
Journal of Internet Technology Vol. 26 No. 5, September 2025 579

*Corresponding Author: Chia-Chen Lin; Email: ally.cclin@ncut.edu.tw
DOI: https://doi.org/10.70003/160792642025092605002

Hybrid Representative Coding Scheme for AMBTC
Compressed Images

Hua Wu1, Chia-Chen Lin2*, Chin-Chen Chang3, Xu Wang4

1 Beijing Information Science and Technology University, China
2 Department of Computer Science and Information Engineering,

National of Chin-Yi University of Technology, Taiwan
3 Department of Information Engineering and Computer Science, Feng Chia University, Taiwan

4 School of Information Science and Engineering, University of Jinan, China
sunshinesmilewhh@126.com, ally.cclin@ncut.edu.tw, alan3c@gmail.com, ise_wangx@ujn.edu.cn

Abstract

Among the representative image compression
techniques, absolute moment block truncation coding
(AMBTC) offers acceptable image quality for the
reconstructed image with a relatively low computational
cost. Nevertheless, this approach has its constraints. In
instances where an image contains numerous objects,
the quality of reconstructed images or compression
performance may be suffered. In order to solve this
problem, we applied the idea of Huffman coding and
proposed an adaptive image compression method with
hybrid representative coding based on absolute moment
block truncation coding (HRC-AMBTC). To achieve
our object, the image blocks in an image are classified
into three categories: flat, smooth, and complex. To
maintain the image quality of the restored image while
providing good compression performance, our designed
representative coding is applied to the smooth block.
Moreover, complex blocks are encoded by three quantized
values, and their bitmaps are derived from our proposed
difference clustering. In addition, to further improve HRC-
AMBTC, we compress codes of the flat block, which bit
per pixel is lower than our original HRC-AMBTC. Finally,
the experiments confirm the effectiveness and reliability of
the proposed compression methods after comparing them
with other variants of the AMBTC method.

Keywords: Image compression, AMBTC, Huffman code,
Hybrid representative coding, Difference-based clustering

1 Introduction

As the Internet and digital technologies advance, the
abundance of images has surged dramatically. Image
compression emerges as a crucial technique in information
transmission, particularly in scenarios where bandwidth
is constrained. It proves invaluable for prioritizing the
semantics of images and facilitating swifter transmission.
In general, compression techniques are roughly classified
into lossless compression [1-3] and lossy compression [4].

In lossless compression algorithms, the original image is
recovered from the compressed image without losing any
quality within the image; therefore, it is applied in fields
requiring high fidelity, such as medical images and remote
sensing images. Familiar lossless compression algorithms
include run-length coding [5-6], Huffman coding [7],
learned compression methods [8-9], etc. In run length
coding, the data is recorded as a single value and the
number of the same consecutive values. It works well for
data with long runs of identical symbols, such as binary
diagrams. However, it is hard to compress most natural
images, because of the many objects in natural images, and
the run length coding-based algorithm will need to apply
more codes to record discontinuous pixels. In this case,
some compression methods pay attention to the occurrence
frequency of a symbol in the data and utilize a shorter
codeword to represent symbols that occur frequently, for
example, Huffman coding. However, it is heavy work to
generate statistics for each symbol in a massive dataset
and to allocate distinguishable codes. For example, it takes
huge computing resources to find the Huffman code of
each pixel value of a set of images.

In situations where bandwidth is limited, receivers
often prioritize the content of images over intricate details.
Hence, lossy compression methods are more apt for real-
time image compression applications or scenarios where
only the context demands attention. These methods achieve
higher compression rates by emphasizing the overall
content rather than the finer texture details within an
image. At present, popular lossy compression algorithms
include vector quantization (VQ) [10-12], block truncation
coding (BTC) [13-15], compressed sensing (CS) [16],
etc. The VQ image compression is a block-based method.
For a given image set, each image is divided into several
non-overlapping blocks, and then a set of representative
image blocks, also called codewords, are derived from
these blocks to build a codebook by the c-means clustering
approach. Once the codebook is trained, all blocks in an
image can be replaced by the indices with the most similar
codewords. Finally, the generated indices are treated as the
compression results and transmitted along with the trained
codebook to the receiver. Different from VQ, BTC was
proposed by Delp and Mitchell in 1979 [13] and avoids the

580 Journal of Internet Technology Vol. 26 No. 5, September 2025

iterative process of obtaining representative image blocks.
One of its improved algorithms is absolute mean block
truncation coding (AMBTC), which was proposed by
Lema and Mitchell [16]. AMBTC prompts the compression
performance by comparing with conventional BTC.

To enhance the compression performance of the
conventional AMBTC method, several approaches,
including bitmap omission [17], block classification [18-
19], and adjustment of quantizers [20], have been explored
to lower the bitrate while maintaining acceptable image
quality of the reconstructed images. For example, in
2003, Hu [17] observed that when the difference between
two quantizers is smaller than a predefined threshold,
the bitmap will not affect the image quality of the
reconstructed image. Therefore, Hu omitted the bitmap
when a block is categorized as a flat one, and used the
block’s mean value to reconstruct the flat block. Chen
et al. [19] applied quadtree partitioning and designed
a variable-rate AMBTC compression method for color
images. The basic idea of their idea [19] is to partition
the image into blocks with various sizes according to the
blocks’ complexities. In 2015, Mathews and Nair [21]
considered human visual characteristics and then designed
an adaptive AMBTC method based on edge quantization.
Their method categorized image blocks into edge and
non-edge blocks and then calculated quantizers based
on the edge information. Since they consider detailed
textures, such as edge information, experimental results
confirm their method provides better image quality than
other AMBTC variants. In 2018, Hong [20] optimized
the quantizers to reduce the impact of bitmap alteration
during data embedding. In 2021, Chen et al. [22] proposed
an AMBTC-based image compression scheme by using
a ternary representation technique, which achieves high
image quality because of the complex blocks described
by ternary representation. In their method, the k-means
clustering method is introduced to assist in encoding
smooth blocks and complex blocks, respectively, and
spends most of the time on finding suitable clustering
centers.

To improve the image quality of reconstructed
images post-decompression while maintaining a similar
compression performance as Chen et al. [22], this paper
introduces an adaptive image compression method
featuring hybrid representative coding based on absolute
moment block truncation coding (HRC-AMBTC). The
aim is to preserve finer texture details within images.
Recognizing that texture complexity varies across different
areas, a universal approach cannot simultaneously optimize
both image quality and compression performance. In our
proposed scheme, image blocks are classified into three
categories: flat, smooth, and complex. Smooth blocks
undergo representative coding based on Huffman coding.
Furthermore, complex blocks are encoded using three
quantized values, with their bitmaps derived from the
proposed difference clustering method. Additionally, an
enhanced version of HRC-AMBTC is devised to further
compress flat blocks, achieving a lower bit per pixel
compared to our original HRC-AMBTC proposal.

The major contribution of our work can be summarized
as follows.

(1)	 Classify an image into three block categories, i.e.,
flat block, smooth block, and complex block, based on the
block’s feature.

(2)	 A mean-based encoding method is applied to
compress a flat block only with 9-bit code which is less
than the 32 bits offered by the conventional AMBTC.

(3) Drawing inspiration from Huffman coding,
the bitmaps of AMBTC compressed smooth blocks
are collected in advance. Subsequently, a set of eight
distinctive patterns can be derived. Ultimately, a Huffman
coding table with a size of 35 bits is employed to encode
the bitmaps of AMBTC compressed smooth blocks.

(4) A difference-based clustering method is proposed in
this paper to generate three quantized values and its image
quality of the reconstructed complex blocks can remain.
Different from a conventional clustering algorithm, the
corresponding bitmap for the complex block so that such
as k-mean, the seeds of clustering in our difference-based
clustering are determined by ordinal pixel differences
instead of random selection.

The rest of this paper is organized as follows. Section
2 introduces related works, i.e., Huffman coding, AMBTC,
and Chen et al.’s AMBTC-based compression [22], as
basic knowledge. Section 3 introduces the proposed image
compression method. Section 4 presents the experimental
results. Finally, the conclusion is given in Section 5.

2 Related Works

In this paper, our goal is to preserve the benefits
of AMBTC while improving upon the compression
performance provided by Chen et al.’s scheme [22],
all without compromising the image quality of the
reconstructed images. To achieve our objectives, we
designed representative coding based on the idea of
Huffman coding. Then, we designed a novel AMBTC-
based compression scheme by combining our proposed
representative coding and a difference-based clustering
method. To make our paper self-contained, we introduce
Huffman coding and AMBTC in Subsections 2.1 and 2.2,
respectively. As Chen et al.’s method [22] will be a primary
comparison with our proposed scheme, we introduce Chen
et al.’s scheme in Subsection 2.3.

