
Journal of Internet Technology Vol. 26 No. 4, July 2025 501

*Corresponding Author: Dongcheng Li; Email: dl313@humboldt.edu
DOI: https://doi.org/10.70003/160792642025072604009

A Systematic Review of Learning-Based Software Defect Prediction

Changjian Li1, Dongcheng Li2*, Hui Li1, W. Eric Wong3, Man Zhao1

1 School of Computer Science, China University of Geosciences (Wuhan), China
2 Department of Computer Science, California State Polytechnic University - Humboldt, USA

3 Department of Computer Science, University of Texas at Dallas, USA
cjlee@cug.edu.cn, dl313@humboldt.edu, huili@vip.sina.com, ewong@utdallas.edu, zhaoman@cug.edu.cn

Abstract

This survey paper on Learning-Based Software Defect
Prediction reviews recent advancements in applying
machine learning (ML) and deep learning (DL) techniques
for software defect prediction (SDP). It covers topics
including application scenarios, types of ML/DL, datasets,
source code representation, prediction granularity,
evaluation metrics, validation methods, and challenges
with existing solutions. The paper highlights the increased
interest in SDP due to the growing complexity of software
and presents a detailed analysis of various ML and DL
approaches, their capabilities, and the challenges they
present in the context of SDP. It also discusses the evolving
nature of these technologies in SDP and their impact on
developing reliable and maintainable software systems.

Keywords: Software defect prediction, Deep learning,
Machine learning, Predictive model, Quality assurance

1 Introduction

Studies have shown that software defects can cause
dramatic failures with severe consequences [1-2]. Thus,
software defect prediction has become the cornerstone
of quality assurance in the Software Development Life
Cycle (SDLC) [3]. With the growing complexity and size
of software systems, conventional quality assurance and
defect detection techniques are proving to be insufficient.
Early identification of software defects not only makes the
development process more efficient but also significantly
reduces the cost associated with post-deployment fixes
[4]. The need for this has greatly increased interest in
employing machine learning (ML) and deep learning (DL)
technologies for software defect prediction (SDP) [5].

Integrating ML and DL into SDP marks a shift from
manual inspection to automated, intelligent prediction
models. These models undergo training using historical
data on defects and the static attributes of code from prior
versions of software, aiming to predict modules with
potential defect tendencies. Early application of these
models in the SDLC helps prioritize resources and focus
on risky modules.

Over the past two decades, there has been a transition

from traditional ML to more complex DL methods in SDP.
DL, a subset of ML, automatically identifies necessary
features from raw data, which is beneficial for detecting
complex defect patterns that traditional methods miss.
In SDP, this is especially beneficial because the intricate
patterns and relationships that could result in defects are
often too complicated for traditional algorithms to discern.

Despite DL’s advancements in SDP, challenges remain,
including data insufficiency, model interpretability,
computational demands, and the need for extensive
hyperparameter tuning [1]. Moreover, the computational
requirements for training deep architectures and the
extensive adjustment of hyperparameters present major
hurdles.

This review synthesizes current knowledge on ML
and DL in SDP, highlighting their capabilities, challenges,
and future directions. It aims to provide insights into their
impact and how they can enhance software reliability and
maintainability.

The following sections of this paper are structured in
the following manner: Section 2 presents the preliminaries
of the study. Section 3 summarizes related reviews.
Section 4 details this study’s focus on learning-based SDP,
covering datasets, code representations, prediction levels,
methods, metrics, validation approaches, challenges,
and solutions. The final section outlines conclusions and
suggests directions for future research.

2 Background

2.1 Software Defect Prediction
Software Defect Prediction represents a critical field

within software engineering, focused on the proactive
detection of potential defects in software systems. This
predictive approach plays a vital role in enhancing
software quality by pinpointing areas where errors might
occur, which could evolve into more serious issues during
testing or later stages of deployment.

At its core, SDP is about predicting software segments
likely to harbor faults, thus enabling early remediation.
The nature of this task is inherently complex, requiring
high precision in predictions to be genuinely effective.
Throughout the years, numerous methods and techniques
have been investigated to improve the precision and
efficiency of SDP models. Common strategies in SDP
include the application of ML algorithms, which have

502 Journal of Internet Technology Vol. 26 No. 4, July 2025

evolved to include recent DL technologies. These
advanced computational methods demonstrate the potential
to develop robust SDP models by learning from historical
defect data and identifying complex patterns that might not
be evidently discernable through traditional analysis.

