be classified into 
categories as the input of the network. First, the input 
image goes through a convolution layer with a convolution 
kernel size of 4×4, and the Layer Normalization (LN) 
is down sampled by 4 times; then it is passed into the 
network composed of a large-kernel convolution module 
(LM) and an attention module (AM) to further process the 
feature information; in the procedure of processing the 
feature information, three down-sampling operations of 2 
times will be performed, its purpose is to let ConvNeXt-
AMTL learn feature information of different scales; finally, 
the feature information is feed to the global average 
pooling (GAP) layer, fully connected layer, and softmax 
classifier to complete the final classification operation. 
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Figure 1. The architecture of ConvNeXt-AMTL

3.2 Large-kernel Convolution Module (LM)
In 2022, ConvNeXt V1 is proposed to use large 

convolution kernels to enhance the ability of convolutional 
neural networks to extract features. Therefore, this study 
also introduces the large-kernel convolutional network of 
ConvNeXt V1 into this module, but because the effective 

receptive field of the large convolution kernel is single and 
huge, this study adds two connection layers to the model 
to generate a combined receptive field. At the same time, 
more small local features are retained, which promotes 
the effective transmission and utilization of feature 
information, thereby avoiding the phenomenon of smooth 
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transition. The Large-kernel Convolution Module (LM) is 
shown in Figure 2. This module is mainly composed of a 
7×7 depth-separable convolutional layer, two connection 
layers, and two fully-connected layers.

Conv
 7×7

Conv 
1×1

Conv 
1×1

Figure 2. Large-kernel convolution module (LM)

3.3 Attention Module (AM)
Spatial attention can make the neural network pay 

more attention to the key information of the image and 
reduce the attention to the non-key information. Channel 
attention is an attention mechanism that considers the 
relationship between feature map channels. CBAM 
combines both attentions to achieve a more comprehensive 
attention structure. Hence, CBAM has been introduced and 
improved in this module.

In this module, the Channel Shuffle proposed by 
ShuffleNet is adopted to ensure that different semantic 
information between different channels can be exchanged 
before being input into CBAM, and the residual 
connections are used to ensure long-distance dependencies. 
The Attention Module (AM) is shown in Figure 3. This 
module is divided into two stages: the first is the channel 
attention stage, the second is the spatial attention stage. 
The detailed introduction to the two stages is as follows:

In the first stage, channel shuffle is conducted on the 
input feature map F to obtain the feature map F'. Then, 
the feature map F' is proceeded by average-pooling and 
max-pooling in spatial dimensions to obtain two spatial 
context descriptors. The two spatial context descriptors are 
feed to MLP, and then the two outputs are combined and 
activated through the sigmoid activation function to obtain 
the weight coefficient Mc of the channel. This channel 
weight coefficient is multiplied with the input feature, and 
the resulting map is merged with the original input feature 
map by residual connection to obtain a new feature map 

'
cF . The process of the first stage is explained in equation 

(1).

( ) ( )( )( )c

c c

M MLP AvgPool F MaxPool F

F M F F

σ ′ ′= +


′ ′= ⊗ +
(1)

F is input feature map, F' is feature map processed 
by channel shuffle, σ is sigmoid activation function, Mc 
is weight coefficient of the channel, cF ′  is final feature of 
channel attention stage, ⨂ is weighted multiplication of 
feature map.

In the second stage, the feature map cF ′  is proceeded 
by average-pooling and max-pooling in channel 

dimensions to obtain two feature maps. The two feature 
maps are processed by concatenating in channel dimension 
and then the convolution operation is performed. The 
feature map obtained from convolution operation is 
activated through the sigmoid activation function to obtain 
the spatial weight coefficient Ms. Finally, this weight 
coefficient is multiplied with the input feature, and the 
resulting map is merged with the original feature map by 
residual connection to obtain the final feature map sF ′  as 
output. The process of the second stage is explained in 
equation (2).

( ) ( )( )( )3 3
s c c

s s c

M f AvgPool F MaxPool F

F M F F

σ × ′ ′= +


′ ′ = ⊗ +
(2)

F is input feature map, cF ′  is final feature of channel 
attention stage, σ is sigmoid activation function, Ms is 
weight coefficient of the spatial, sF ′  is final feature of 
spatial attention stage, ⊗ is weighted multiplication of 
feature map.