2.1 Huffman Coding
Huffman coding [23] is a variable-length coding

method that considers the frequency of symbols in data. It
allocates shorter codes for the more frequently appearing
symbols and more codes for fewer appearing symbols.
The basic process of Huffman coding is as follows: 1) it
generates statistics on the number of different symbols in
an image and arranges the symbols in descending order
by their probabilities. 2) Next, a Huffman tree is built
by making these probabilities of symbols as the leaves
of a binary tree. 3) Subsequently, it takes two symbols
as nodes with the two lowest probabilities to generate a
new node with a probability, that equals the sum of the

Hybrid Representative Coding Scheme for AMBTC Compressed Images 581

two lowest. Then the new probabilities are rearranged in
descending order. 4) This last step is repeated until all the
symbols appear in the Huffman tree. 5) Then the left and
right branches of the Huffman tree are assigned 0 and 1,
respectively. Finally, each symbol is obtained by its code
by connecting a 0-1 sequence on the path from the root
node to its related node.

2.2 The AMBTC Method
With the AMBTC method, each non-overlapping block

of an image block is represented by two relative quantized
values and a bitmap [20]. The original image I with a size
of W×H is divided into M non-overlapping blocks of size
w×h, where w is the width and h is the height of a block,
and the general size for a block is set as 4×4.

.W HM
w h

   = ×   
   

(1)

The mean kµ of kth block Bk={pk1,pk2,…,pkm} is
calculated by

1

1 ,m
k kii

p
m

µ
=

= ∑ (2)

where pki (i=1,2,…,m) are pixels in the kth block Bk, and
m w h= × . Subsequently, the pixels of Bk are divided into
two sets. The Set BH

k includes hk elements whose pixel
values are higher than or equal to kµ , while the Set BH

k
includes hl elements whose pixel values are lower than kµ .
Both two sets in a block are calculated by their means, also
called two quantizers, as follows.

)(

1 ,H
k k kki i

H
k kip B p

k

p
h µ

µ
∈ ≥

= ∑


(3)

)(

1 ,L
kki k ki

k kip
L

B p
k

p
h µ

µ
∈ <

= ∑


(4)

_
1 ,,
0, ,

ki
k map

k

H
k
L
ki

if p
B

B
if p B

= 
 ∈

∈
(5)

where Bk_map represents the bitmap for the kth block.
Similarly, the other blocks of an image I are encoded

in the same way. Finally, the image I is transformed
to the compression codes CI’ which is represented as

(){ } ()_' , , , 1, 2,..., ; 1, 2,...,H L
I k k k map K

C B k m K Mµ µ= = = , where m is the
number of pixels in a block and M is the number of non-
overlapping image blocks in an image.

After getting the AMBTC-based compression codes,
receivers can reconstruct pixels for each block with the
same size as the encoding block, by the following formula.

_

_

' ,
,

, 1
, 0'

H
k
L
k

ki k map

ki k map

p if B
p if B

µ
µ

 ==
=


 =

(6)

where p’ki represents the ith pixel in the kth reconstructed
image block. Experimental results confirmed that a
reconstructed image can be derived and the average image
quality will be larger than 30 dB.

2.3 Review of Chen et al.’s Scheme
In 2021, Chen et al. [22] proposed an improved

AMBTC-based hybrid encoding scheme for compressed
images according to the complexity of each divided non-
overlapping block. There are three different kinds of
blocks: flat, smooth, and complex. The flat blocks are
encoded utilizing two quantized values obtained by the
conventional AMBTC method. The decoding method for
the flat blocks is very simple, all pixels are replaced with
the recorded mean values. The clustering algorithm is
applied to the smooth and complex blocks, respectively.
The encoding methods for the smooth and the complex are
introduced as follows.

In the encoding method for the smooth blocks, all
the original AMBTC-based bitmaps of smooth blocks
are clustered into k (k=128,256,512 or others) groups by
the conventional clustering method, called the k-means
clustering algorithm. In this method, k representative
bitmaps are generated and then an index with the smallest
Euclidean Distance to the current smooth block’s bitmap
is chosen to serve its final bitmap. Finally, two quantizers
and indices of the selected bitmap derived from the k
representative bitmaps serve as the compression code
for the smooth block. In Chen et al.’s scheme, k has been
tested as 128, 256, and 512. Experimental results confirm
that their method successfully increases the PSNR of
the decompressed image. However, the k-cluster centers
and their cluster indices are also needed to send to the
receivers, which helps in the decoding operation of the
smooth block. The relationships of original bitmaps,
final representative bitmaps obtained by the clustering
algorithm, and its indices are described as follows.

()()
1

21 2*
0

arg min ,n n
s a sj ajj

a B C× −

=
= −∑ (7)

where a*
s is the index of codeword having the nearest

distance to Bsj. Bsj and Caj represent the jth element of
bitmap Bs and codebook Ca as final representative bitmaps,
respectively.

However, the encoding method for complex blocks is
different from that of smooth ones. This is because Chen
et al.’s scheme collects all smooth blocks’ bitmaps first,
and then k representative bitmaps are concluded by using
k-means. By contrast, only 16 pixels within a complex
block are considered to divide pixels into three groups and
then a trinary bitmap containing three groups is derived. In
a word, a complex block is encoded with three quantized
values acquired by the k-mean clustering algorithm, in

582 Journal of Internet Technology Vol. 26 No. 5, September 2025

which k is only set as 3. In addition, a ternary digit ranging
from 0 to 2 denoted in the complex blocks’ bitmaps
indicates the positions of three quantized values.

Owing to the different clustering objects of smooth
and complex blocks, the decoding procedures designed
for these two kinds of blocks are also different. For the
smooth block, the clustering centers are obtained by the
corresponding indices recorded in the compressed code.
For the complex block, after the approximate bitmap is
obtained, the received two quantizers are used to fill in
according to the indications of this approximate bitmap.
As for the complex block, the decoding procedure is quite
straightforward, and the receiver only needs to use the
trinary bitmap and three quantizers which are extracted
from the compression code to build up the reconstructed
block.

Compared with Subsection 2.2, Chen et al.’s method
[22] improves the compression performance by considering
the complexity of non-overlapping blocks, and such an
arrangement makes the textures of complex blocks clearer
than those offered by the conventional AMBTC [20] and
successfully avoids serious image distortion. In detail,
Chen et al.’s method [22] uses one quantized value without
a bitmap to encode the flat block and an index selected
from 128 representative bitmaps deriving from k-means
clustering to encode the smooth block and finally uses a
trinary bitmap along with three quantizers to encode the
complex block. In [22], their experimental results show the
conventional AMBTC uses fixed representation without
distinguishing blocks according to their complexity.
This makes the compression performance derived from
8 representative test images the same as 2 bpp, but the

PSNR is quite different because of the different image
textures. Conversely, the average image quality offered
by Chen et al.’s scheme is around 34.73 dB with two
thresholds 4 and 16, which is better compared with that of
AMBTC. Nevertheless, Chen et al.’s computational cost is
relatively higher compared to conventional AMBTC. This
is attributed to their encoding methods, which involve the
application of two clustering techniques for smooth and
complex blocks. These methods require several iterative
inferences to obtain either bitmaps or quantized values.

While Chen et al.’s scheme enhances the compression
performance of conventional AMBTC, we have noted that
the k-means clustering approach with limited iterations
is susceptible to the effects of initialization, resulting in
instability in the image compression outcome. Therefore,
we aim to maintain a similar approach to Chen et al.’s
scheme but enhance the encoding methods for smooth
and complex blocks without relying on the k-means
clustering algorithm. This adjustment aims to either reduce
computational costs or stabilize compression performance.

3 Proposed HRC-AMBTC Method

To achieve our objectives of maintaining stable
compression performance and offering the same image
quality of the reconstructed image as AMBTC, a hybrid
representative coding-based AMBTC (HRC-AMBTC) is
designed. The flowchart of our proposed HRC-AMBTC
is depicted in Figure 1, and the detailed description of
our proposed HRC-AMBTC is described in the following
subsection.

Image I Classifying the divided blocks
 by AMBTC and two thresholds

Yes

Encode by
 0||one quantized value

No

Yes

Encode by
 10||two quantized values||

the index of bitmap

No
A complex block?

Yes

Encode by
 11||three quantized values||

the related bitmap

A smooth block?A flat block?