The general workflow for constructing an SDP model
can be summarized into several key steps, as shown in
Figure 1:

Data collection
& pre-process

Feature extraction

(optional)
Dataset balancing

SDP model training

Defects prediction

Evaluate
performance of the

SDP model

Figure 1. General steps for building a SDP model

Beyond the diverse choices in the aforementioned
steps, SDP research can be classified by its application
scenarios. Traditionally, literature identifies two primary
SDP scenarios: Within-Project Defect Prediction (WPDP)
and Cross-Project Defect Prediction (CPDP). In WPDP,
a project’s historical data (such as different versions) is
used to predict defective parts [6], meaning WPDP focuses
on predicting faults in the same software project where
training occurs [7]. Therefore, both the training and test
sets originate from the same project. In contrast, CPDP
utilizes data from various projects (source projects) to
train the SDP model, which is subsequently employed to
predict defects in a different project (target project) [8]. As
a derivative of transfer learning, this method is particularly
useful when there is no labeled data to train on in the target
project. In this approach, the primary challenge is reducing
the disparity between the source and target projects in
terms of feature distribution.

One of the principal challenges in CPDP is the
requirement for all projects within the CPDP framework to

adhere to identical metric standards. As a counterbalance,
heterogeneous defect prediction (HDP) helps predict
defects in projects with different metrics by mapping
source and target projects’ data into a unified frame of
reference [9-10].

There are also other widely used approaches beyond
these SDP contexts, including JIT-SDP [11], focusing on
the prediction of defects at the level of software changes
[12]. By integrating JIT-SDP with Change-Level Defect
Prediction, developers can identify and fix defects faster,
preserving software quality. It is particularly significant in
SDP because it offers timely assistance to developers at a
more detailed level (change level). It eliminates the need
for lengthy code reviews and extensive testing with JIT-
SDP [11, 13]. Finally, an emerging SDP methodology is
CVDP, which analyzes failure data from previous versions
of the same project in order to forecast defects in the
current version [14].

2.2 ML in SDP
ML is crucial for Software Defect Prediction,

automating defect identification and prediction. In SDP,
ML is categorized into supervised and unsupervised
learning [2]. By analyzing input-output relationships,
supervised learning predicts defects. Unsupervised learning
identifies potential defects by analyzing data patterns.

Supervised learning, a common approach in SDP,
uses labeled data to train algorithms for reliable category
prediction [15]. It predicts unseen instances based on
attributes, distinguishing between classification and
regression problems based on the label type. In SDP,
software instances are data instances with features as
attributes and defects as output categories to predict
defective modules. Addressing category imbalance with
data sampling improves prediction accuracy. Early defect
detection using ML enhances software reliability and
quality.

2.3 DL in SDP
Deep learning uses layered models to extract complex

data representations, which apply to tasks like regression,
clustering, classification, ranking, and synthesis. The steps
for software defect prediction using deep learning are
illustrated in Figure 2.

Deep Neural Networks (DNNs) have three types
of layers: input, hidden, and output. The input layer
introduces data, hidden layers process it, and the output
layer produces results like classification or regression.
Layers are usually fully connected, linking every neuron to
the next layer’s neurons.

Within the scope of defect prediction, researchers are
now utilizing various DNN architectures and learning
techniques, including Convolutional Neural Networks
(CNN), Recurrent Neural Networks (RNN), Deep
Autoencoders (DAE), Siamese Neural Networks (SNN),
and Long Short-Term Memory (LSTM) networks. These
methods are increasingly being used for predicting
software defects.

A Systematic Review of Learning-Based Software Defect Prediction 503

3 Related Works

In recent research in the field of Software Engineering
(SE), the application of Machine Learning models has
become particularly important. Derived from diverse
data formats in SE, these models utilize resources like
source code, requirement specifications, and test cases.
Specifically, Deep Learning techniques have garnered
extensive attention for their applications in Software
Defect Prediction. Against this backdrop, this paper seeks
to investigate the application and efficacy of ML and DL in
addressing SE issues, particularly SDP.

