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Abstract

Among the representative image compression 
techniques, absolute moment block truncation coding 
(AMBTC) offers acceptable image quality for the 
reconstructed image with a relatively low computational 
cost. Nevertheless, this approach has its constraints. In 
instances where an image contains numerous objects, 
the quality of reconstructed images or compression 
performance may be suffered. In order to solve this 
problem, we applied the idea of Huffman coding and 
proposed an adaptive image compression method with 
hybrid representative coding based on absolute moment 
block truncation coding (HRC-AMBTC). To achieve 
our object, the image blocks in an image are classified 
into three categories: flat, smooth, and complex. To 
maintain the image quality of the restored image while 
providing good compression performance, our designed 
representative coding is applied to the smooth block. 
Moreover, complex blocks are encoded by three quantized 
values, and their bitmaps are derived from our proposed 
difference clustering. In addition, to further improve HRC-
AMBTC, we compress codes of the flat block, which bit 
per pixel is lower than our original HRC-AMBTC. Finally, 
the experiments confirm the effectiveness and reliability of 
the proposed compression methods after comparing them 
with other variants of the AMBTC method. 

Keywords: Image compression, AMBTC, Huffman code, 
Hybrid representative coding, Difference-based clustering

1  Introduction

As the Internet and digital technologies advance, the 
abundance of images has surged dramatically. Image 
compression emerges as a crucial technique in information 
transmission, particularly in scenarios where bandwidth 
is constrained. It proves invaluable for prioritizing the 
semantics of images and facilitating swifter transmission. 
In general, compression techniques are roughly classified 
into lossless compression [1-3] and lossy compression [4]. 

In lossless compression algorithms, the original image is 
recovered from the compressed image without losing any 
quality within the image; therefore, it is applied in fields 
requiring high fidelity, such as medical images and remote 
sensing images. Familiar lossless compression algorithms 
include run-length coding [5-6], Huffman coding [7], 
learned compression methods [8-9], etc. In run length 
coding, the data is recorded as a single value and the 
number of the same consecutive values. It works well for 
data with long runs of identical symbols, such as binary 
diagrams. However, it is hard to compress most natural 
images, because of the many objects in natural images, and 
the run length coding-based algorithm will need to apply 
more codes to record discontinuous pixels. In this case, 
some compression methods pay attention to the occurrence 
frequency of a symbol in the data and utilize a shorter 
codeword to represent symbols that occur frequently, for 
example, Huffman coding. However, it is heavy work to 
generate statistics for each symbol in a massive dataset 
and to allocate distinguishable codes. For example, it takes 
huge computing resources to find the Huffman code of 
each pixel value of a set of images.  

In situations where bandwidth is limited, receivers 
often prioritize the content of images over intricate details. 
Hence, lossy compression methods are more apt for real-
time image compression applications or scenarios where 
only the context demands attention. These methods achieve 
higher compression rates by emphasizing the overall 
content rather than the finer texture details within an 
image. At present, popular lossy compression algorithms 
include vector quantization (VQ) [10-12], block truncation 
coding (BTC) [13-15], compressed sensing (CS) [16], 
etc. The VQ image compression is a block-based method. 
For a given image set, each image is divided into several 
non-overlapping blocks, and then a set of representative 
image blocks, also called codewords, are derived from 
these blocks to build a codebook by the c-means clustering 
approach. Once the codebook is trained, all blocks in an 
image can be replaced by the indices with the most similar 
codewords. Finally, the generated indices are treated as the 
compression results and transmitted along with the trained 
codebook to the receiver. Different from VQ, BTC was 
proposed by Delp and Mitchell in 1979 [13] and avoids the 
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iterative process of obtaining representative image blocks. 
One of its improved algorithms is absolute mean block 
truncation coding (AMBTC), which was proposed by 
Lema and Mitchell [16]. AMBTC prompts the compression 
performance by comparing with conventional BTC. 

To enhance the compression performance of the 
conventional AMBTC method, several approaches, 
including bitmap omission [17], block classification [18-
19], and adjustment of quantizers [20], have been explored 
to lower the bitrate while maintaining acceptable image 
quality of the reconstructed images. For example, in 
2003, Hu [17] observed that when the difference between 
two quantizers is smaller than a predefined threshold, 
the bitmap will not affect the image quality of the 
reconstructed image. Therefore, Hu omitted the bitmap 
when a block is categorized as a flat one, and used the 
block’s mean value to reconstruct the flat block. Chen 
et al. [19] applied quadtree partitioning and designed 
a variable-rate AMBTC compression method for color 
images. The basic idea of their idea [19] is to partition 
the image into blocks with various sizes according to the 
blocks’ complexities. In 2015, Mathews and Nair [21] 
considered human visual characteristics and then designed 
an adaptive AMBTC method based on edge quantization. 
Their method categorized image blocks into edge and 
non-edge blocks and then calculated quantizers based 
on the edge information. Since they consider detailed 
textures, such as edge information, experimental results 
confirm their method provides better image quality than 
other AMBTC variants. In 2018, Hong [20] optimized 
the quantizers to reduce the impact of bitmap alteration 
during data embedding. In 2021, Chen et al. [22] proposed 
an AMBTC-based image compression scheme by using 
a ternary representation technique, which achieves high 
image quality because of the complex blocks described 
by ternary representation. In their method, the k-means 
clustering method is introduced to assist in encoding 
smooth blocks and complex blocks, respectively, and 
spends most of the time on finding suitable clustering 
centers.  

To improve the image quality of reconstructed 
images post-decompression while maintaining a similar 
compression performance as Chen et al. [22], this paper 
introduces an adaptive image compression method 
featuring hybrid representative coding based on absolute 
moment block truncation coding (HRC-AMBTC). The 
aim is to preserve finer texture details within images. 
Recognizing that texture complexity varies across different 
areas, a universal approach cannot simultaneously optimize 
both image quality and compression performance. In our 
proposed scheme, image blocks are classified into three 
categories: flat, smooth, and complex. Smooth blocks 
undergo representative coding based on Huffman coding. 
Furthermore, complex blocks are encoded using three 
quantized values, with their bitmaps derived from the 
proposed difference clustering method. Additionally, an 
enhanced version of HRC-AMBTC is devised to further 
compress flat blocks, achieving a lower bit per pixel 
compared to our original HRC-AMBTC proposal.

The major contribution of our work can be summarized 
as follows.

(1)	 Classify an image into three block categories, i.e., 
flat block, smooth block, and complex block, based on the 
block’s feature. 

(2)	 A mean-based encoding method is applied to 
compress a flat block only with 9-bit code which is less 
than the 32 bits offered by the conventional AMBTC.

(3) Drawing inspiration from Huffman coding, 
the bitmaps of AMBTC compressed smooth blocks 
are collected in advance. Subsequently, a set of eight 
distinctive patterns can be derived. Ultimately, a Huffman 
coding table with a size of 35 bits is employed to encode 
the bitmaps of AMBTC compressed smooth blocks.

(4) A difference-based clustering method is proposed in 
this paper to generate three quantized values and its image 
quality of the reconstructed complex blocks can remain. 
Different from a conventional clustering algorithm, the 
corresponding bitmap for the complex block so that such 
as k-mean, the seeds of clustering in our difference-based 
clustering are determined by ordinal pixel differences 
instead of random selection.

The rest of this paper is organized as follows. Section 
2 introduces related works, i.e., Huffman coding, AMBTC, 
and Chen et al.’s AMBTC-based compression [22], as 
basic knowledge. Section 3 introduces the proposed image 
compression method. Section 4 presents the experimental 
results. Finally, the conclusion is given in Section 5.