Build a bitmaps table
by Huffman coding

Indicate

Output stream CS
Connecting all compression

codes in order

 Find three quantized
values and the bitmap by
step clustering method

 Find the index of nearest
representative bitmap

Figure 1. HRC-AMBTC flowchart

Hybrid Representative Coding Scheme for AMBTC Compressed Images 583

For image I, after performing AMBTC encoding, a set
of compression codes are generated. Let ()_, ,H L

k k k k mapC Bµ µ=
be the AMBTC compression codes of the image block Bk,
where H

kµ and L
kµ are two quantized values, and H L

k kµ µ≥

. Bk_map is the bitmap of block Bk. Two thresholds t0 and
t1 are set to classify the image blocks into three block
types before encoding: flat, smooth, and complex blocks.
Then, the difference Dk between two quantized values,
where H L

k k kD µ µ= − , is computed and compared with the
above two thresholds. If Dk ≤ t0, image block Bk belongs
to the flat block, in which all pixels are reconstructed by
the block’s mean without using a bitmap. If t0 < Dk < t1,
image block Bk is categorized as a smooth block. The

smooth block is encoded by two quantized values because
its texture is more complex than a flat block. Considering
that the majority of image blocks in an original image
are categorized as smooth blocks, we utilize a bitmap
code derived from the Huffman coding table to substitute
the bitmap. This substitution aims to further reduce the
size of the bitmap associated with the smooth block. A
detailed description of the encoding method for bitmaps,
which belong to the smooth blocks is described in
Subsection 3.1. If Dk ≥ t1, image block Bk is determined
as a complex block, whose encoding method is similar to
the conventional AMBTC, but three quantized values and
the corresponding bitmap are used. The algorithm for our
proposed HRC-AMBTC is described as follows:

Algorithm 1. HRC-AMBTC encoding an image
Input: an original image
Output: compression code TL
1.	 Divide an original image into nt 4×4 image blocks.
2.	 Read one image block and classify it into three block groups: flat, smooth and complex blocks,

according to two thresholds t0 and t1.
3.	 If the current block is a flat block, it is encoded as Lk, including 1-bit flag 02 and one binary

quantized value. The detail is demonstrated in Subsection 3.1.
4.	 If the current block is a smooth block, it is encoded as its compression code Lk is marked as

102. The codes for a 4×4 image block is obtained by connecting four parts, as 102 || (
L
kµ)2 ||

(Dk)2 || (Mk)2, where where L
kµ is 8 bits low quantizer of AMBTC, Dk is 4 bits of the difference

between the original low quantizer and the original high quantizer, and Mk is the encoding result
according to the encoding bits defined in the Huffman coding table. The detail is demonstrated in
Subsection 3.2.

5.	 If the current block is a complex block, its compression code LK is marked as 112, and the
compression code includes three quantized values and a ternary bitmap, which is generated by
our proposed difference-based clustering algorithm. The detail is shown in Subsection 3.3.

6.	 If the current block is not the last block in the image, read the next block and perform the
encoding operation by repeating Steps 3-5 in order.

7.	 Obtain the final compression code TL by concatenating all blocks’ compression codes Lr =L1|| L2
||…|| Lk (k=1,2,…, nt) and the Huffman table code LH.

Algorithm 2. HRC-AMBTC reconstructing an image with the compression codes
Input: The stream of image compression code TL
Output: A reconstructed image
1.	 Obtain the auxiliary information. The first 36 bits of LH recode Huffman coding rules, and the

remainder codes Lr is used to build the reconstructed image.
2.	 Build the Huffman coding table. Each list represents the compressed bitmap of a smooth block.
3.	 Reconstruct the image by filling the block with the same size as the divided block in the

compression process.
4.	 If the first bit of code Lr is 02, the current block is determined as a flat block. It is reconstructed

according to the decoding operations described in Subsection 3.1.
5.	 If the two bits of code Lr is 102, the current block is determined as a smooth block. It is

reconstructed according to the decoding operations described in Subsection 3.2.2.
6.	 If the two bits of code Lr is 112, the block is determined as a complex block. It is reconstructed

according to the decoding operations described in Subsection 3.3.
7.	 Reconstruct the image blocks B’ one by one, though repeating Steps 4-6.
8.	 Obtain a reconstructed image I’, when all the rebuilt blocks B’ are located in order as the path in

the compression process.

584 Journal of Internet Technology Vol. 26 No. 5, September 2025

In our proposed HRC-AMBTC scheme, an original
image I is divided into several non-overlapping blocks.
Then, the blocks are compressed one by one via the
compression algorithm described in Algorithm 1. Finally,
all the compression codes of the blocks and the auxiliary
information are generated, such as the representative
code table. The reconstructing scheme is also called the
decompressing scheme. It is simpler than the compression,
and the decompression algorithm is described in Algorithm
2. The decompression algorithm processes the compression
codes instructed by block-type flags embedded in the
codes. To demonstrate the compression and decompression
processes of different kinds of blocks, this paper provides
four subsections to individually introduce the processes
for flat, smooth and complex blocks respectively, in
Subsections 3.1, 3.2, 3.3. Subsection 3.4 introduces an
improved HRC-AMBTC named HRC-AMBTCv2.

3.1 Encoding and Decoding Process for the Flat Block
A f la t b lock mainly inc ludes low-frequency

information. The differences among pixels within the
flat block have a faint influence on semantic expression.

Therefore, the mean of this block represents each pixel
value of this block; meanwhile, the bitmap of this block is
no longer to be considered.

In our scheme, a flat block is compressed as a 9-bit
codeword, which includes a type flag defined as a binary
02 and a quantized value recorded as an 8-bit binary
representation. The quantized value of the flat block is as
follows.

()_mean ,k
f

k allBµ = (8)

where k is the order number of the block and Bk_all
represents all pixel values in block Bk.

During the decoding phase, the first bit 02 instructs that
the current block is a flat type, while the following 8-bit
are selected from the compression code and then converted
into a decimal number. Finally, the compressed block is
reconstructed by filling the decimal value in the 4´4 block.
Figure 2 shows the encoding and decoding procedures for
a flat block.

Figure 2. The compression and decompression processes for a flat block

The flat block is encoded with 9-bit compression
code with our proposed HRC-AMBTC which is much
smaller than the 32 bits obtained by conventional AMBTC.
In addition, the block mean is directly used in both
compression and decompression processes and avoids the
deviation from the average of H

kµ and L
kµ . Therefore, the

computation complexity of our proposed HRC-AMBTC
is relatively lower than that of conventional AMBTC for a
flat block.

3.2 Encoding and Decoding Process of Smooth Block
When t0< Dk <t1, the current image block is determined

as a smooth block. Typically, within a smooth block,
the differences between neighboring pixels are greater
compared to those in a flat block. Consequently, two
quantized values are employed to depict pixels within a
smooth block, and a bitmap containing ‘0’ or ‘1’ is essential
to document the corresponding positions of two quantizers.
To address this, we have introduced a novel approach in
our HRC-AMBTC scheme, defining a 2×2 black-white
block shown in Table 1 as the fundamental unit. This
allows us to denote a representative bitmap for a smooth

block using fewer bits while maintaining acceptable image
quality during smooth block reconstruction.

To achieve our objective, a 4×4 smooth image block’s
bitmap can be decomposed and represented by four 2×2
basic units. In summary, there are eight distinct patterns of
2×2 basic units, as illustrated in Table 1.

Table 1 reveals that the eight patterns of 2×2 basic
units can be organized into four distinct groups. Within
each group, we define one flag to indicate two types: single
units and continuous units. The continuous type means the
following unit is the same as the previous unit. The main
color flag serves to differentiate between subgroups within
a given group. For example, consider ‘Group 3;’ the main
color flag ‘1’ signifies that both pixels at the top of the 2×2
basic unit are black, and conversely for the other color
configuration. Regarding the two types, ‘Single unit’ with
its indicator ‘10’ indicates that the pixels within the current
2×2 basic unit are uniformly black or white. Conversely,
‘Continuous units’ with its indicator ‘11’ signifies the
presence of two adjoining 2×2 basic units belonging to
‘Group 3.’ Through the amalgamation of these three types
of indicators - main color flag, group, and types - we can

Hybrid Representative Coding Scheme for AMBTC Compressed Images 585

efficiently minimize the size of the bitmap associated with
a smooth block.

To give a better explanation for our general encoding
policy for a smooth block bitmap, an example of encoding
and decoding a smooth block is shown in Figure 3. In the
encoding process for a given smooth block and the type
flag for smooth block is denoted as 102, the smooth block
is first divided into four basic units. Next, these four basic
units are arranged in order by top-left top-right bottom-
left bottom-right. Then, these four units are encoded into
two parts according to the encoding policy listed in Table
1, which are the ‘main color flag’ part as 10112 and the
encoding code of four basic units as 0112||112. Among
the four basic units shown in Figure 3, the first two bits
indicate the main color flags for the first two basic units
and are denoted as 102 because one of them has the top
black pattern and the other has the top white pattern. Then,
follow the compression code as 0112 because the two
neighboring units belong to the same group ‘Group 0,’
while the last two basic units belong to ‘Group 3’ denoted
as 112 and then with compression code as 112 because
the two neighboring units also belong to the same group.
Finally, the compression result of this sample smooth block
is obtained as 10 1011 011112 by concatenating the smooth
block-type flag 102, four main color flags 10112, and the
encoding code of four basic units 011112. In addition, the
decoding process of a smooth block’s code is the reverse
process of the encoding program.