Software Defect Projects

Feature Engineering

Train

Validation

Test

Model Training

CNN

RNN

MLP

DBN

...

GAN

Prediction Model

Defective Non-Defective

Figure 2. DL-based SDP steps

The SDP and ML methods were comprehensively
reviewed by Catal and Diri [16] in their analysis of 74
studies published between 1990 and 2007. Compared to
previous years, the number of principal studies increased
significantly in 2007. According to Hall et al. [17], 36
studies released between Jan. 2000 and Dec. 2010 were
analyzed quantitatively and qualitatively.

Malhotra [18] reviewed 64 studies spanning from 1991
to 2013 to explore the application of ML in SDP. Son et al.
[19] carried out a systematic mapping study of 156 research
papers, examining the use of ML and DL on SDP. DL’s use
in predicting software quality was reviewed by Malhotra
et al. [20]. Pandey et al. [21] published their results in
their systematic review of the application of ML and DL
on SDP. Giray et al. [22] published a review focused on
the application of DL in SDP. Sharma et al. [23] examined
the use of integrated machine learning in software defect
prediction from 2018 to 2021. Nevendra and Singh [24]
delved into the deep learning techniques used over the
past six years and conducted comparative research on

software defect prediction at both file and change levels.
Prabha and Shivakumar [25] investigated various ML-
based SDP techniques in industrial applications and
proposed corresponding hybrid approaches. Matloob
[26] specifically studied supervised machine learning
techniques aimed at improving performance and reducing
costs.

This study differs from related research in the
following ways: (1) it comprehensively focuses on the
latest applications of DL and ML in SDP in recent years;
(2) it delves into multiple aspects; (3) it covers a wide
range of literature, including 112 main studies published
up to mid-2023; (4) it employs a systematic review on
research methods.

4 Discussion

4.1 Paper Collection Methodology and Result
We performed precise keyword searches in databases

like Google Scholar, DBLP, arXiv, and IEEE Xplore to
gather high-quality sources on learning-based software
defect prediction. After screening over 50 searches and 300
papers, we selected 112 papers that reflect the high quality
and current state of this technology.

Figure 3. Learning-based SDP Publications during 2015-
2023

Figure 3 shows the publication trend of the 112 high-
quality papers we collected, with solid dots indicating
annual publications and dashed lines showing trends. Few
papers were published before 2018 due to the limited
use of ML and DL. From 2018 to 2022, research in this
area surged. The data from 2023 is insufficient for trend
analysis.

4.2 Training and Testing Dataset
The datasets utilized in each study were extracted and

are enumerated in Table 1, with most being developed in
programming languages like Java, C, and C++. The most
frequently used dataset is from the PROMISE repository
[27], which is a dataset developed in Java language.
Some studies, such as Huang et al. [28] used datasets for
Android mobile applications developed in Java, Kotlin,
JavaScript, and C++, like Android Firewall, Android SDK,
etc. Dong et al. [29] concentrated on forecasting errors in
Android binary executables, commonly referred to as ‘apk’.

504 Journal of Internet Technology Vol. 26 No. 4, July 2025

They sourced Android projects from GitHub, including
Wikipedia and chess applications, and built datasets for
defect prediction. The experimental methods developed
by Xu et al. [30] and Zhao et al. [31-32] have also been
applied to Android projects in developing and evaluating
error prediction models.

Table 1. Data sets applied in 10 more studies

Project Nums Programming language
camel 57 Java
xalan 54 Java
xerces 50 Java

poi 49 Java
log4j 46 Java

lucene 45 Java
synapse 45 Java

jedit 44 Java
ant 40 Java
ivy 33 Java

velocity 22 Java
pc1 22 C
cm1 20 C
kc1 20 C++

eclipse jdt 19 Java
pc3 18 C
pc4 18 C
jm1 18 C
mw1 17 C
kc2 15 C++
mc1 14 C++
pc2 12 C
mc2 12 C

4.3 Representation of Source Code
In contrast to source code, DL algorithms operate on

numerical vectors. In order to represent source code, we
need to transform it into a format that can be analyzed
by DL algorithms. This conversion process must aim to
minimize information loss during the transformation.
Figure 7 shows the methods of source code representation
adopted in our pool of major studies. The representation
techniques in SDP are heavily influenced by a variety
of metrics, including software structure and size, as
well as product and process metrics. 40 studies utilized
intermediate representations (some involving multiple
types), such as AST, assembly code, CFGs, PDGs, DFGs,
and images, to form numerical vectors processable by
DL algorithms. In 8 studies, metrics were integrated
with intermediate representations. Two studies directly
converted source code into numerical vectors.