3.4 Transfer Learning and Deep Fine-tuning of 
ConvNeXt-AMTL
First, use the Mini-ImageNet [41] dataset to pre-

train ConvNeXt-AMTL, and then fine-tune this model 
in depth. The fetal CHD dataset is not similar to natural 
images. If this study only fine-tunes the last few layers of 
fully connected layers, the model will be very difficult to 
learn the image features of fetal CHD, therefore this study 
does not freeze the weights of the shallow layer, and uses 
the pre-trained ConvNeXt-AMTL to re-learn the fetal 
echocardiography, so as to achieve the purpose of deep 
fine-tuning.

4  Experimental Analysis

4.1 Dataset Source and Preprocessing
The fetal echocardiography dataset for this study 

was obtained from a hospital. The experimental data 
set randomly selected in this paper includes five views 
of the fetal heart from different angles, including three-
vessel tracheal view (3VT), three-vessel view (3VV), 
apical four-chamber view (A4C), right ventricular outflow 
tract view (RVOT), and left ventricular outflow tract 
view (LOVT). Figure 4 and Figure 5 show some of the 
experimental images used. The experimental dataset 
includes 185 echocardiograms of healthy fetuses and 123 
echocardiograms of fetuses with congenital heart disease. 
These echocardiograms have varying degrees of artifact 
noise, which is conducive to verifying the effectiveness and 
reliability of the model in handling the above diagnostic 
tasks.

In addition, this experiment split the entire data set 
and used 226 image data for model training, including 
125 echocardiograms of healthy fetuses and 101 



Diagnosis of Fetal Congenital Heart Disease Based on Deep Learning   611

fetal echocardiograms with CHD. The test set and 
the training set are separate and independent. In the 
test set, 82 image data are used for test experiments, 
including 60 echocardiograms of healthy fetuses and 22 
echocardiograms of fetuses with CHD.

In the process of image preprocessing, in order to 
keep the size of the image consistent when inputting the 

model, this experiment adjusts the size of the image to 
uniformly specify the size of the image as 224 pixels × 
224 pixels. In addition, this experiment enhances the fetal 
echocardiography dataset through random cropping and 
random horizontal flipping operations, the purpose of 
which is to improve the generalization ability of the model 
to a certain extent.

Figure 3. Attention Module (AM)

Figure 4. Samples of fetal CHD images

Figure 5. Samples of fetal healthy heart images

       

             Figure 6. Confusion matrix of ConvNeXt-AMTL   Figure 7. Confusion matrix of ConvNeXt-AMTL without TL
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4.2 Evaluation Indicators
This article uses a confusion matrix to visualize the 

performance of the model. The performance of the model 
proposed in this paper is evaluated by obtaining four main 
indicators in the confusion matrix, including accuracy, 
precision, recall and F1 score:

Tp TN

TP TN FP FN

N N
Accuracy

N N N N
+

=
+ + +

(3)

TP

TP FP

N
Precision

N N
=

+
(4)

TP

TP FN

N
Recall

N N
=

+
(5)

1
2 Precision Recall

Precision Recall
F ×

+
×

= (6)

F1 score is a combination of precision and recall, which 
is a comprehensive evaluation of the model in this paper. 
Therefore, the greater the precision of the model, the better 
the diagnostic effect on fetal congenital heart disease; the 
higher the recall value, the more sensitive the model is to 
fetal congenital heart disease. Range of F1 score from 0 to 
1, where 1 means the model has the best performance and 
0 means the worst performance.

In addition, this paper also uses the ROC curve and 
AUC to measure the diagnostic performance of our model 
at different thresholds. ROC is a probability curve, and 
AUC means that it is a quantitative processing of the ROC 
curve, and they can well evaluate the ability of the model 
to distinguish between normal samples and abnormal 
samples.

4.3 Experimental Discussion
4.3.1 Visualization of Model Classification Results

This experiment uses a test set of 82 sample images 
(22 abnormal samples, 60 normal samples) to verify the 
effect of the model. The confusion matrix predicted by 

ConvNeXt-AMTL in this study is shown in Figure 6. It 
can be seen that a total of 21 fetal echocardiograms labeled 
as abnormal were diagnosed as abnormal, while only 
one of the samples marked as abnormal was predicted 
as normal. Among the sample images labeled as normal, 
they are all accurately predicted as normal. From the 
above experimental results, it can be seen that the use of 
this model and transfer learning is very efficient in the 
diagnosis of fetal congenital heart disease.

At the same time, this experiment also evaluated 
the performance of ConvNeXt-AMTL without transfer 
learning (TL). The confusion matrix predicted by  
ConvNeXt-AMTL without transfer learning (TL) is 
shown in Figure 7. It can be seen that there are 20 fetal 
echocardiograms with abnormal labels was diagnosed 
as abnormal, and only 2 of the samples marked as 
abnormal were predicted to be normal. Fifty-nine fetal 
echocardiograms labeled normal were diagnosed as 
normal, and only 1 sample was predicted to be abnormal. 
It can be seen that the model ConvNeXt-AMTL without 
transfer learning (TL) also can maintain a high accuracy 
without transfer learning.