Building on the example demonstrated in Figure 3,
it becomes clear that the general encoding rules, devised

for the 8 patterns within a 2×2 basic unit, effectively
reduce the size of the original bitmap for a 4×4 block. To
further streamline the compression code’s size for smooth
blocks, we integrate the Huffman coding technique,
which combines the eight patterns illustrated in Table
1, as previously introduced. To apply Huffman coding,
the first step involves determining the number of blocks
associated with each pattern. The pattern with the highest
frequency is assigned the shortest bit representation, as
demonstrated in Table 2 using the ‘Lena’ test image as a
case study. Ultimately, a Huffman coding table tailored to
a specific image can be generated. Taking Table 2 as an
example, within the ‘Lena’ test image, which comprises
21,324 smooth blocks consisting of 2×2 units, there are
eight patterns along with their corresponding coding bits.
It is worth noting that the pattern belonging to Group 3
‘Continuous units’, for instance, is assigned a coding bit
of ‘1’ with just 1 bit of representation. This is primarily
because Group 3 ‘Continuous units’ encompass 9,294
blocks, making it the most prevalent pattern in comparison
to the others.

Following the example illustrated in Figure 3(a), the
ultimate compression code, utilizing the Huffman coding
table provided in Table 2, can be further reduced in size,
as evident in Figure 4. A comparison between Figure 4 and
Figure 3(a) reveals that the compression code generated
with the Huffman coding table is smaller than the one
encoded by using the general encoding rules outlined in
Table 1.

Table 1. General encoding rules for a 2×2 basic unit

The 2×2 basic unit Main color flag Descriptions Group
Types

Single unit Continuous units

1 Top black

blocks
0 0102 0112

0 Top white

blocks

1 Left black
blocks

1 1102 1112

0 Left white
blocks

1 Left diagonal

black blocks
2 10002 10012

0 Left diagonal

white blocks

 1 Most pixels or whole
black blocks

3 102 112

0 Most pixels or whole

white blocks

586 Journal of Internet Technology Vol. 26 No. 5, September 2025

(a) Encoding procedure of a smooth block with general encoding rules shown in Table 1

(b) Decoding procedure of a smooth block with general encoding rules shown in Table 1

Figure 3. Example of encoding and decoding smooth block with general encoding rules shown in Table 1

Table 2. Huffman coding table using the ‘Lena’ test image

Patterns of 2×2 basic units Amounts of blocks Encoding bits Length of encoding bits
Group 0 Single unit 2177 0000 4 bits
Group 1 Single unit 3030 001 3 bits
Group 2 Single unit 1079 00010 5 bits
Group 3 Single unit 4994 01 2 bits

Group 0 Continuous unit 249 0001110 7 bits
Group 1 Continuous unit 420 000110 6 bits
Group 2 Continuous unit 81 0001111 7 bits
Group 3 Continuous unit 9294 1 1 bit

Figure 4. Example of encoding a smooth block with the Huffman coding table shown in Table 2

Hybrid Representative Coding Scheme for AMBTC Compressed Images 587

Utilizing the encoding bits obtained from the Huffman
coding table, as illustrated in Table 2, a 4×4 image smooth
block can be encoded as 102 || (L

kµ)2 || (Dk)2 || (Mk)2,

where L
kµ is 8 bits low quantizer of AMBTC, Dk is 4 bits

of the difference between the original low and the high
quantizers, and Mk is the encoding bits listed in Huffman
coding table. The detailed description can be found in
Subsection 3.2.1.
3.2.1 Encoding Process of Smooth Block

Here, we take a 4×4 image block as an example to
illustrate the compression process of a smooth block as
follows.

Step 1. Two quantized values and the bitmaps of the
smooth blocks are calculated by conventional AMBTC
as ()_, ,H L

k k k k mapC Bµ µ= , where H
kµ and L

kµ are quantized
values, and Bk_map is the bitmap.

Step 2. The difference Dk between and L
kµ is recorded

with bits. For example, if t1=16, it takes 4 bits to present
the difference Dk in a binary representation. Then, the
lower quantized value is converted into an 8-bit binary
code.

Step 3. Bitmap Bk_map is divided into four non-
overlapping 2×2 units and then they are listed in a line via
the scan order as top-left, to bottom-left, to top-right, and
to bottom-right.

Step 4. Generate the Huffman coding table based on
features of Bitmap Bk_map.

Step 5. Bitmap code Mk is derived by encoding four
2×2 units according to the Huffman coding table.

Step 6. Finally, the codes for a 4×4 image block is
obtained by connecting four parts, as 102 || (

L
kµ)2 || (Dk)2 ||

(Mk)2, where L
kµ is 8 bits low quantizer of AMBTC, Dk is

4 bits of the difference between the low quantizer and the
high quantizer, and Mk is the encoding results according to
the encoding bits defined in the Huffman coding table. The
first two bits 102 is the type flag of a smooth block.
3.2.2 Decoding Process of Smooth Block

If a type flag of an image block begins with 102, it is
determined as a smooth block. This binary stream of a
smooth block is used to reconstruct an image block in the
following steps.

Step 1. The following 8-bit binary numbers are
converted to a decimal quantized value L

kµ . Then the
4-bit numbers after them are also converted to a decimal
number as deference Dk; therefore the other quantized
value H

kµ is obtained by Dk +
L
kµ .

Step 2. Construct the bitmap B’k_map according to
the extracted Huffman coding table LH and the received
encoding bits.

Step 3. The 4×4 reconstructed image block is obtained
by filling with μH

k and μL
k according to the bitmap B’k_map.

The reconstructed bitmaps for all smooth blocks can
be generated by employing the 35-bit Huffman coding
table, which includes the corresponding encoding bits.
However, it is important to emphasize that, as illustrated

by the eight patterns outlined in Table 2, the reconstructed
bitmaps may not perfectly replicate the original ones. This
discrepancy arises because patterns linked to Group 2
‘Continuous units’ and Group 3 ‘Continuous units’ each
encompass five possible variations, as indicated in Table
1. Nevertheless, our experimental results will demonstrate
that our proposed scheme consistently outperforms prior
methods in terms of compression performance and image
quality of the reconstructed image.

3.3 Encoding and Decoding Process of Complex Block
Complex blocks typically contain a variety of pixel

values, and the disparities among these values tend to be
more substantial compared to the differences found in
the other two block types. As a result, a complex block
is characterized by three quantized values and a ternary
bitmap. To obtain a representative ternary bitmap for a
given complex block, we have developed a difference-
based clustering method that involves five essential steps:

Difference-based clustering algorithm:
Step 1. The pixel values of one 4×4 image block Bk

are listed in set Sk ={pk1, pk2, …, pkq} without repetitive
numbers in ascending order, where pk1 < pk2 < … < pkq.

Step 2. The differences {qk1, qk2, …, qkq-1} between
two neighboring pixel values in set Sk are calculated and
arranged in descending order.

Step 3. According to the biggest difference and the
second biggest difference, the values of Sk are divided into
three groups by cutting off the list {pk1, pk2, …, pkq} at the
positions related to two differences. After calculating the
means (, ,)L M H

k k kµ µ µ of these three groups, the members
in the three different groups are replaced by their means,
respectively. In addition, L M H

k k kµ µ µ< < . The 0, 1 and
2 used in the ternary bitmap Bk_all record the positions of
(, ,)L M H

k k kµ µ µ , which is used for reconstructing the image
block similar to AMBTC.

Step 4. If the following differences qk3 are very close to
qk2, or the differences before qk3 are equal, more grouping
forms of Sk are considered by cutting off the list at different
positions. Then, repeat Step 3 against different grouping
forms. The three final groups with the highest PSNR are
found by comparing each possible reconstructed image and
the original image. If the next difference qk4 has problems
similar to qk3’s, Step 4 repeats against qk4.

S t e p 5 . T h e i m a g e b l o c k i s d e s c r i b e d a s
_(, , ,)L M H

k k k k k allL Bµ µ µ= through Step 1 to 4. In addition,
if there are only two values of an image block, this block is
compressed as a smooth block described in Section 3.2.

In our proposed HRC-AMBTC, complex blocks are
compressed by variable-length coding, and their type flags
are defined as 112. Details of the compression process of
a complex block are introduced as follows, based on the
ternary code Lk.

Complex block’s encoding algorithm:
Step 1. Arrange the values in ascending order without

repeating numbers.
Step 2. Compute the differences of two neighbors and

588 Journal of Internet Technology Vol. 26 No. 5, September 2025

rearrange them in descending order.
Step 3. Divide the sets B’k into three parts, according

to the two biggest values among these differences. Then
calculate the three quantized values and the bitmap.