2  Related Works

In this paper, our goal is to preserve the benefits 
of AMBTC while improving upon the compression 
performance provided by Chen et al.’s scheme [22], 
all without compromising the image quality of the 
reconstructed images. To achieve our objectives, we 
designed representative coding based on the idea of 
Huffman coding. Then, we designed a novel AMBTC-
based compression scheme by combining our proposed 
representative coding and a difference-based clustering 
method. To make our paper self-contained, we introduce 
Huffman coding and AMBTC in Subsections 2.1 and 2.2, 
respectively. As Chen et al.’s method [22] will be a primary 
comparison with our proposed scheme, we introduce Chen 
et al.’s scheme in Subsection 2.3.

2.1 Huffman Coding
Huffman coding [23] is a variable-length coding 

method that considers the frequency of symbols in data. It 
allocates shorter codes for the more frequently appearing 
symbols and more codes for fewer appearing symbols. 
The basic process of Huffman coding is as follows: 1) it 
generates statistics on the number of different symbols in 
an image and arranges the symbols in descending order 
by their probabilities. 2) Next, a Huffman tree is built 
by making these probabilities of symbols as the leaves 
of a binary tree. 3) Subsequently, it takes two symbols 
as nodes with the two lowest probabilities to generate a 
new node with a probability, that equals the sum of the 
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two lowest. Then the new probabilities are rearranged in 
descending order. 4) This last step is repeated until all the 
symbols appear in the Huffman tree. 5) Then the left and 
right branches of the Huffman tree are assigned 0 and 1, 
respectively. Finally, each symbol is obtained by its code 
by connecting a 0-1 sequence on the path from the root 
node to its related node.

2.2 The AMBTC Method
With the AMBTC method, each non-overlapping block 

of an image block is represented by two relative quantized 
values and a bitmap [20]. The original image I with a size 
of W×H is divided into M non-overlapping blocks of size 
w×h, where w is the width and h is the height of a block, 
and the general size for a block is set as 4×4.
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where Bk_map represents the bitmap for the kth block.
Similarly, the other blocks of an image I are encoded 

in the same way. Finally, the image I is transformed 
to the compression codes CI’ which is represented as 

( ){ } ( )_' , , , 1, 2,..., ; 1, 2,...,H L
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C B k m K Mµ µ= = = , where m is the 
number of pixels in a block and M is the number of non-
overlapping image blocks in an image.

After getting the AMBTC-based compression codes, 
receivers can reconstruct pixels for each block with the 
same size as the encoding block, by the following formula.
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where p’ki represents the ith pixel in the kth reconstructed 
image block. Experimental results confirmed that a 
reconstructed image can be derived and the average image 
quality will be larger than 30 dB.

2.3 Review of Chen et al.’s Scheme
In 2021, Chen et al. [22] proposed an improved 

AMBTC-based hybrid encoding scheme for compressed 
images according to the complexity of each divided non-
overlapping block. There are three different kinds of 
blocks: flat, smooth, and complex. The flat blocks are 
encoded utilizing two quantized values obtained by the 
conventional AMBTC method. The decoding method for 
the flat blocks is very simple, all pixels are replaced with 
the recorded mean values. The clustering algorithm is 
applied to the smooth and complex blocks, respectively. 
The encoding methods for the smooth and the complex are 
introduced as follows. 

In the encoding method for the smooth blocks, all 
the original AMBTC-based bitmaps of smooth blocks 
are clustered into k (k=128,256,512 or others) groups by 
the conventional clustering method, called the k-means 
clustering algorithm. In this method, k representative 
bitmaps are generated and then an index with the smallest 
Euclidean Distance to the current smooth block’s bitmap 
is chosen to serve its final bitmap. Finally, two quantizers 
and indices of the selected bitmap derived from the k 
representative bitmaps serve as the compression code 
for the smooth block. In Chen et al.’s scheme, k has been 
tested as 128, 256, and 512. Experimental results confirm 
that their method successfully increases the PSNR of 
the decompressed image. However, the k-cluster centers 
and their cluster indices are also needed to send to the 
receivers, which helps in the decoding operation of the 
smooth block. The relationships of original bitmaps, 
final representative bitmaps obtained by the clustering 
algorithm, and its indices are described as follows.
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where a*
s is the index of codeword having the nearest 

distance to Bsj. Bsj and Caj represent the jth element of 
bitmap Bs and codebook Ca as final representative bitmaps, 
respectively.

However, the encoding method for complex blocks is 
different from that of smooth ones. This is because Chen 
et al.’s scheme collects all smooth blocks’ bitmaps first, 
and then k representative bitmaps are concluded by using 
k-means. By contrast, only 16 pixels within a complex 
block are considered to divide pixels into three groups and 
then a trinary bitmap containing three groups is derived. In 
a word, a complex block is encoded with three quantized 
values acquired by the k-mean clustering algorithm, in 
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which k is only set as 3. In addition, a ternary digit ranging 
from 0 to 2 denoted in the complex blocks’ bitmaps 
indicates the positions of three quantized values.

Owing to the different clustering objects of smooth 
and complex blocks, the decoding procedures designed 
for these two kinds of blocks are also different. For the 
smooth block, the clustering centers are obtained by the 
corresponding indices recorded in the compressed code. 
For the complex block, after the approximate bitmap is 
obtained, the received two quantizers are used to fill in 
according to the indications of this approximate bitmap. 
As for the complex block, the decoding procedure is quite 
straightforward, and the receiver only needs to use the 
trinary bitmap and three quantizers which are extracted 
from the compression code to build up the reconstructed 
block.

Compared with Subsection 2.2, Chen et al.’s method 
[22] improves the compression performance by considering 
the complexity of non-overlapping blocks, and such an 
arrangement makes the textures of complex blocks clearer 
than those offered by the conventional AMBTC [20] and 
successfully avoids serious image distortion. In detail, 
Chen et al.’s method [22] uses one quantized value without 
a bitmap to encode the flat block and an index selected 
from 128 representative bitmaps deriving from k-means 
clustering to encode the smooth block and finally uses a 
trinary bitmap along with three quantizers to encode the 
complex block. In [22], their experimental results show the 
conventional AMBTC uses fixed representation without 
distinguishing blocks according to their complexity. 
This makes the compression performance derived from 
8 representative test images the same as 2 bpp, but the 

PSNR is quite different because of the different image 
textures. Conversely, the average image quality offered 
by Chen et al.’s scheme is around 34.73 dB with two 
thresholds 4 and 16, which is better compared with that of 
AMBTC. Nevertheless, Chen et al.’s computational cost is 
relatively higher compared to conventional AMBTC. This 
is attributed to their encoding methods, which involve the 
application of two clustering techniques for smooth and 
complex blocks. These methods require several iterative 
inferences to obtain either bitmaps or quantized values. 

While Chen et al.’s scheme enhances the compression 
performance of conventional AMBTC, we have noted that 
the k-means clustering approach with limited iterations 
is susceptible to the effects of initialization, resulting in 
instability in the image compression outcome. Therefore, 
we aim to maintain a similar approach to Chen et al.’s 
scheme but enhance the encoding methods for smooth 
and complex blocks without relying on the k-means 
clustering algorithm. This adjustment aims to either reduce 
computational costs or stabilize compression performance.

3  Proposed HRC-AMBTC Method

To achieve our objectives of maintaining stable 
compression performance and offering the same image 
quality of the reconstructed image as AMBTC, a hybrid 
representative coding-based AMBTC (HRC-AMBTC) is 
designed. The flowchart of our proposed HRC-AMBTC 
is depicted in Figure 1, and the detailed description of 
our proposed HRC-AMBTC is described in the following 
subsection.