67 studies employed a set of metrics for representing
source code. Xu et al. [33] utilized the CKJM tool [34]
to extract software sizes and fundamental metrics from
the bytecode for generated Java documents in their
investigation. These metrics include the number of
methods per class, the level of connectivity among object
classes, as well as McCabe’s cyclomatic complexities.

Characteristics of processes or changes, derived from
the change history of software projects, act as indicators
in defect prediction [35]. For example, Yang et al. [36]
used change metrics like the number of modified files,
the count of developers modifying these files, and the
lines of code added or removed, for JIT-DP. Ardimento
et al. [37] employed many measures, such as submit rate,
developer experience, authored commits, and the average
interval among contributions, to describe the method of
development. Another metric type used in defect prediction
is product metrics, which describe the quality of the source
code’s internal structure. These metrics include the number
of inherited properties, the width of the inheritance tree,
the count of methods, and the quantity of methods that
are static. Some researchers, including Tong et al. [38]
and Zhao et al. [39], standardized metric values prior to
creating numerical vectors.

The Abstract Syntax Tree (AST) represents the
abstract syntax framework of source-code as a tree (Mou
et al. [40]). Thirty-eight studies employed AST as an
intermediate representation to develop numerical vectors.
Liang et al. [41] converted source code into AST and
generated token sequences by extracting tokens from AST
nodes. Chen et al. [8] utilized a streamlined version of
Abstract Syntax Tree (AST), where they disregarded node
types that were not relevant to the project and excluded
project-specific function and parameter names. Researchers
like Li et al. [42], Dam et al. [43], and Liu et al. [44]
utilized word embeddings to derive numerical vectors from
ASTs. Shi et al. [45] used a source code representation
method based on AST path pairs, PathPair2Vec, to build
embedding vectors.

Li et al. [46] modeled and analyzed the relationships
between AST paths of different methods using PDG and
DFG. While buggy paths in the AST represent the local
context of buggy code, the global context is depicted
through the relationships between buggy methods,
illustrated by program and data flow dependencies. Phan
and Nguyen [47] favored using assembly instruction
sequences rather than ASTs, arguing that they more
effectively simulate program behavior because they are
closer to machine code and better reflect program structure.
Phan et al. [48] built control flow graphs from assembly
instructions derived from compiled source code. According
to Chen et al. [49], source code can be visualized as images
and defects are predicted using an image classification
model. An image was then generated from this vector for
classification by a pre-trained ImageNet AlexNet model.
Eight studies integrated inputs based on ASTs with a
collection of metrics. Fan et al. [50], Li et al. [42], Lin and
Lu [51], Qiu et al. [52], Shi et al. [53], and Wang et al. [54]
combined word embeddings from ASTs with metrics.

In two studies, source code was directly transformed
into numerical vectors without using intermediate
representations. Hoang [55] et al. employed NLTK to
parse commit messages and code changes, representing
each word in the commit information and code changes as
n-dimensional vectors. Tian and Tian [56] used Word2vec
(Mikolov et al. [57]) to convert source code into fixed-
length vectors.

A Systematic Review of Learning-Based Software Defect Prediction 505

4.4 Granularity Level of Prediction
Predicting software defects at various granularity

levels is the goal of constructing machine learning/
deep learning models (Nam et al. [58]), and these
levels include file, module, change, category, function,
program, and statement. Previous studies have shown
that the granularity level of prediction not only affects the
predictive performance of the model but also impacts the
effort required to locate defects (Koru and Liu [59]; Calikli
et al. [60]). There were 41 studies dedicated to file-level
defect prediction models, and 33 studies focused on the
module level. 13 studies were concerned with the change
level. Four studies dealt with category-level predictions
in software systems created with object-oriented
programming languages. Three studies each targeted finer-
grained predictions at the method or line level (Refer to
Figure 4).