Step 4. Obtain the differences dL
k and dH

k by the
neighboring quantized values in the ascending order.

Step 5. Encode three quantized values. The lower
quantized value L

kµ is converted into an 8-bit binary
code. The differences dL

k and dH
k are calculated, where

L M L
k k kd µ µ= − and H H M

k k kd µ µ= − . The following several
bits record both dL

k and dH
k in binary representation

according to the rules in Table 2. Therefore, the
three quantized values (, ,)L M H

k k kµ µ µ are encoded

a s () () () () ()2 22 2 2
|| 1 || || 2 ||q L L H

k k k kc flag d flag dµ= , w h e r e f l a g 1
and flag2 are length flags as shown in Table 3. As an
illustration, consider a complex block with three quantized
values: (, ,)L M H

k k kµ µ µ = (76, 136, 216). The differences
between them are computed, yielding dL

k =60, and dH
k=80.

Referring to Table 3, the code for these quantized values is
represented as cq

k =010011002||02||1111002||12||10100002.

Table 3. The compression rules of differences DL
k and DH

k

Condition I Condition II Length flag Code length (bit)

128L
kµ ≤

dL
k<64 0 6

dL
k≥64 1 ()2log 256 L

kµ − 

dH
k<64 0 6

dH
k≥64 1 ()2log 256 M

kµ − 

128L
kµ >

dL
k<32 0 5

dL
k≥32 1 ()2log 256 L

kµ − 

dH
k<32 0 5

dH
k≥32 1 ()2log 256 M

kµ − 

Step 6. Encode the ternary bitmap of a complex block.
Three position flags of bitmap Bk_all are defined as 02, 102
and 112, respectively. Then, the bitmap is encoded in the
stream cl

k. It is noted that the ternary bitmap of a complex
block is generated by our proposed difference-based
clustering as described at the beginning of this section.

Step 7. Obtain the code of a complex block. Finally,
the complex block is compressed by connecting type flag
112, the code of three quantized values cq

k and the bitmap’s
code cl

k, as 112|| c
q

k ||c
l
k.

To give a better explanation for encoding complex
blocks, here, we take a 4×4 complex block B’k={28,219,
171, 167; 34,223,223,222;33,217,218,218;32,154,171,1
85} as an example to demonstrate the encoding process.
There are seven steps, that combine our proposed
difference-based clustering algorithm to find three
quantized values and the compression process with these
three found quantizers. The details are demonstrated as
follows.

Step 1. Arrange the values in ascending order without
repeating numbers as Sk={28,32,33,34,154,167,171,185,
217,218,219,222,223}.

Step 2. Compute the differences of two neigh
b o r s a s { 4 , 1 , 1 , 1 2 0 , 1 3 , 4 , 1 4 , 3 2 , 1 , 1 , 3 , 1 } , a n d
rearrange the differences in the descending order as

{120,32,14,13,4,4,3,1,1,1,1,1}.
Step 3. Divide the sets B’k into three parts, according

to the two biggest values as 223 and 222: {28,32,33,34},
{154,167,171,171,185},{217,218,218,219,222,223,223}
. Then calculate the three quantized values and the bitmap,
which are shown as follows: Bk_all ={0,3,2,2,0,3,3,3,0,3,3,3,
0,2,2,2}.

Step 4. Obtain the differences dL
k and dH

k by the
neighboring quantized values, where dL

k=138 and dH
k=50.

Step 5. Encode three quantized values according to
Table 3, and the code is shown as cq

k =001000002||12||
100010102||02||1100102.

Step 6. Encode the bitmap as cl
k =011101001111110

11111101010102.
Step 7. Obtain the final compression codes by

connecting 112, cq
k and cl

k as 112||001000001100010
1001100102|| 01110100111111011111101010102

Lastly, a 4×4 complex block is condensed into a
validated codeword consisting of three quantized values
and one ternary bitmap. The decoding process for a
complex block differs from that of a flat block and a
smooth block due to the variable length of the compression
code for a complex block. Consequently, the decoding
procedure requires careful consideration to ensure that a
sufficient number of bitmap values are decoded.

Hybrid Representative Coding Scheme for AMBTC Compressed Images 589

The detailed decompression procedure is introduced as
follows.

Complex block’s decoding algorithm:
Step 1. If a type flag begins with 112, it is a complex

block. The following 8-bit binary bits are converted into
decimal value L

kµ . After the differences dL
k and dH

k are
obtained according to Table 3, the other two quantized
values M

kµ and H
kµ are computed by M L L

k k kdµ µ= + and
H H M
k k kdµ µ= + .

Step 2. The reconstructed complex image block is
filled in with L

kµ , M
kµ and H

kµ by the bitmap’s instruction.

3.4 Improved HRC-AMBTC
In our proposed HRC-AMBTC, flat blocks are encoded

with a single quantized value, block mean, offering an
enhanced compression capability for smooth. To further
improve the compression performance, a refined approach
is denoted as HRC-AMBTCv2, mainly designed for the
flat blocks generated by our proposed HRC-AMBTC.
Generally, HRC-AMBTCv2 remains consistent with HCR-
AMBTC, except for the encoding and decoding processes
of flat blocks. The novel algorithms introduced in HCR-
AMBTCv2 for handling flat blocks are outlined below.

Step 1. Compute the difference between two
consecutive flat blocks. This involves finding the difference
between the mean of a flat block and the mean of the flat
block immediately preceding it. If the first block is flat
one, it is encoded directly according to Section 3.1.

Step 2. Design re-compression rules. We define four
compression modes, which correspond to four different
ranges, including [-1,1], [-3,3], [-7,7], [-15,15], and their
range flags are denoted as 002, 012, 102, 112, respectively.
For a flat block, the encoding comprises a 1-bit type flag,
a 1-bit plus-minus sign, a 1-bit compression instruction,
and a 1-bit, 2-bit, 3-bit, 4-bit, or 8-bit codeword used to
indicate the difference between the means of the current
flat block and its preceding flat block. Table 4 shows the
encoding rules for flat blocks in HRC-AMBTCv2.

Step 3. Confirm the compression mode and encode the
flat blocks.

According to Table 4, the coding efficiency based
on each rule is calculated. The best one is chosen as the
compression mode for all the flat blocks of the original
image, and the range flag is recorded at the beginning of
an image codeword. For example, the first two bits of an
image code is 102 to indicate this block is flat one. The
flat blocks of the original image are encoded to either a
2-bit or 8-bit code according to the range. If the mean of
the current flat block is 168, and the mean of its preceding
flat block is 165. Then the difference between the two of
them will be 3 (=168-165). The decimal value 3 belongs
to the range [-3,3]. Therefore, the following 2-bit 012
indicates the range is located at [3,-3], and also takes a
2-bit codeword to record this difference as 112. Then the
final code of this flat block is encoded by 102||012||02||112,
where the first indicator denotes that the current block
is flat, the second indicator denotes the difference range
and the third indicator denotes that the difference is a
positive value, and the four bits indicate the difference
value. During decoding, the final code of the flat block
can be used to restore the flat block. For example, the first
2-bit ‘10’ indicates this is a flat block; the following 2-bit
‘01’ indicates the range is [3,-3], the following 1-bit ‘0’
indicates only 2 bits are required to record the difference
between the current flat block and its preceding flat block.
Finally, the last 2-bit ‘11’ denotes the difference value is
3. Therefore, the final compression code comprises 7 bits,
represented as 102||012||02||112. This is shorter than the 8-bit
compression code generated by the encoding algorithm
outlined in Section 3.1. It is noted that when the image
code. If we rearrange the block flat and set block flat as
‘0’ for the flat block, ‘10’ for the smooth block, and ‘11’
for the complex block. The 7-bit for flat block can be
further shortened as 6-bit: 02||012||02||112. In this case, for
the continuous flat blocks, the second flat block can be
presented with 6 bits instead of 8 bits compression code
generated by the encoding algorithm outlined in Section
3.1. In the following discussion, the refined compression
code 02||012||02||112 will be used instead of 102||012||02||112.

Table 4. Encoding rules of flat blocks based on the differences

The range
flag Range Type flag Plus/minus Compression

instruction
Code
length

00
[-1,1]

0

0/1
0 1 bit

[-255,-2]U[2,255] 1 8 bits

01
[-3,3]

0/1
0 2 bits

[-255,-4]U[4,255] 1 8 bits

10
[-7,7]

0/1
0 3 bits

[-255,-8]U[8,255] 1 8 bits

11
[-15,15]

0/1
0 4 bits

[-255,-16]U[16,255] 1 8 bits

590 Journal of Internet Technology Vol. 26 No. 5, September 2025

In HRC-AMBTCv2, the decoding process for flat
blocks’ compression codes also makes use of Table 4
and the mean of the flat block immediately preceding
the current flat block. Following the example mentioned
earlier, when the type flag indicates that the current
block is flat, the first 1-bit is the indicator for flat block.
The following 2-bit from the code of 02||012||02||112 are
interpreted as the range flag. The range flag 012 signifies
the range [-3,3]. Assume, the mean value of the previous
flat block is retrieved, such as 165, for instance. The
subsequent ‘0’ bit indicates that the mean of the current
flat block exceeds 165 according to the definitions listed in
Table 4, and the last 2-bit represents the difference. In this
case, 112=3, resulting in the calculation of the mean for the
current flat block as 168 (=165+3). With HRC-AMBTCv2,
the compression of flat blocks can be enhanced, albeit

at the expense of increased execution time required to
determine the optimal range and compute the difference
between a flat block and the preceding block.