Image I  Classifying the divided blocks
 by AMBTC and two thresholds

Yes

Encode by
 0||one quantized value

No

Yes

Encode by
 10||two quantized values|| 

the index of bitmap 

No
A complex block?

Yes

Encode by
 11||three quantized values|| 

the related bitmap 

A smooth block?A flat block?

Build a bitmaps table 
by  Huffman coding 

Indicate

Output stream CS
Connecting all compression 

codes in order

 Find three quantized 
values and the bitmap by 
step clustering method

 Find the index of nearest 
representative bitmap

Figure 1. HRC-AMBTC flowchart
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For image I, after performing AMBTC encoding, a set 
of compression codes are generated. Let ( )_, ,H L

k k k k mapC Bµ µ=  
be the AMBTC compression codes of the image block Bk, 
where H

kµ  and L
kµ  are two quantized values, and H L

k kµ µ≥

. Bk_map is the bitmap of block Bk. Two thresholds t0 and 
t1 are set to classify the image blocks into three block 
types before encoding: flat, smooth, and complex blocks. 
Then, the difference Dk between two quantized values, 
where H L

k k kD µ µ= − , is computed and compared with the 
above two thresholds. If Dk ≤ t0, image block Bk belongs 
to the flat block, in which all pixels are reconstructed by 
the block’s mean without using a bitmap. If t0 < Dk < t1, 
image block Bk is categorized as a smooth block. The 

smooth block is encoded by two quantized values because 
its texture is more complex than a flat block. Considering 
that the majority of image blocks in an original image 
are categorized as smooth blocks, we utilize a bitmap 
code derived from the Huffman coding table to substitute 
the bitmap. This substitution aims to further reduce the 
size of the bitmap associated with the smooth block. A 
detailed description of the encoding method for bitmaps, 
which belong to the smooth blocks is described in 
Subsection 3.1. If Dk ≥ t1, image block Bk is determined 
as a complex block, whose encoding method is similar to 
the conventional AMBTC, but three quantized values and 
the corresponding bitmap are used. The algorithm for our 
proposed HRC-AMBTC is described as follows:

Algorithm 1. HRC-AMBTC encoding an image  
Input: an original image
Output: compression code TL
1.	 Divide an original image into nt 4×4 image blocks.
2.	 Read one image block and classify it into three block groups: flat, smooth and complex blocks, 

according to two thresholds t0 and t1.
3.	 If the current block is a flat block, it is encoded as Lk, including 1-bit flag 02 and one binary 

quantized value. The detail is demonstrated in Subsection 3.1. 
4.	 If the current block is a smooth block, it is encoded as its compression code Lk is marked as 

102. The codes for a 4×4 image block is obtained by connecting four parts, as 102 || (
L
kµ )2 || 

(Dk)2 || (Mk)2, where where L
kµ  is 8 bits low quantizer of AMBTC, Dk is 4 bits of the difference 

between the original low quantizer and the original high quantizer, and Mk is the encoding result 
according to the encoding bits defined in the Huffman coding table. The detail is demonstrated in 
Subsection 3.2.

5.	 If the current block is a complex block, its compression code LK is marked as 112, and the 
compression code includes three quantized values and a ternary bitmap, which is generated by 
our proposed difference-based clustering algorithm. The detail is shown in Subsection 3.3. 

6.	 If the current block is not the last block in the image, read the next block and perform the 
encoding operation by repeating Steps 3-5 in order.

7.	 Obtain the final compression code TL by concatenating all blocks’ compression codes Lr =L1|| L2 
||…|| Lk (k=1,2,…, nt) and the Huffman table code LH.

Algorithm 2. HRC-AMBTC reconstructing an image with the compression codes
Input: The stream of image compression code TL  
Output: A reconstructed image
1.	 Obtain the auxiliary information. The first 36 bits of LH recode Huffman coding rules, and the 

remainder codes Lr is used to build the reconstructed image.
2.	 Build the Huffman coding table. Each list represents the compressed bitmap of a smooth block. 
3.	 Reconstruct the image by filling the block with the same size as the divided block in the 

compression process.  
4.	 If the first bit of code Lr is 02, the current block is determined as a flat block. It is reconstructed 

according to the decoding operations described in Subsection 3.1.
5.	 If the two bits of code Lr is 102, the current block is determined as a smooth block. It is 

reconstructed according to the decoding operations described in Subsection 3.2.2.
6.	 If the two bits of code Lr is 112, the block is determined as a complex block. It is reconstructed 

according to the decoding operations described in Subsection 3.3.
7.	 Reconstruct the image blocks B’ one by one, though repeating Steps 4-6. 
8.	 Obtain a reconstructed image I’, when all the rebuilt blocks B’ are located in order as the path in 

the compression process.  
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In our proposed HRC-AMBTC scheme, an original 
image I is divided into several non-overlapping blocks. 
Then, the blocks are compressed one by one via the 
compression algorithm described in Algorithm 1. Finally, 
all the compression codes of the blocks and the auxiliary 
information are generated, such as the representative 
code table. The reconstructing scheme is also called the 
decompressing scheme. It is simpler than the compression, 
and the decompression algorithm is described in Algorithm 
2. The decompression algorithm processes the compression 
codes instructed by block-type flags embedded in the 
codes. To demonstrate the compression and decompression 
processes of different kinds of blocks, this paper provides 
four subsections to individually introduce the processes 
for flat, smooth and complex blocks respectively, in 
Subsections 3.1, 3.2, 3.3. Subsection 3.4 introduces an 
improved HRC-AMBTC named HRC-AMBTCv2.

3.1 Encoding and Decoding Process for the Flat Block
A f la t  b lock mainly  inc ludes  low-frequency 

information. The differences among pixels within the 
flat block have a faint influence on semantic expression. 

Therefore, the mean of this block represents each pixel 
value of this block; meanwhile, the bitmap of this block is 
no longer to be considered. 

In our scheme, a flat block is compressed as a 9-bit 
codeword, which includes a type flag defined as a binary 
02 and a quantized value recorded as an 8-bit binary 
representation. The quantized value of the flat block is as 
follows.

( )_mean ,k
f

k allBµ = (8)

where k is the order number of the block and Bk_all 
represents all pixel values in block Bk.

During the decoding phase, the first bit 02 instructs that 
the current block is a flat type, while the following 8-bit 
are selected from the compression code and then converted 
into a decimal number. Finally, the compressed block is 
reconstructed by filling the decimal value in the 4´4 block. 
Figure 2 shows the encoding and decoding procedures for 
a flat block.

Figure 2. The compression and decompression processes for a flat block

The flat block is encoded with 9-bit compression 
code with our proposed HRC-AMBTC which is much 
smaller than the 32 bits obtained by conventional AMBTC. 
In addition, the block mean is directly used in both 
compression and decompression processes and avoids the 
deviation from the average of H

kµ  and L
kµ . Therefore, the 

computation complexity of our proposed HRC-AMBTC 
is relatively lower than that of conventional AMBTC for a 
flat block.

3.2 Encoding and Decoding Process of Smooth Block
When t0< Dk <t1, the current image block is determined 

as a smooth block. Typically, within a smooth block, 
the differences between neighboring pixels are greater 
compared to those in a flat block. Consequently, two 
quantized values are employed to depict pixels within a 
smooth block, and a bitmap containing ‘0’ or ‘1’ is essential 
to document the corresponding positions of two quantizers. 
To address this, we have introduced a novel approach in 
our HRC-AMBTC scheme, defining a 2×2 black-white 
block shown in Table 1 as the fundamental unit. This 
allows us to denote a representative bitmap for a smooth 

block using fewer bits while maintaining acceptable image 
quality during smooth block reconstruction.