DL has become increasingly popular for finer-grained
SDP over the last few years, in keeping with Kamei and
Shihab’s observations [61]. Since 2019, ten studies (two
in 2019, four in 2020, three in 2021, one in 2022) have
reported their experimental results in category, statement,
and program-level predictions. The application of DL
algorithms to change-level defect prediction has also been
published by researchers since 2018. Over the last four
years, there have been 12 follow-up studies: three in 2020,
four in both 2019 and 2021, and one in 2022.

Figure 4. Distribution of the granularity level of prediction

4.5 DL Approaches in SDP
As shown in Figure 5, the most used deep learning

model in the SDP field is the Convolutional Neural
Network (CNN) model. Besides CNN, other widely used
deep learning models in SDP are LSTM/RNN, MLP, and
Deep Belief Networks (DBN).

As a classic model in the deep learning field,
Convolutional Neural Networks perform exceptionally
well in SDP, capturing local patterns in high-dimensional
data (Li et al. [42]; Pan et al. [62]) and demonstrating
good scalability when combined with structures like
Transformers (Liu et al. [63]) or GRU (Khleel et al. [64]).
RNN and LSTM architectures are also chosen by many
researchers due to their ability to capture long-range
dependencies (Uddin et al. [65]). DBN is used to learn
representations that can reconstruct training data with high
probability.

Figure 5. Distribution of the DL approaches

Other models such as GAN and GNN are less
frequently used in the SDP field. Researchers choose these
models for specific purposes, such as using GAN to create
synthetic data (Sun et al. [66]), using Siamese networks for
limited data (Zhao et al. [67]), and capturing source code
ASTs in GNN (Xu et al. [68]).

4.6 ML Approaches in SDP
As shown in Figure 6, the most used machine learning

model in the SDP field is the SVM, followed by ANN,
DT, and NB models. SVM is a widely used classification
technique in machine learning, adept at handling high-
dimensional data and complex nonlinear relationships, and
performs particularly well on small sample datasets. (Liu
et al. [69]) used an improved dual support vector machine
technique, yielding excellent results compared to other
linear and nonlinear techniques. ANN, which simulates
the neuronal connections of the human brain with multiple
layers of neurons, can construct complex nonlinear
models, hence its widespread adoption by researchers
(Albahli et al. [70]; Goyal et al. [71]). Decision tree
models are generally used in classification scenarios where
data features have a clear physical meaning, while Naive
Bayes is often chosen by researchers for its simplicity.
Notably, the integration of multiple machine learning
algorithms has become increasingly common in recent
technologies, such as Khalid et al. [72] combining particle
swarm optimization for model enhancement, and Goyal et
al. [73] proposing a feature selection method using genetic
evolutionary technology to enhance the accuracy of SVM-
based software defect prediction classifiers by identifying
the optimal feature subsets.

Figure 6. Distribution of the ML approaches

506 Journal of Internet Technology Vol. 26 No. 4, July 2025

Methods like evolutionary algorithms, rule-based
reasoning, and ensemble techniques are not as frequently
used in SDP, yet notably, there has been a growing trend
among researchers to employ random forest algorithms for
SDP studies, exemplified by Zheng et al [13].

4.7 Evaluation Metrics and Validation Methods
Researchers typically use various evaluation metrics

and validation methods to assess defect prediction models.
Figure 7 shows the 11 most commonly used evaluation
metrics in the papers we collected.

Accuracy and error rate are key metrics for evaluating
classification models. Accuracy ranges from 0 to 1,
with 0 and 1 indicating completely erroneous or correct
predictions, respectively. The error rate is the inverse of
accuracy, indicating the percentage of flaws in predictions.

TP TNAccuracy
TP TN FP FN

+
=

+ + +
 (1)

 1Error Rate Accuracy= − (2)

Precision, the percentage of classes correctly identified
as defective out of those classified as defective, measures
our effectiveness in detecting defects. Recall is the ratio
of actual defects in the categories predicted as defective,
indicating the extent to which we might overlook defective
categories.

TPPrecision
TP FP

=
+

 (3)

TPRecall TPR Sensitivity
TP FN

= = =
+

 (4)

The F-measure, which is the harmonic mean of
precision and recall, ranges from 0 to 1, with higher values
signifying better performance. G-measure combines the
true positive and true negative rates. MCC (Matthews
Correlation Coefficient) ranges from -1 to 1, with values
of 1, 0, and -1 indicating perfect, random, and incorrect
predictions, respectively.