4 Experimental Results

In this section, several experiment results of the
proposed methods and comparative experiments are
conducted to demonstrate the effectiveness and feasibility
of the proposed methods. These experiments were done
with Matlab on a laptop with a Core i7-10750H CPU and
Windows 10. In addition, eight classic images and 1000
grey images with sizes of 512×512 were randomly selected
from the BossBase-1.01 dataset, and are used in these
experiments. The eight classic images are shown in Figure
5, including Peppers, Lena, Baboon, etc.

Figure 5. Eight classic images used served as the test images

In this paper, we evaluate the proposed methods by
considering both bitrate defined in Eq. (9) and PSNR
defined in Eq. (10) and Eq. (11). Bitrate represents the
number of binary numbers required to record each pixel of
an image and is named bit per pixel (bpp).

() ,cN
CE bpp

W H
=

×
 (9)

where Nc is the bits of image compression codes.
PSNR represents the distortion between the original

image and the reconstructed image defined as follows.

()
2

10
25510log ,PSNR dB
MSE

 
=  

 
 (10)

()2

1 1

1 , ,H W
ij iji j

MSE p q
H W = =

=
× ∑ ∑ (11)

where pij and qij are the pixel values of the original image
and the decompressed one, respectively; H and W are the
height and the width of these images, respectively.

4.1 The Performance of the Proposed Methods
In general, the proposed methods are applicable for

compressing image blocks of various sizes, including
multiples of four pixels, such as 4×4, 8×8, 4×8, and
so on. In application, the image compression method
based on 8×8-sized blocks are similar to schemes based
on 4×4-sized blocks as mentioned in Sections 3 and 4.
First, the original image is divided into many 8×8 non-
overlap blocks, and each block is classified by AMBTC.
Afterward, an 8×8 image block is divided into four 4×4
blocks. The 4×4 image blocks are compressed by the
proposed HRC-AMBTC (or HRC-AMBTCv2). Then
the codes of four blocks are connected as the code of an
8×8-sized image block. Finally, the other 8×8-sized blocks
are encoded in the same way, and the final code of an
image is acquired with several key elements. The processes

Hybrid Representative Coding Scheme for AMBTC Compressed Images 591

for a reconstructed image is similar to those described in
Sections 3 and 4. For the sake of convenience, this paper
focuses on discussions involving 4×4-sized blocks in
Section 4.
4.1.1 Coding Efficiency Comparisons

In this experiment, we compress eight test images
using two methods: HRC-AMBTC and HRC-AMBTCv2.
The first method utilizes the flat block compression
scheme outlined in Section 3.1, while the second method
focuses on compressing the differences between a flat
block and its preceding flat block, as described in Section
3.4. The coding efficiency of the two proposed methods is
illustrated in the table below. The block type is determined
using two thresholds: t0=4 and t1=16.

In Table 5, the PSNR values for these eight test images
are nearly identical when comparing the two proposed
methods. However, the compression efficiency (CE) of
HRC-AMBTCv2 is slightly lower than that of HRC-
AMBTC. The reasons for these observations can be

explained as follows. Firstly, due to the utilization of the
same thresholds, t0 and t1, the quantities of three different
types of image blocks remain unchanged. Secondly, in
comparison to HRC-AMBTC, HRC-AMBTCv2 enhances
the encoding of flat blocks by storing the differences
between the flat blocks and their preceding counterparts.
Thirdly, HRC-AMBTCv2 predominantly records these
differences using variable-length coding between flat
blocks and the flat blocks preceding them. When a greater
number of differences between the means of flat blocks
and their previous counterparts fall within the range of
[-3,3] than [-7,7], fewer bits are required to represent these
differences as shown in Table 4. Consequently, images
compressed using HRC-AMBTCv2 exhibit a notable
enhancement in CE. Nonetheless, when the majority of the
mean differences exceed the range threshold, the impact
on CE is relatively modest, as seen in the case of the test
images ‘Baboon’ and ‘Stream’.

Table 6 shows the proportion of flat blocks in the
original image, which is related to the final PSNR and CE
of the two proposed methods. The different changes are
calculated by 2HRC AMBTCv HRC AMBTCPSNR PSNR− −− and

2HRC AMBTCv HRC AMBTCCE CE− −− . For example, the 0.0018
in the third line against ‘Peppers’ means that the PSNR
of the reconstructed image based on HRC-AMBTC is
0.0018 more than the one based on HRC-AMBTCv2.
In the last line, it is obvious that an image with a larger
proportion of flat blocks has a lower CE value when using
the HRC-AMBTCv2. For example, the proportion of flat
blocks in ‘Tiffany’ is 42.93%, which is the highest value
compared with the eight same-sized images. The CE for
‘Tiffany’ is decreased by HRC-AMBTCv2. In other words,
our proposed HRC-AMBTCv2 effectively enhances
compression performance when a higher proportion of flat
blocks is presented in an image.
4.1.2 Performance Comparison with Various Threshold

In our proposed scheme, an image must be divided into

Table 5. Results of HRC-AMBTC and HRC-AMBTCv2

Methods Items Peppers Lena Baboon Tiffany Man Stream House Boat

HHC-
AMBTC

PSNR 35.7684 36.1412 31.1083 38.3870 34.0423 32.8848 35.1848 34.4224
CE 1.7494 1.6312 2.7025 1.3579 2.1308 2.6785 1.9428 2.0687

HHC-
AMBTCv2

PSNR 35.7666 36.1409 31.1083 38.3870 34.0375 32.8846 35.1744 34.4223
CE 1.7238 1.5855 2.7019 1.2826 2.1144 2.6753 1.8793 2.0549

Table 6. Comparisons of HRC-AMBTC and HRC-AMBTCv2

Items Peppers Lena Baboon Tiffany Man Stream House Boat
Percent (%) 14.83 28.02 0.50 42.93 10.71 2.29 29.45 8.07

Change of PSNR 0.0018 0.0003 0 0 0.0048 0.0002 0.0104 0.0001
Change of CE 0.0256 0.0457 0.0006 0.0753 0.0164 0.0032 0.0635 0.0138

non-overlapping blocks in advance and then each block is
determined as flat, smooth, or complex based on two pre-
determined thresholds t0 and t1 as mentioned in Section 3.
The quantity of flat blocks is related to t0 and the quantity
of complex ones is ensured by t1 directly. In addition, the
quantity of smooth blocks is associated with both t0 and t1.
In application, t0 is usually no more than 4. In our scheme,
e a flat block is represented by the mean of its pixel values;
however, the pixel values, with larger differences among
them, are replaced by their mean which will reduce the
PSNR of the block. Hence, this section mainly discusses
how the parameter t1 affects the PNSRs and CEs of
compressed images. Table 7 shows the results obtained by
two proposed compression methods, HRC-AMBTC and
HRC-AMBTCv2, when t1=32. The PSNRs and CEs against
each image may be lower than the related value in Table 5.
Table 8 provides the comparisons of HRC-AMBTCv2 with
different t1. The proportion of smooth blocks increases
with a larger t1, such as the smooth block proportion of
‘Lena’ increasing from 47.86% to 61.36%, when t1 is

592 Journal of Internet Technology Vol. 26 No. 5, September 2025

changed from 16 to 32. When t0 is fixed, threshold t1 is
important, because it relates to the quantities of smooth
and complex blocks. The compression of smooth blocks is
achieved by referencing a dedicated Huffman coding table
that corresponds to the shared images or by using a pre-
established generic Huffman coding table and pre-shared
between the sender and receiver.

Table 8 shows the different compressed results of eight

test images by HRC-AMBTCv2, with different values of
threshold t1. Here, we can see that the larger threshold t1
enhances the proportion of smooth blocks in an original
image. When more blocks of an image are classified into
smooth ones, the final image quality of the reconstructed
image decreases. At the same time, the reduced quantity of
complex blocks in an image adversely impacts the quality
of the reconstructed image.