To achieve our objective, a 4×4 smooth image block’s 
bitmap can be decomposed and represented by four 2×2 
basic units. In summary, there are eight distinct patterns of 
2×2 basic units, as illustrated in Table 1.

Table 1 reveals that the eight patterns of 2×2 basic 
units can be organized into four distinct groups. Within 
each group, we define one flag to indicate two types: single 
units and continuous units. The continuous type means the 
following unit is the same as the previous unit. The main 
color flag serves to differentiate between subgroups within 
a given group. For example, consider ‘Group 3;’ the main 
color flag ‘1’ signifies that both pixels at the top of the 2×2 
basic unit are black, and conversely for the other color 
configuration. Regarding the two types, ‘Single unit’ with 
its indicator ‘10’ indicates that the pixels within the current 
2×2 basic unit are uniformly black or white. Conversely, 
‘Continuous units’ with its indicator ‘11’ signifies the 
presence of two adjoining 2×2 basic units belonging to 
‘Group 3.’ Through the amalgamation of these three types 
of indicators - main color flag, group, and types - we can 
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efficiently minimize the size of the bitmap associated with 
a smooth block.

To give a better explanation for our general encoding 
policy for a smooth block bitmap, an example of encoding 
and decoding a smooth block is shown in Figure 3. In the 
encoding process for a given smooth block and the type 
flag for smooth block is denoted as 102, the smooth block 
is first divided into four basic units. Next, these four basic 
units are arranged in order by top-left top-right bottom-
left bottom-right. Then, these four units are encoded into 
two parts according to the encoding policy listed in Table 
1, which are the ‘main color flag’ part as 10112 and the 
encoding code of four basic units as 0112||112. Among 
the four basic units shown in Figure 3, the first two bits 
indicate the main color flags for the first two basic units 
and are denoted as 102 because one of them has the top 
black pattern and the other has the top white pattern. Then, 
follow the compression code as 0112 because the two 
neighboring units belong to the same group ‘Group 0,’ 
while the last two basic units belong to ‘Group 3’ denoted 
as 112 and then with compression code as 112 because 
the two neighboring units also belong to the same group. 
Finally, the compression result of this sample smooth block 
is obtained as 10 1011 011112 by concatenating the smooth 
block-type flag 102, four main color flags 10112, and the 
encoding code of four basic units 011112. In addition, the 
decoding process of a smooth block’s code is the reverse 
process of the encoding program.

Building on the example demonstrated in Figure 3, 
it becomes clear that the general encoding rules, devised 

for the 8 patterns within a 2×2 basic unit, effectively 
reduce the size of the original bitmap for a 4×4 block. To 
further streamline the compression code’s size for smooth 
blocks, we integrate the Huffman coding technique, 
which combines the eight patterns illustrated in Table 
1, as previously introduced. To apply Huffman coding, 
the first step involves determining the number of blocks 
associated with each pattern. The pattern with the highest 
frequency is assigned the shortest bit representation, as 
demonstrated in Table 2 using the ‘Lena’ test image as a 
case study. Ultimately, a Huffman coding table tailored to 
a specific image can be generated. Taking Table 2 as an 
example, within the ‘Lena’ test image, which comprises 
21,324 smooth blocks consisting of 2×2 units, there are 
eight patterns along with their corresponding coding bits. 
It is worth noting that the pattern belonging to Group 3 
‘Continuous units’, for instance, is assigned a coding bit 
of ‘1’ with just 1 bit of representation. This is primarily 
because Group 3 ‘Continuous units’ encompass 9,294 
blocks, making it the most prevalent pattern in comparison 
to the others.

Following the example illustrated in Figure 3(a), the 
ultimate compression code, utilizing the Huffman coding 
table provided in Table 2, can be further reduced in size, 
as evident in Figure 4. A comparison between Figure 4 and 
Figure 3(a) reveals that the compression code generated 
with the Huffman coding table is smaller than the one 
encoded by using the general encoding rules outlined in 
Table 1.

Table 1. General encoding rules for a 2×2 basic unit 

The 2×2 basic unit Main color flag Descriptions Group
Types

Single unit Continuous units

      
1 Top black 

blocks
0 0102 0112

      
0 Top white 

blocks

 
     

1 Left black 
blocks

1 1102 1112

 
     

0 Left white 
blocks

    
1 Left diagonal 

black blocks
2 10002 10012

    
0 Left diagonal 

white blocks

                  1 Most pixels or whole 
black blocks

3 102 112

          
0 Most pixels or whole 

white blocks
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(a) Encoding procedure of a smooth block with general encoding rules shown in Table 1

(b) Decoding procedure of a smooth block with general encoding rules shown in Table 1

Figure 3. Example of encoding and decoding smooth block with general encoding rules shown in Table 1

Table 2. Huffman coding table using the ‘Lena’ test image

Patterns of 2×2 basic units Amounts of blocks Encoding bits Length of encoding bits
Group 0 Single unit 2177 0000 4 bits
Group 1 Single unit 3030 001 3 bits
Group 2 Single unit 1079 00010 5 bits
Group 3 Single unit 4994 01 2 bits

Group 0 Continuous unit 249 0001110 7 bits
Group 1 Continuous unit 420 000110 6 bits
Group 2 Continuous unit 81 0001111 7 bits
Group 3 Continuous unit 9294 1 1 bit

Figure 4. Example of encoding a smooth block with the Huffman coding table shown in Table 2
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Utilizing the encoding bits obtained from the Huffman 
coding table, as illustrated in Table 2, a 4×4 image smooth 
block can be encoded as 102 || ( L

kµ )2 || (Dk)2 || (Mk)2, 

where L
kµ  is 8 bits low quantizer of AMBTC, Dk is 4 bits 

of the difference between the original low and the high 
quantizers, and Mk is the encoding bits listed in Huffman 
coding table. The detailed description can be found in 
Subsection 3.2.1. 
3.2.1 Encoding Process of Smooth Block

Here, we take a 4×4 image block as an example to 
illustrate the compression process of a smooth block as 
follows.

Step 1. Two quantized values and the bitmaps of the 
smooth blocks are calculated by conventional AMBTC 
as ( )_, ,H L

k k k k mapC Bµ µ= , where H
kµ  and L

kµ  are quantized 
values, and Bk_map is the bitmap.

Step 2. The difference Dk between and L
kµ  is recorded 

with bits. For example, if t1=16, it takes 4 bits to present 
the difference Dk in a binary representation. Then, the 
lower quantized value is converted into an 8-bit binary 
code. 

Step 3. Bitmap Bk_map is divided into four non-
overlapping 2×2 units and then they are listed in a line via 
the scan order as top-left, to bottom-left, to top-right, and 
to bottom-right.

Step 4. Generate the Huffman coding table based on 
features of Bitmap Bk_map.

Step 5. Bitmap code Mk is derived by encoding four 
2×2 units according to the Huffman coding table. 

Step 6. Finally, the codes for a 4×4 image block is 
obtained by connecting four parts, as 102 || (

L
kµ )2 || (Dk)2 || 

(Mk)2, where L
kµ  is 8 bits low quantizer of AMBTC, Dk is 

4 bits of the difference between the low quantizer and the 
high quantizer, and Mk is the encoding results according to 
the encoding bits defined in the Huffman coding table. The 
first two bits 102 is the type flag of a smooth block.
3.2.2 Decoding Process of Smooth Block

If a type flag of an image block begins with 102, it is 
determined as a smooth block. This binary stream of a 
smooth block is used to reconstruct an image block in the 
following steps. 