()2

2

1 Recall Precision

Recall Precision
F Measure

β

β

+ ∗ ∗
− =

∗ +
 (5)

2 TPR TNRG Measure
TPR TNR
∗ ∗

− =
+

 (6)

()()()()
TP TN FP FNM

NTP FP TP FN TN F
C

P
C

TN F+ + +

∗
=

+

∗ −
 (7)

68% of researchers used the F1 score to assess balance
between precision and recall; 55 studies used recall,
assessing defect prediction; 48 used precision to reflect

correctly predicted defects. AUC was used in 44 studies
to evaluate classification ability; 38 studies used accuracy,
suitable for imbalanced datasets. Additionally, 23 studies
used MCC to address class imbalance. Effort-aware
metrics in software engineering, used in 13 studies, assess
defect prediction considering the cost of identifying and
fixing defects, emphasizing both accuracy and practical
implications in resource allocation.

Additionally, 11 studies used G-measure to balance
detection and false positive rates; 9 used ROC curve for
trade-off analysis between true and false positives; 5 used
mean squared error to assess average error and accurately
predicted non-defects; 2 used AUC-PR curve to evaluate
precision-recall trade-offs.

Regarding validation methods, 65 studies used the
holdout method to divide the original dataset into training
and testing sets, while 47 studies preferred the cross-
validation method.

Figure 7. Distribution of the evaluation metrics

4.8 Research Reproducibility
A key characteristic of scientific research is the

reproducibility of its results (González-Barahona & Robles
[74]). For a study to be considered reproducible, other
researchers should be able to replicate the experimental
results reported in the study using the tools (including
source code and datasets) provided by the original authors
in a similar experimental setting (Liu et al. [75]). Several
academics have highlighted the reproducibility issue
within the software engineering domain (Lewowski
& Madeyski [76]). Recently, Liu et al. [77] reviewed
studies on the application of deep learning models
to software engineering challenges, including defect
prediction and code clone detection. They discovered
that over half of the studies did not provide high-quality
source code or comprehensive datasets, which are
essential for reproducing their deep learning models.
Consequently, we assessed whether the primary studies
had published packages that support reproducibility, using
the categorization method employed by Lewowski and
Madeyski [76].

Figure 8 shows the existence of reproducibility
packages in studies of our researched paper collection.
It was observed that 54 articles (accounting for 48% of
studies) made no reference to any kind of reproducibility

A Systematic Review of Learning-Based Software Defect Prediction 507

package. Four studies claimed to provide these packages,
but the provided links were either missing or inaccessible.
Additionally, 35 studies furnished solely data, and two
provided exclusively scripts for replication. Merely 17
publications (comprising 15% of studies) contained
comprehensive data and scripts. Moreover, we did
not observe a marked increase in the trend of sharing
reproducibility packages.

Figure 8. Distribution of the reproducibility packages

4.9 Challenges and Solutions
The goals of this section are to summarize what

has been mentioned in the collected papers regarding
challenges and solutions. We focus on the specific
challenges of using deep learning or machine learning
models in the SDP phase of software development,
including new issues that have not been extensively
explored in this field. We categorize these challenges into
three main types: model, data, and universal challenges,
and summarize the solutions to these problems found in
existing research.
4.9.1 Model

• Overfitting and performance decline simulation:
Overfitting and performance decline are potential
challenges. Employing appropriate techniques (such as
dropout regularization) and updating models based on user
feedback can address these issues.

• Semantic features and feature redundancy: Traditional
features may be insensitive to the semantics of the program
and have feature redundancy. Solutions include using a
richer feature set, such as code comments, embeddings,
AST, and structural features, as well as feature selection
using deep learners and meta-heuristic methods.

• Manual feature selection and context dependency:
Manual feature selection might lead to bias, and different
feature sets perform differently in various contexts. Self-
attention mechanisms and specific LSTM architectures can
optimize these issues.

• Random parameter initialization and fixed-length
feature vectors: Randomly chosen parameters might
reduce performance, while traditional classification
algorithms assume all feature vectors are of equal length.
Meta-heuristic methods and the use of latent features with
variable lengths can solve these problems.