Table 7. Results of HRC-AMBTC and HRC-AMBTCv2 with threshold t1=32

Method Item Peppers Lena Baboon Tiffany Man Stream House Boat

HHC-
AMBTC

PSNR 34.5390 34.6059 29.6888 36.3571 32.1540 30.3114 33.1535 32.9653
CE 1.7895 1.6611 2.7201 1.3835 2.1594 2.6950 1.9600 2.1034

HHC-
AMBTCv2

PSNR 34.5377 34.6057 29.6888 36.3235 32.1496 30.3082 33.1041 32.9652
CE 1.5884 1.3931 2.3389 1.1428 1.7676 2.1081 1.5538 1.7800

Table 8. Comparisons of HRC-AMBTCv2 with different threshold t1

t1 Item Peppers Lena Baboon Tiffany Man Stream House Boat

16
Percent 64.12 47.86 28.03 40.91 45.79 26.31 27.58 55.57
PSNR 35.7666 36.1409 31.1083 38.3870 34.0375 32.8846 35.1744 34.4223

CE 1.7238 1.5855 2.7019 1.2826 2.1144 2.6753 1.8793 2.0549

32
Percent 75.04 61.36 52.47 51.59 69.43 48.75 48.99 75.15
PSNR 34.5377 34.6057 29.6888 36.3235 32.1496 30.3082 33.1041 32.9652

CE 1.5884 1.3931 2.3389 1.1428 1.7676 2.1081 1.5538 1.7800

This is because a complex block is characterized by
three quantized values, one more than what is used for a
smooth block. This allows it to describe more intricate
details from the original complex blocks.

4.2 Comparisons and Analysis
In order to prove the compression capacity of our

proposed methods, four image compression methods are
compared in this experiment, including AMBTC [20],
Chen et al.’s method [22], HRC-AMBTC and HRC-
AMBTCv2. The input dataset includes 1000 grey images
selected randomly from the BossBase-1.01 dataset, and the
results are shown in figures and tables as follows.

PSNR is an important index to measure reconstructed
image quality. In this section, 1000 images are used to
compare HRC-AMBTC with AMBTC, Chen et al.’s
method [22], and HRC-AMBTCv2. Figure 6 clearly
illustrates that HRC-AMBTC outperforms AMBTC
significantly, with over 76.2% of the images showing an
improvement in PSNR of at least 3 dB in the computed
the results. Furthermore, HRC-AMBTC exhibits an
improvement of more than 1 dB in PSNR for 40.6% of
the images compared to Chen et al.’s method [22]. In
addition, the major difference between HRC-AMBTC and
HRC-AMBTCv2 is the compression algorithm for flat
blocks, potentially resulting in subtle distortions during
the computation of representative values. Consequently,
the PSNR difference between HRC-AMBTC and HRC-

AMBTCv2 across 1000 images is minimal, with only a
3.9% difference exceeding 0.1 dB.

Furthermore, the PSNR results of 1000 images are
drawn in Figure 7. The PSNR of HRC-AMBTC, HRC-
AMBTCv2, Chen et al.’s method [22] surpass AMBTC,
because these three methods classify the divided blocks of
an image as flat, smooth and complex.

Furthermore, the complex blocks are encoded using
ternary quantized values and a bitmap, offering a clearer
description of the image texture compared to AMBTC,
which employs only two quantized values. With three
quantized values, the encoding represents the lowest
quantized value and two differences between three
ascending quantized values. HRC-AMBTC and HRC-
AMBTCv2 are different from Chen et al.’s method [22]
at three parts. First, HRC-AMBTC (HRC-AMBTCv2)
encodes a flat block with the mean, which avoids the
deviation by calculating the mean of two quantized values.
Then the representative bitmaps of HRC-AMBTC (HRC-
AMBTCv2) and Chen et al.’s method [22] are acquired
by a different scheme. The representative bitmaps by the
first scheme are distributed regularly, but the bitmaps
by the second are different in each computation, due to
the clustering algorithm. Finally, HRC-AMBTC (HRC-
AMBTCv2) applies a step clustering scheme to encode a
complex block. It overcomes the problem where unsuitable
initial values negatively impact the results by the general
k-mean clustering method. In addition, the PSNR of HRC-

Hybrid Representative Coding Scheme for AMBTC Compressed Images 593

AMBTC is little better than HRC-AMBTCv2 for several
images, due to the representative values of flat blocks
recorded in the code. In other words, the quantized value

fµ of a flat block is encoded directly by HRC-AMBTC,

but HRC-AMBTCv2 records the difference of fµ and its
front block.

The image compression efficiency is measured by the
bit per pixel (bpp). Figure 8 shows the HRC-AMBTC and
HRC-AMBTCv2 take less compression code to encode
an image by comparing with AMBTC and Chen et al.’s
method [22], while they also have good compression
quality. Through AMBTC, all image blocks of an image
are encoded with the same steps, so the bpp is 2 without

any changes. The other three methods compressed an
image by considering the texture complexity of each
block of the image. Hence, the bpp for images compressed
using these three methods may not consistently equate
to 2. Figure 8 shows bbp of 1000 images compressed by
four different methods is distributed in 4 intervals, and the
threshold value is 1, 1.5 and 2. It also shows that HRC-
AMBTCv2 has clear advantages about compression over
by Chen et al.’s method [22]. For example, when bpp<1.5,
the proportion of results based on HRC-AMBTCv2, HRC-
AMBTC and Chen et al.’s method [22] are 91.7%, 55.8%
and 48.4%, respectively. In addition, compared with HRC-
AMBTC, HRC-AMBTCv2 has one more step to compress
all flat blocks with a suitable variable length coding.

Figure 6. PSNR of 1000 images

Figure 7. Differences in PSNR among 1000 images when using HRC-AMBTC as the baseline for comparison with the
other three methods

594 Journal of Internet Technology Vol. 26 No. 5, September 2025

In this comparative experiment, HRC-AMBTC, HRC-
AMBTCv2, and Chen et al.’s method [22] all evaluate the
texture complexity of each image block using identical
criteria. Figure 9 shows the differences in bpp between
HRC-AMBTCv2 and Chen et al.’s method [22] with
the blue line and the differences in bpp between HRC-
AMBTCv2 and HRC-AMBTC with the red line. The
results of bpp across 1000 images confirm that HRC-
AMBTCv2 exhibits superior compression capabilities
when compared to Chen et al.’s method [22]. The main
reason is that the proposed HRC-AMBTC (HRC-
AMBTCv2) only uses 35-bit code to build a Huffman
coding table, instead of sending the whole code index table
from a sender to a receiver. At times, HRC-AMBTCv2
achieves significantly higher compression efficiency
than HRC-AMBTC, primarily because of its encoding
algorithm’s effectiveness when applied to a substantial
number of flat blocks within an image.

5 Conclusions

This paper introduces an adaptive image compression
method founded on AMBTC. To enhance the handling
of image complexity, non-overlapping blocks were
categorized into three types, each employing a distinct
encoding strategy:

(1) In our HRC-AMBTC, a flat block is represented
by its mean value, and the compression code is the binary
form of the mean value. To enhance the compression
performance, in our HRC-AMBTCv2, all mean values of
flat blocks are collected and further encoded according to
the mean value of their preceding flat block. Experimental
results confirm that our proposed HRC-AMBTCv2
outperforms HRC-AMBTC, AMBTC, and Chen et al.’s
[22], particularly when the image contains a substantial
number of flat blocks.

Figure 8. CEs of 1000 images with four methods

Figure 9. Differences in compression efficiency among 1000 images when using HRC-AMBTCv2 as the baseline for
comparison with the other two methods

Hybrid Representative Coding Scheme for AMBTC Compressed Images 595

(2) In our HRC-AMBTC and HRC-AMBTCv2, a
smooth block is characterized by two quantized values.
To further improve the compression performance, in our
methods, the compression code of smooth block includes
the original low quantizer, the difference between the
original low quantizer and high quantizer, and a bitmap
code derived by the Huffman coding table.

(3) In both our HRC-AMBTC and HRC-AMBTCv2,
a complex block is defined by three 2 values along with
a relative bitmap. These three representative values
are determined by using the proposed difference-based
clustering, which relies on variations in image values.
Additionally, the compression code includes the first
representative value and two differences to improve
compression efficiency.

In our future research, we will explore the possibility
of increasing the unit size used to represent each pattern
from 2×2 to 4×4 or even larger. This investigation aims to
assess potential impacts and identify combinations that can
enhance compression performance while preserving the
image quality provided by both methods presented in this
paper. Inspired by previous research in image encryption
[23] and ownership protection [24], our next step involves
not only enhancing image quality and compression
performance but also investigating the feasibility of
retaining critical image information or embedding
ownership details during image compression.

Acknowledgements

Hua Wu was in charge of the conceptualization, data
curation, software, visualization, and writing – the original
draft for this work. Finally, she also wrote the draft version
of this manuscript. Chia-Chen Lin was in charge of the
investigation, methodology validation, writing – review
& editing, revision and funding acquisition for this work.
Chin-Chen Chang was in charge of the investigation,
project administration and supervision of this work. Xu
Wang was in charge of the partial programming, and
revision of this work. The authors received MSOT 111-
2410-H-167 -005-MY2.