Step 1. The following 8-bit binary numbers are 
converted to a decimal quantized value L

kµ . Then the 
4-bit numbers after them are also converted to a decimal 
number as deference Dk; therefore the other quantized 
value H

kµ is obtained by Dk +
L
kµ .  

Step 2. Construct the bitmap B’k_map according to 
the extracted Huffman coding table LH and the received 
encoding bits.

Step 3. The 4×4 reconstructed image block is obtained 
by filling with μH

k and μL
k according to the bitmap B’k_map.

The reconstructed bitmaps for all smooth blocks can 
be generated by employing the 35-bit Huffman coding 
table, which includes the corresponding encoding bits. 
However, it is important to emphasize that, as illustrated 

by the eight patterns outlined in Table 2, the reconstructed 
bitmaps may not perfectly replicate the original ones. This 
discrepancy arises because patterns linked to Group 2 
‘Continuous units’ and Group 3 ‘Continuous units’ each 
encompass five possible variations, as indicated in Table 
1. Nevertheless, our experimental results will demonstrate 
that our proposed scheme consistently outperforms prior 
methods in terms of compression performance and image 
quality of the reconstructed image.

3.3 Encoding and Decoding Process of Complex Block
Complex blocks typically contain a variety of pixel 

values, and the disparities among these values tend to be 
more substantial compared to the differences found in 
the other two block types. As a result, a complex block 
is characterized by three quantized values and a ternary 
bitmap. To obtain a representative ternary bitmap for a 
given complex block, we have developed a difference-
based clustering method that involves five essential steps: 

Difference-based clustering algorithm:
Step 1. The pixel values of one 4×4 image block Bk 

are listed in set Sk ={pk1, pk2, …, pkq} without repetitive 
numbers in ascending order, where pk1 < pk2 < … < pkq.

Step 2. The differences {qk1, qk2, …, qkq-1} between 
two neighboring pixel values in set Sk are calculated and 
arranged in descending order.

Step 3. According to the biggest difference and the 
second biggest difference, the values of Sk are divided into 
three groups by cutting off the list {pk1, pk2, …, pkq} at the 
positions related to two differences. After calculating the 
means ( , , )L M H

k k kµ µ µ  of these three groups, the members 
in the three different groups are replaced by their means, 
respectively. In addition, L M H

k k kµ µ µ< < . The 0, 1 and 
2 used in the ternary bitmap Bk_all record the positions of 
( , , )L M H

k k kµ µ µ , which is used for reconstructing the image 
block similar to AMBTC.

Step 4. If the following differences qk3 are very close to 
qk2, or the differences before qk3 are equal, more grouping 
forms of Sk are considered by cutting off the list at different 
positions. Then, repeat Step 3 against different grouping 
forms. The three final groups with the highest PSNR are 
found by comparing each possible reconstructed image and 
the original image. If the next difference qk4 has problems 
similar to qk3’s, Step 4 repeats against qk4. 

S t e p  5 .  T h e  i m a g e  b l o c k  i s  d e s c r i b e d  a s 
_( , , , )L M H

k k k k k allL Bµ µ µ=  through Step 1 to 4. In addition, 
if there are only two values of an image block, this block is 
compressed as a smooth block described in Section 3.2. 

In our proposed HRC-AMBTC, complex blocks are 
compressed by variable-length coding, and their type flags 
are defined as 112. Details of the compression process of 
a complex block are introduced as follows, based on the 
ternary code Lk.

Complex block’s encoding algorithm:
Step 1. Arrange the values in ascending order without 

repeating numbers.
Step 2. Compute the differences of two neighbors and 
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rearrange them in descending order.
Step 3. Divide the sets B’k into three parts, according 

to the two biggest values among these differences. Then 
calculate the three quantized values and the bitmap.

Step 4. Obtain the differences dL
k and dH

k by the 
neighboring quantized values in the ascending order.

Step 5. Encode three quantized values. The lower 
quantized value L

kµ  is converted into an 8-bit binary 
code. The differences dL

k and dH
k are calculated, where 

L M L
k k kd µ µ= −  and H H M

k k kd µ µ= − . The following several 
bits record both dL

k and dH
k in binary representation 

according to the rules in Table 2. Therefore, the 
three quantized values ( , , )L M H

k k kµ µ µ  are encoded 

a s  ( ) ( ) ( ) ( ) ( )2 22 2 2
|| 1 || || 2 ||q L L H

k k k kc flag d flag dµ= ,  w h e r e  f l a g 1 
and flag2 are length flags as shown in Table 3. As an 
illustration, consider a complex block with three quantized 
values: ( , , )L M H

k k kµ µ µ = (76, 136, 216). The differences 
between them are computed, yielding dL

k =60, and dH
k=80. 

Referring to Table 3, the code for these quantized values is 
represented as cq

k =010011002||02||1111002||12||10100002.

Table 3. The compression rules of differences DL
k and DH

k

Condition I Condition II Length flag Code length (bit)

128L
kµ ≤

dL
k<64 0 6 

dL
k≥64 1 ( )2log 256 L

kµ − 

dH
k<64 0 6

dH
k≥64 1 ( )2log 256 M

kµ − 

128L
kµ >

dL
k<32 0 5

dL
k≥32 1 ( )2log 256 L

kµ − 

dH
k<32 0 5

dH
k≥32 1 ( )2log 256 M

kµ − 

Step 6. Encode the ternary bitmap of a complex block. 
Three position flags of bitmap Bk_all are defined as 02, 102 
and 112, respectively. Then, the bitmap is encoded in the 
stream cl

k. It is noted that the ternary bitmap of a complex 
block is generated by our proposed difference-based 
clustering as described at the beginning of this section.

Step 7. Obtain the code of a complex block. Finally, 
the complex block is compressed by connecting type flag 
112, the code of three quantized values cq

k and the bitmap’s 
code cl

k, as 112|| c
q

k ||c
l
k.

To give a better explanation for encoding complex 
blocks, here, we take a 4×4 complex block B’k={28,219, 
171, 167; 34,223,223,222;33,217,218,218;32,154,171,1
85} as an example to demonstrate the encoding process. 
There are seven steps, that combine our proposed 
difference-based clustering algorithm to find three 
quantized values and the compression process with these 
three found quantizers. The details are demonstrated as 
follows. 

Step 1. Arrange the values in ascending order without 
repeating numbers as Sk={28,32,33,34,154,167,171,185, 
217,218,219,222,223}.

Step 2. Compute the differences of two neigh
b o r s  a s  { 4 , 1 , 1 , 1 2 0 , 1 3 , 4 , 1 4 , 3 2 , 1 , 1 , 3 , 1 } ,  a n d 
rearrange the differences in the descending order as 

{120,32,14,13,4,4,3,1,1,1,1,1}.
Step 3. Divide the sets B’k into three parts, according 

to the two biggest values as 223 and 222: {28,32,33,34},
{154,167,171,171,185},{217,218,218,219,222,223,223}
. Then calculate the three quantized values and the bitmap, 
which are shown as follows: Bk_all ={0,3,2,2,0,3,3,3,0,3,3,3,
0,2,2,2}.

Step 4. Obtain the differences dL
k and dH

k by the 
neighboring quantized values, where dL

k=138 and dH
k=50.

Step 5. Encode three quantized values according to 
Table 3, and the code is shown as cq

k =001000002||12|| 
100010102||02||1100102.