From the above experimental results, it can be seen that 
the research model still has high sensitivity to whether the 
fetus has CHD, which is conducive to the timely detection 
of patients in the diagnosis process, and can ensure that 
over-screening will not be performed. Therefore, in 
summary, it can be seen that ConvNeXt-AMTL has good 
performance in the diagnosis of fetal CHD.
4.3.2 Model Feature Map Visualization

In the previous section, the performance of ConvNeXt-
AMTL in diagnosing fetal CHD was illustrated through 
the confusion matrix. In this section, the learning ability 
of the response model will be more intuitive in the form 
of feature map visualization. In this experiment, several 
channels were randomly selected from the feature maps of 
the Large-kernel Convolution Module (LM) and Attention 
Module (AM) for visualization. As shown in Figure 8 and 
Figure 9, the Large-kernel Convolution Module (LM) can 
capture low-level feature, including texture and shape, and 
can clearly outline feature information; while the Attention 
Module (AM) can further focus on key feature information 
in the stage1.

Figure 8. Visualization of feature maps in LM
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4.3.3	 Model Comparison
This  exper iment  compared  the  per formance 

indicators between different models. As shown in Table 1, 
ConvNeXt-AMTL performed the best in diagnosing fetal 
congenital heart disease, achieving the precision of 99.2%, 
the recall of 97.8%, F1 score of 98.5% and an accuracy 
rate of 98.8%.

Table 1. Comparison of performance indicators of different 
network models

Precision Recall F1 score Accuracy
ResNet34
Abnormal 0.95 0.864 0.905

Normal 0.952 0.983 0.967
Average 0.951 0.924 0.937 0.951

ShuffleNetV2
Abnormal 0.938 0.682 0.790

Normal 0.894 0.983 0.936
Average 0.916 0.833 0.872 0.902

ConvNeXtV1
Abnormal 0.516 0.727 0.604

Normal 0.882 0.750 0.811
Average 0.699 0.739 0.718 0.744

DenseNet121
Abnormal 1.0 0.773 0.872

Normal 0.923 1.0 0.960
Average 0.962 0.887 0.922 0.939

ConvNeXt-AMTL 
without TL
Abnormal 0.952 0.909 0.930

Normal 0.967 0.983 0.975
Average 0.960 0.946 0.953 0.963

ConvNeXt-AMTL
Abnormal 1.0 0.955 0.977

Normal 0.984 1.0 0.992
Average 0.992 0.978 0.985 0.988

In addition, this experiment also compared the ROC 
curves between different models. As shown in Figure 10, 

ConvNeXt-AMTL reached the best AUC of 0.999. Finally, 
this experiment also analyzed the loss curves and accuracy 
curves between different models. As shown in Figure 11 
and Figure 12, it can be seen from the learning curve that 
ConvNeXt-AMTL has the best convergence. Therefore, 
ConvNeXt-AMTL proposed in this paper is more effective 
in diagnosing fetal CHD.

Figure 10. ROC curves of different models

Figure 11. Loss curves of different models

Figure 9. Visualization of feature maps in AM



614   Journal of Internet Technology Vol. 26 No. 5, September 2025

Figure 12. Accuracy curves of different models

5  Conclusion

In this paper, a deep learning model ConvNeXt-AMTL 
is proposed to diagnose fetal congenital heart disease. In 
this model a module using a large-kernel convolution is 
proposed to learn the correlation between different heart 
regions. In addition, in order to focus on key information 
and capture detailed features, this paper also proposes 
a module using attention mechanism. Furthermore, the 
pre-trained model is deeply fine-tuned through transfer 
learning on the CHD dataset. Experiments show that the 
accuracy rate of ConvNeXt-AMTL in the diagnosis of fetal 
CHD reached 98.8%, and the recall rate reached 97.8%, 
which significantly improved the accuracy of diagnosis of 
fetal CHD.

However, there are still some limitations in this study, 
because there are few abnormal samples of fetal heart, 
and the potential of the model cannot be more powerfully 
explained due to the limitation of image scale, and it is a 
great challenge to obtain enough images in a short time. 
Not only clinical acquisition is required, but also rigorous 
labeling of images is required. Therefore, more fetal CHD 
images will continue to be added in the future to improve 
the potential of the model.
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