References

[1]	 D. Kaur, K. Kaur, Huffman based LZW lossless image
compression using retinex algorithm, International Journal
of Advanced Research in Computer and Communication
Engineering, Vol. 2, No. 8, pp. 3145–3151, August, 2013.

[2]	 Q. Zhong, Z. Chen, X. Zhang, G. Hu, Feature-based object
location of IC pins by using fast run length encoding BLOB
analysis, IEEE Transactions on Components, Packaging
and Manufacturing Technology, Vol. 4, No. 11, pp. 1887–
1898, November, 2014.
https://doi.org/10.1109/TCPMT.2014.2350015

[3]	 P. G. Howard, J. S. Vitter, Parallel lossless image
compression using Huffman and arithmetic coding,
Information Processing Letters, Vol. 59, No. 2, pp. 65-73,
July, 1996.
https://doi.org/10.1016/0020-0190(96)00090-7

[4]	 J. Lin, A new perspective on improving the lossless
compression efficiency for initially acquired images, IEEE
Access, Vol. 7, pp. 144895-144906, September, 2019.
https://doi.org/10.1109/ACCESS.2019.2944658

[5]	 E. Aldemir, G. Tohumoglu, A. Selver, Binary medical
image compression using the volumetric run-length
approach, The Imaging Science Journal, Vol. 67, No. 3, pp.
123–135, 2019.
https://doi.org/10.1080/13682199.2019.1565695

[6]	 M. L. Rhodes, J. F. Quinn, J. Silvester, Locally optimal
Run-length compression applied to CT images, IEEE
Transactions on Medical Imaging, Vol. 4, No. 2, pp. 84-90,
June, 1985.
https://doi.org/10.1109/TMI.1985.4307701

[7]	 M. Otair, L. Abualigah, M. K. Qawaqzeh, Improved near-
lossless technique using the Huffman coding for enhancing
the quality of image compression, Multimedia Tools and
Applications, Vol. 81, No. 20, pp. 28509–28529, August,
2022.
https://doi.org/10.1007/s11042-022-12846-8

[8]	 Z. Guo, Z. Zhang, R. Feng, Z. Chen, Causal contextual
predict ion for learned image compression, IEEE
Transactions on Circuits and Systems for Video Technology,
Vol. 32, No. 4, pp. 2329-2341, April, 2022.
https://doi.org/10.1109/TCSVT.2021.3089491

[9]	 Z. Cheng, H. Sun, M. Takeuchi, J. Katto, Learned image
compression with discretized Gaussian mixture likelihoods
and attention modules, Proc. IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR),
Washington State, WA, USA, pp. 7936–7945, 2020.
https://doi.org/10.1109/CVPR42600.2020.00796

[10]	 R. Gray, Vector quantization, IEEE ASSP Magazine, Vol. 1,
No. 2, pp. 4-29, April, 1984.
https://doi.org/10.1109/MASSP.1984.1162229

[11]	 T. Kim, Side match and overlap match vector quantizers for
images, IEEE Transactions on Image Processing, Vol. 1,
No. 2, pp. 170-185, April, 1992.
https://doi.org/10.1109/83.136594

[12]	 H. Kasban, S. Hashima, Adaptive radiographic image
compression technique using hierarchical vector
quantization and Huffman encoding, Journal of Ambient
Intelligence and Humanized Computing, Vol. 10, No. 7, pp.
2855-2867, July, 2019.
https://doi.org/10.1007/s12652-018-1016-8

[13]	 E. Delp, O. Mitchell, Image compression using block
truncation coding, IEEE Transactions on Communications,
Vol. COM-27, No. 9, pp. 1335–1342, September, 1979.
https://doi.org/10.1109/TCOM.1979.1094560

[14]	 S. A. Mohamed, M. M. Fahmy, Image compression using
VQ-BTC, IEEE Transactions on Communications, Vol. 43,
No. 7, pp. 2177-2182, July, 1995.
https://doi.org/10.1109/26.392959

[15]	 X.-L. Liu, C.-C. Lin, K. Muhammad, F. Al-Turjman, S.-M.
Yuan, Joint data hiding and compression scheme based on
modified BTC and image inpainting, IEEE Access, Vol. 7,
pp. 116027-116037, August, 2019.
https://doi.org/10.1109/ACCESS.2019.2935907

[16]	 M. Lema, O. Mitchell, Absolute moment block truncation
coding and its application to color images, IEEE
Transactions on Communications, Vol. 32, No. 10, pp.
1148-1157, October, 1984.
https://doi.org/10.1109/TCOM.1984.1095973

[17]	 Y.-C. Hu, Low-complexity and low-bit-rate image
compression scheme based on absolute moment block

596 Journal of Internet Technology Vol. 26 No. 5, September 2025

truncation coding, Optical Engineering, Vol. 42, No. 7, pp.
1964–1975, July, 2003.
https://doi.org/10.1117/1.1576776

[18]	 Z. Xiang, Y.-C. Hu, H. Yao, C. Qin, Adaptive and dynamic
multi-grouping scheme for absolute moment block
truncation coding, Multimedia Tools and Applications, Vol.
78, No. 7, pp. 7895–7909, April, 2019.
https://doi.org/10.1007/s11042-018-6030-5

[19]	 W.-L. Chen, Y.-C. Hu, K.-Y. Liu, C.-C. Lo, C.-H. Wen,
Variable-rate quadtree-segmented block truncation coding
for color image compression, International Journal
of Signal Processing, Image Processing and Pattern
Recognition, Vol. 7, No. 1, pp. 65–76, February, 2014.
http://dx.doi.org/10.14257/ijsip.2014.7.1.07

[20]	 W. Hong, Efficient data hiding based on block truncation
coding using pixel pair matching technique, Symmetry, Vol.
10, No. 2, Article No. 36, February, 2018.
https://doi.org/10.3390/sym10020036

[21]	 J. Mathews, M. S. Nair, Adaptive block truncation coding
technique using edge-based quantization approach,
Computers and Electrical Engineering, Vol. 43, pp. 169–
179, April, 2015.
https://doi.org/10.1016/j.compeleceng.2015.01.001

[22]	 T.-S. Chen, J. Wu, K.-S. Chen, J. Yuan, W. Hong, Hybrid
encoding scheme for AMBTC compressed images using
ternary representation technique, Applied Sciences, Vol. 11,
No. 2, Article No. 619, 2021.
https://doi.org/10.3390/app11020619

[23]	 X. Li, B. Zhang, K. Wang, Z. Li, A multi-image encryption-
then-compression scheme based on parallel compressed
sensing, Optik - International Journal for Light and
Electron Optics, Vol. 290, Article No. 171304, October,
2023.
https://doi.org/10.1016/j.ijleo.2023.171304

[24]	 C.-C. Lin, P.-Y. Wang, Y.-H. Lin, H.-C. Huang, M.
Saberikamposhti, Visible watermark removal with deep
learning technology, Proc. International Symposium on
Computer, Consumer and Control (IS3C), Taichung City,
Taiwan, 2023, pp. 186-189.
https://doi.org/10.1109/IS3C57901.2023.00057

Biographies

Hua Wu received a Ph.D. degree from
University of Chinese Academy of
Sciences in 2016. Currently, she is a
lecturer in Beijing Information Science
& Technology University. Her research
interests include image processing,
pattern recognition, information security,
and artificial intelligence.

Chia-Chen Lin received the M.S. degree
and the Ph.D degree in information
m a n a g e m e n t f r o m C h i a o Tu n g
University, Hsinchu, Taiwan, in 1994
and 1998, respectively. She is currently
a Professor in the Department of
Computer and Information Management,
Providence University, Sha-Lu, Taiwan.

Her research interests include image and signal processing,
image data hiding.

Chin-Chen Chang received the Ph.D
degree in computer engineering from
Nat ional Chiao Tung Univers i ty,
Hsinchu, in 1982. From July 1998
to June 2000, he was Director of the
Advisory Office, Ministry of Education,
R.O.C. From 2002 to 2005, he was
a Chair Professor at National Chung

Cheng University. From February 2005, he has been a
Chair Professor at Feng Chia University. In addition, he
was severed as a consultant to several research institutes
and government departments. His current research interests
include database design, computer cryptography, image
compression, and data structures.

Xu Wang received his M.E. degree
from Central China Normal University
in 2018 and received his Ph.D. degree
from Feng Chia University in 2022. He
is currently a Lecturer at the School of
Information Science and Engineering,
University of Jinan, Jinan, China.
His research interests include image

processing, multimedia security, information hiding,
reversible data hiding, and deep learning.