Step 6. Encode the bitmap as cl
k =011101001111110 

11111101010102.
Step 7. Obtain the final compression codes by 

connecting 112, cq
k and cl

k as 112||001000001100010 
1001100102|| 01110100111111011111101010102

Lastly, a 4×4 complex block is condensed into a 
validated codeword consisting of three quantized values 
and one ternary bitmap. The decoding process for a 
complex block differs from that of a flat block and a 
smooth block due to the variable length of the compression 
code for a complex block. Consequently, the decoding 
procedure requires careful consideration to ensure that a 
sufficient number of bitmap values are decoded. 
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The detailed decompression procedure is introduced as 
follows.

Complex block’s decoding algorithm:
Step 1. If a type flag begins with 112, it is a complex 

block. The following 8-bit binary bits are converted into 
decimal value L

kµ . After the differences dL
k and dH

k are 
obtained according to Table 3, the other two quantized 
values M

kµ and H
kµ are computed by M L L

k k kdµ µ= +  and 
H H M
k k kdµ µ= + .

Step 2. The reconstructed complex image block is 
filled in with L

kµ , M
kµ and H

kµ by the bitmap’s instruction.
 

3.4 Improved HRC-AMBTC
In our proposed HRC-AMBTC, flat blocks are encoded 

with a single quantized value, block mean, offering an 
enhanced compression capability for smooth. To further 
improve the compression performance, a refined approach 
is denoted as HRC-AMBTCv2, mainly designed for the 
flat blocks generated by our proposed HRC-AMBTC. 
Generally, HRC-AMBTCv2 remains consistent with HCR-
AMBTC, except for the encoding and decoding processes 
of flat blocks. The novel algorithms introduced in HCR-
AMBTCv2 for handling flat blocks are outlined below.

Step 1.  Compute the difference between two 
consecutive flat blocks. This involves finding the difference 
between the mean of a flat block and the mean of the flat 
block immediately preceding it. If the first block is flat 
one, it is encoded directly according to Section 3.1.

Step 2. Design re-compression rules. We define four 
compression modes, which correspond to four different 
ranges, including [-1,1], [-3,3], [-7,7], [-15,15], and their 
range flags are denoted as 002, 012, 102, 112, respectively. 
For a flat block, the encoding comprises a 1-bit type flag, 
a 1-bit plus-minus sign, a 1-bit compression instruction, 
and a 1-bit, 2-bit, 3-bit, 4-bit, or 8-bit codeword used to 
indicate the difference between the means of the current 
flat block and its preceding flat block. Table 4 shows the 
encoding rules for flat blocks in HRC-AMBTCv2.

Step 3. Confirm the compression mode and encode the 
flat blocks. 

According to Table 4, the coding efficiency based 
on each rule is calculated. The best one is chosen as the 
compression mode for all the flat blocks of the original 
image, and the range flag is recorded at the beginning of 
an image codeword. For example, the first two bits of an 
image code is 102 to indicate this block is flat one. The 
flat blocks of the original image are encoded to either a 
2-bit or 8-bit code according to the range. If the mean of 
the current flat block is 168, and the mean of its preceding 
flat block is 165. Then the difference between the two of 
them will be 3 (=168-165). The decimal value 3 belongs 
to the range [-3,3]. Therefore, the following 2-bit 012 
indicates the range is located at [3,-3], and also takes a 
2-bit codeword to record this difference as 112. Then the 
final code of this flat block is encoded by 102||012||02||112, 
where the first indicator denotes that the current block 
is flat, the second indicator denotes the difference range 
and the third indicator denotes that the difference is a 
positive value, and the four bits indicate the difference 
value. During decoding, the final code of the flat block 
can be used to restore the flat block. For example, the first 
2-bit ‘10’ indicates this is a flat block; the following 2-bit 
‘01’ indicates the range is [3,-3], the following 1-bit ‘0’ 
indicates only 2 bits are required to record the difference 
between the current flat block and its preceding flat block. 
Finally, the last 2-bit ‘11’ denotes the difference value is 
3. Therefore, the final compression code comprises 7 bits, 
represented as 102||012||02||112. This is shorter than the 8-bit 
compression code generated by the encoding algorithm 
outlined in Section 3.1. It is noted that when the image 
code. If we rearrange the block flat and set block flat as 
‘0’ for the flat block, ‘10’ for the smooth block, and ‘11’ 
for the complex block. The 7-bit for flat block can be 
further shortened as 6-bit: 02||012||02||112.  In this case, for 
the continuous flat blocks, the second flat block can be 
presented with 6 bits instead of 8 bits compression code 
generated by the encoding algorithm outlined in Section 
3.1. In the following discussion, the refined compression 
code 02||012||02||112 will be used instead of 102||012||02||112.

Table 4. Encoding rules of flat blocks based on the differences 

The range 
flag Range Type flag Plus/minus Compression 

instruction
Code 
length

00
[-1,1]

0

0/1
0 1 bit

[-255,-2]U[2,255] 1 8 bits

01
[-3,3]

0/1
0 2 bits

[-255,-4]U[4,255] 1 8 bits

10
[-7,7]

0/1
0 3 bits

[-255,-8]U[8,255] 1 8 bits

11
[-15,15]

0/1
0 4 bits

[-255,-16]U[16,255] 1 8 bits
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In HRC-AMBTCv2, the decoding process for flat 
blocks’ compression codes also makes use of Table 4 
and the mean of the flat block immediately preceding 
the current flat block. Following the example mentioned 
earlier, when the type flag indicates that the current 
block is flat, the first 1-bit is the indicator for flat block. 
The following 2-bit from the code of 02||012||02||112 are 
interpreted as the range flag. The range flag 012 signifies 
the range [-3,3]. Assume, the mean value of the previous 
flat block is retrieved, such as 165, for instance. The 
subsequent ‘0’ bit indicates that the mean of the current 
flat block exceeds 165 according to the definitions listed in 
Table 4, and the last 2-bit represents the difference. In this 
case, 112=3, resulting in the calculation of the mean for the 
current flat block as 168 (=165+3). With HRC-AMBTCv2, 
the compression of flat blocks can be enhanced, albeit 

at the expense of increased execution time required to 
determine the optimal range and compute the difference 
between a flat block and the preceding block.

4  Experimental Results

In this section, several experiment results of the 
proposed methods and comparative experiments are 
conducted to demonstrate the effectiveness and feasibility 
of the proposed methods. These experiments were done 
with Matlab on a laptop with a Core i7-10750H CPU and 
Windows 10. In addition, eight classic images and 1000 
grey images with sizes of 512×512 were randomly selected 
from the BossBase-1.01 dataset, and are used in these 
experiments. The eight classic images are shown in Figure 
5, including Peppers, Lena, Baboon, etc.

Figure 5. Eight classic images used served as the test images

In this paper, we evaluate the proposed methods by 
considering both bitrate defined in Eq. (9) and PSNR 
defined in Eq. (10) and Eq. (11). Bitrate represents the 
number of binary numbers required to record each pixel of 
an image and is named bit per pixel (bpp).

( ) ,cN
CE bpp

W H
=

×
 (9)

where Nc is the bits of image compression codes.
PSNR represents the distortion between the original 

image and the reconstructed image defined as follows.

( )
2

10
25510log ,PSNR dB
MSE

 
=  

 
 (10)

( )2

1 1

1 , ,H W
ij iji j

MSE p q
H W = =

=
× ∑ ∑ (11)

where pij and qij are the pixel values of the original image 
and the decompressed one, respectively; H and W are the 
height and the width of these images, respectively.

4.1 The Performance of the Proposed Methods
In general, the proposed methods are applicable for 

compressing image blocks of various sizes, including 
multiples of four pixels, such as 4×4, 8×8, 4×8, and 
so on. In application, the image compression method 
based on 8×8-sized blocks are similar to schemes based 
on 4×4-sized blocks as mentioned in Sections 3 and 4. 
First, the original image is divided into many 8×8 non-
overlap blocks, and each block is classified by AMBTC. 
Afterward, an 8×8 image block is divided into four 4×4 
blocks. The 4×4 image blocks are compressed by the 
proposed HRC-AMBTC (or HRC-AMBTCv2). Then 
the codes of four blocks are connected as the code of an 
8×8-sized image block. Finally, the other 8×8-sized blocks 
are encoded in the same way, and the final code of an 
image is acquired with several key elements. The processes 



Hybrid Representative Coding Scheme for AMBTC Compressed Images   591

for a reconstructed image is similar to those described in 
Sections 3 and 4. For the sake of convenience, this paper 
focuses on discussions involving 4×4-sized blocks in 
Section 4.
4.1.1 Coding Efficiency Comparisons

In this experiment, we compress eight test images 
using two methods: HRC-AMBTC and HRC-AMBTCv2. 
The first method utilizes the flat block compression 
scheme outlined in Section 3.1, while the second method 
focuses on compressing the differences between a flat 
block and its preceding flat block, as described in Section 
3.4. The coding efficiency of the two proposed methods is 
illustrated in the table below. The block type is determined 
using two thresholds: t0=4 and t1=16.

In Table 5, the PSNR values for these eight test images 
are nearly identical when comparing the two proposed 
methods. However, the compression efficiency (CE) of 
HRC-AMBTCv2 is slightly lower than that of HRC-
AMBTC. The reasons for these observations can be 

explained as follows. Firstly, due to the utilization of the 
same thresholds, t0 and t1, the quantities of three different 
types of image blocks remain unchanged. Secondly, in 
comparison to HRC-AMBTC, HRC-AMBTCv2 enhances 
the encoding of flat blocks by storing the differences 
between the flat blocks and their preceding counterparts. 
Thirdly, HRC-AMBTCv2 predominantly records these 
differences using variable-length coding between flat 
blocks and the flat blocks preceding them. When a greater 
number of differences between the means of flat blocks 
and their previous counterparts fall within the range of 
[-3,3] than [-7,7], fewer bits are required to represent these 
differences as shown in Table 4. Consequently, images 
compressed using HRC-AMBTCv2 exhibit a notable 
enhancement in CE. Nonetheless, when the majority of the 
mean differences exceed the range threshold, the impact 
on CE is relatively modest, as seen in the case of the test 
images ‘Baboon’ and ‘Stream’.

Table 6 shows the proportion of flat blocks in the 
original image, which is related to the final PSNR and CE 
of the two proposed methods. The different changes are 
calculated by 2HRC AMBTCv HRC AMBTCPSNR PSNR− −−  and 

2HRC AMBTCv HRC AMBTCCE CE− −− . For example, the 0.0018 
in the third line against ‘Peppers’ means that the PSNR 
of the reconstructed image based on HRC-AMBTC is 
0.0018 more than the one based on HRC-AMBTCv2. 
In the last line, it is obvious that an image with a larger 
proportion of flat blocks has a lower CE value when using 
the HRC-AMBTCv2. For example, the proportion of flat 
blocks in ‘Tiffany’ is 42.93%, which is the highest value 
compared with the eight same-sized images. The CE for 
‘Tiffany’ is decreased by HRC-AMBTCv2. In other words, 
our proposed HRC-AMBTCv2 effectively enhances 
compression performance when a higher proportion of flat 
blocks is presented in an image.
4.1.2 Performance Comparison with Various Threshold 

In our proposed scheme, an image must be divided into 

Table 5. Results of HRC-AMBTC and HRC-AMBTCv2 

Methods Items Peppers Lena Baboon Tiffany Man Stream House Boat

HHC-
AMBTC

PSNR 35.7684 36.1412 31.1083 38.3870 34.0423 32.8848 35.1848 34.4224
CE 1.7494 1.6312 2.7025 1.3579 2.1308 2.6785 1.9428 2.0687

HHC-
AMBTCv2

PSNR 35.7666 36.1409 31.1083 38.3870 34.0375 32.8846 35.1744 34.4223
CE 1.7238 1.5855 2.7019 1.2826 2.1144 2.6753 1.8793 2.0549

Table 6. Comparisons of HRC-AMBTC and HRC-AMBTCv2

Items Peppers Lena Baboon Tiffany Man Stream House Boat
Percent (%) 14.83 28.02 0.50 42.93 10.71 2.29 29.45 8.07

Change of PSNR 0.0018 0.0003 0 0 0.0048 0.0002 0.0104 0.0001
Change of CE 0.0256 0.0457 0.0006 0.0753 0.0164 0.0032 0.0635 0.0138

non-overlapping blocks in advance and then each block is 
determined as flat, smooth, or complex based on two pre-
determined thresholds t0 and t1 as mentioned in Section 3. 
The quantity of flat blocks is related to t0 and the quantity 
of complex ones is ensured by t1 directly. In addition, the 
quantity of smooth blocks is associated with both t0 and t1. 
In application, t0 is usually no more than 4. In our scheme, 
e a flat block is represented by the mean of its pixel values; 
however, the pixel values, with larger differences among 
them, are replaced by their mean which will reduce the 
PSNR of the block. Hence, this section mainly discusses 
how the parameter t1 affects the PNSRs and CEs of 
compressed images. Table 7 shows the results obtained by 
two proposed compression methods, HRC-AMBTC and 
HRC-AMBTCv2, when t1=32. The PSNRs and CEs against 
each image may be lower than the related value in Table 5. 
Table 8 provides the comparisons of HRC-AMBTCv2 with 
different t1. The proportion of smooth blocks increases 
with a larger t1, such as the smooth block proportion of 
‘Lena’ increasing from 47.86% to 61.36%, when t1 is 
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changed from 16 to 32. When t0 is fixed, threshold t1 is 
important, because it relates to the quantities of smooth 
and complex blocks. The compression of smooth blocks is 
achieved by referencing a dedicated Huffman coding table 
that corresponds to the shared images or by using a pre-
established generic Huffman coding table and pre-shared 
between the sender and receiver.

Table 8 shows the different compressed results of eight 

test images by HRC-AMBTCv2, with different values of 
threshold t1. Here, we can see that the larger threshold t1 
enhances the proportion of smooth blocks in an original 
image. When more blocks of an image are classified into 
smooth ones, the final image quality of the reconstructed 
image decreases. At the same time, the reduced quantity of 
complex blocks in an image adversely impacts the quality 
of the reconstructed image. 

Table 7. Results of HRC-AMBTC and HRC-AMBTCv2 with threshold t1=32

Method Item Peppers Lena Baboon Tiffany Man Stream House Boat

HHC-
AMBTC

PSNR 34.5390 34.6059 29.6888 36.3571 32.1540 30.3114 33.1535 32.9653
CE 1.7895 1.6611 2.7201 1.3835 2.1594 2.6950 1.9600 2.1034

HHC-
AMBTCv2

PSNR 34.5377 34.6057 29.6888 36.3235 32.1496 30.3082 33.1041 32.9652
CE 1.5884 1.3931 2.3389 1.1428 1.7676 2.1081 1.5538 1.7800

Table 8. Comparisons of HRC-AMBTCv2 with different threshold t1

t1 Item Peppers Lena Baboon Tiffany Man Stream House Boat

16
Percent 64.12 47.86 28.03 40.91 45.79 26.31 27.58 55.57
PSNR 35.7666 36.1409 31.1083 38.3870 34.0375 32.8846 35.1744 34.4223

CE 1.7238 1.5855 2.7019 1.2826 2.1144 2.6753 1.8793 2.0549

32
Percent 75.04 61.36 52.47 51.59 69.43 48.75 48.99 75.15
PSNR 34.5377 34.6057 29.6888 36.3235 32.1496 30.3082 33.1041 32.9652

CE 1.5884 1.3931 2.3389 1.1428 1.7676 2.1081 1.5538 1.7800

This is because a complex block is characterized by 
three quantized values, one more than what is used for a 
smooth block. This allows it to describe more intricate 
details from the original complex blocks.

4.2 Comparisons and Analysis
In order to prove the compression capacity of our 

proposed methods, four image compression methods are 
compared in this experiment, including AMBTC [20], 
Chen et al.’s method [22], HRC-AMBTC and HRC-
AMBTCv2. The input dataset includes 1000 grey images 
selected randomly from the BossBase-1.01 dataset, and the 
results are shown in figures and tables as follows.

PSNR is an important index to measure reconstructed 
image quality. In this section, 1000 images are used to 
compare HRC-AMBTC with AMBTC, Chen et al.’s 
method [22], and HRC-AMBTCv2. Figure 6 clearly 
illustrates that HRC-AMBTC outperforms AMBTC 
significantly, with over 76.2% of the images showing an 
improvement in PSNR of at least 3 dB in the computed 
the results. Furthermore, HRC-AMBTC exhibits an 
improvement of more than 1 dB in PSNR for 40.6% of 
the images compared to Chen et al.’s method [22]. In 
addition, the major difference between HRC-AMBTC and 
HRC-AMBTCv2 is the compression algorithm for flat 
blocks, potentially resulting in subtle distortions during 
the computation of representative values. Consequently, 
the PSNR difference between HRC-AMBTC and HRC-

AMBTCv2 across 1000 images is minimal, with only a 
3.9% difference exceeding 0.1 dB.

Furthermore, the PSNR results of 1000 images are 
drawn in Figure 7. The PSNR of HRC-AMBTC, HRC-
AMBTCv2, Chen et al.’s method [22] surpass AMBTC, 
because these three methods classify the divided blocks of 
an image as flat, smooth and complex. 

Furthermore, the complex blocks are encoded using 
ternary quantized values and a bitmap, offering a clearer 
description of the image texture compared to AMBTC, 
which employs only two quantized values. With three 
quantized values, the encoding represents the lowest 
quantized value and two differences between three 
ascending quantized values. HRC-AMBTC and HRC-
AMBTCv2 are different from Chen et al.’s method [22] 
at three parts. First, HRC-AMBTC (HRC-AMBTCv2) 
encodes a flat block with the mean, which avoids the 
deviation by calculating the mean of two quantized values. 
Then the representative bitmaps of HRC-AMBTC (HRC-
AMBTCv2) and Chen et al.’s method [22] are acquired 
by a different scheme. The representative bitmaps by the 
first scheme are distributed regularly, but the bitmaps 
by the second are different in each computation, due to 
the clustering algorithm. Finally, HRC-AMBTC (HRC-
AMBTCv2) applies a step clustering scheme to encode a 
complex block. It overcomes the problem where unsuitable 
initial values negatively impact the results by the general 
k-mean clustering method. In addition, the PSNR of HRC-
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AMBTC is little better than HRC-AMBTCv2 for several 
images, due to the representative values of flat blocks 
recorded in the code. In other words, the quantized value 

fµ  of a flat block is encoded directly by HRC-AMBTC, 

but HRC-AMBTCv2 records the difference of fµ  and its 
front block.

The image compression efficiency is measured by the 
bit per pixel (bpp). Figure 8 shows the HRC-AMBTC and 
HRC-AMBTCv2 take less compression code to encode 
an image by comparing with AMBTC and Chen et al.’s 
method [22], while they also have good compression 
quality. Through AMBTC, all image blocks of an image 
are encoded with the same steps, so the bpp is 2 without 

any changes. The other three methods compressed an 
image by considering the texture complexity of each 
block of the image. Hence, the bpp for images compressed 
using these three methods may not consistently equate 
to 2. Figure 8 shows bbp of 1000 images compressed by 
four different methods is distributed in 4 intervals, and the 
threshold value is 1, 1.5 and 2. It also shows that HRC-
AMBTCv2 has clear advantages about compression over 
by Chen et al.’s method [22]. For example, when bpp<1.5, 
the proportion of results based on HRC-AMBTCv2, HRC-
AMBTC and Chen et al.’s method [22] are 91.7%, 55.8% 
and 48.4%, respectively. In addition, compared with HRC-
AMBTC, HRC-AMBTCv2 has one more step to compress 
all flat blocks with a suitable variable length coding.

Figure 6. PSNR of 1000 images

Figure 7. Differences in PSNR among 1000 images when using HRC-AMBTC as the baseline for comparison with the 
other three methods
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In this comparative experiment, HRC-AMBTC, HRC-
AMBTCv2, and Chen et al.’s method [22] all evaluate the 
texture complexity of each image block using identical 
criteria. Figure 9 shows the differences in bpp between 
HRC-AMBTCv2 and Chen et al.’s method [22] with 
the blue line and the differences in bpp between HRC-
AMBTCv2 and HRC-AMBTC with the red line. The 
results of bpp across 1000 images confirm that HRC-
AMBTCv2 exhibits superior compression capabilities 
when compared to Chen et al.’s method [22]. The main 
reason is that the proposed HRC-AMBTC (HRC-
AMBTCv2) only uses 35-bit code to build a Huffman 
coding table, instead of sending the whole code index table 
from a sender to a receiver. At times, HRC-AMBTCv2 
achieves significantly higher compression efficiency 
than HRC-AMBTC, primarily because of its encoding 
algorithm’s effectiveness when applied to a substantial 
number of flat blocks within an image.

5  Conclusions

This paper introduces an adaptive image compression 
method founded on AMBTC. To enhance the handling 
of image complexity, non-overlapping blocks were 
categorized into three types, each employing a distinct 
encoding strategy: 

(1) In our HRC-AMBTC, a flat block is represented 
by its mean value, and the compression code is the binary 
form of the mean value. To enhance the compression 
performance, in our HRC-AMBTCv2, all mean values of 
flat blocks are collected and further encoded according to 
the mean value of their preceding flat block. Experimental 
results confirm that our proposed HRC-AMBTCv2 
outperforms HRC-AMBTC, AMBTC, and Chen et al.’s 
[22], particularly when the image contains a substantial 
number of flat blocks.

Figure 8. CEs of 1000 images with four methods

Figure 9. Differences in compression efficiency among 1000 images when using HRC-AMBTCv2 as the baseline for 
comparison with the other two methods
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(2) In our HRC-AMBTC and HRC-AMBTCv2, a 
smooth block is characterized by two quantized values. 
To further improve the compression performance, in our 
methods, the compression code of smooth block includes 
the original low quantizer, the difference between the 
original low quantizer and high quantizer, and a bitmap 
code derived by the Huffman coding table. 

(3) In both our HRC-AMBTC and HRC-AMBTCv2, 
a complex block is defined by three 2 values along with 
a relative bitmap. These three representative values 
are determined by using the proposed difference-based 
clustering, which relies on variations in image values. 
Additionally, the compression code includes the first 
representative value and two differences to improve 
compression efficiency.

In our future research, we will explore the possibility 
of increasing the unit size used to represent each pattern 
from 2×2 to 4×4 or even larger. This investigation aims to 
assess potential impacts and identify combinations that can 
enhance compression performance while preserving the 
image quality provided by both methods presented in this 
paper. Inspired by previous research in image encryption 
[23] and ownership protection [24], our next step involves 
not only enhancing image quality and compression 
performance but also investigating the feasibility of 
retaining critical image information or embedding 
ownership details during image compression.
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