• Sequence network sensitivity to hyperparameters:

Sequence networks fail to fully capture the tree structure
and semantic dependencies of ASTs, and different
hyperparameter settings can lead to performance
variations. Non-sequential networks like Bidirectional
LSTM and HNN, along with the application of meta-
heuristic methods, can tackle these challenges.
4.9.2 Data

• Heterogeneous data and dataset size limitations: The
data utilized in SDP is frequently highly heterogeneous
and limited in size. Solutions include adopting various
deep learning architectures to adapt to data differences, and
introducing standardization and transformation steps in
data preprocessing and feature extraction. Also, expanding
dataset sizes to enhance result accuracy is a future
challenge.

• Insufficient training data and data imbalance:
Restricted training data and the scarcity of software defects
lead to data imbalance, affecting model performance.
Potential solutions include employing deep learning
architectures that can learn from limited data and
implementing data balancing techniques within the models.

• Formation of training data and incomplete code
fragments: Training data may contain invalid defect
instances, and dealing with incomplete code fragments is
challenging. These issues can be addressed by manually
verifying training data and using heuristic methods to
extract information from incomplete code.
4.9.3 Deep Learning

• Data Dependency: Deep learning algorithms
gradually learn through datasets. Employing extensive
datasets guarantees that learning algorithms produce
expected outcomes. A powerful learning algorithm
requires adjustment of many parameters, and fine-tuning
key parameters requires a large amount of data. However,
artificial neural networks demand substantial data volumes
for effective learning. Furthermore, most datasets in this
survey are relatively small because manual labeling,
external sources, and delegated classification are required.

• Hyperparameter Optimization: Hyperparameters refer
to the parameters of a learning algorithm that are set prior
to the initiation of the learning process. Slight alterations
in the values of these parameters can significantly
enhance the performance of the learning model. However,
identifying the optimal hyperparameters poses a challenge,
as it tends to extend the duration of the training process
and necessitates considerable training resources and human
expertise.

• Requires High-Performance Configuration: To
improve the performance of deep learning algorithms, a
large number of samples is necessary. However, efficient
handling of real datasets also demands high processing
capabilities. It is possible for data scientists to achieve
significant performance gains in shorter timeframes by
using multi-core, high-performance GPUs and similar
processing units. As a result, these units are expensive and
consume a lot of electricity.

• Blackbox: Our models and the data that feed
neural networks are well understood, but we do not
fully understand how this data is processed. Theoretical
comprehension of how specific results are derived remains

508 Journal of Internet Technology Vol. 26 No. 4, July 2025

elusive. Neural networks essentially function as black
boxes, making it challenging for scientists to discern how
conclusions are reached. Table 2 lists software packages
that offer deep learning implementations, with different
columns representing application names, licenses,
supported platforms, and provided interface information.

Table 2. Opensource software that provide DL imple-
mentations

Name License Platform Interface
BigDL Apache2.0 Spark Scala, Python
Caffe BSD Linux,

MacOS,
Windows

Python, Matlab,
C++

DL4j Apache2.0 Linux,
MacOS,
Windows,
Android

Java, Scala,
Clojure, Python,
Kotlin

Dlib Boost
Software
License

Cross-
platform

C++

Intel DAAL Apache2.0 Linux,
MacOS,
Windows
with Intel
CPU

C++, Python,
Java

Keras MIT license Linux,
MacOS,
Windows

Python, R

Microsoft
CNTK

MIT license Windows,
Linux,
MacOS with
docker

Python, C++,
BrainScript,
Shell

Apache
MXNet

Apache2.0 Linux,
MacOS,
Windows,
Android,
AWS, IOS

C++, Python,
Julia, Matlab,
JavaScript, Go,
R, Scala
Prel, Clojure

OpenNN GNU LGPL Cross-
platform

C++

PlaidML AGPL Linux,
MacOS,
Windows

Python, C++

Pytorch BSD Linux,
MacOS,
Windows

Python, C++

Apache
SINGA

Apache2.0 Linux,
MacOS,
Windows

Python, C++,
Java

TensorFlow Apache2.0 Linux,
MacOS,
Windows,
Android

Python, C/C++,
Java, Go,
JavaScript,
R, Julia,
Swift

Theano BSD Cross-
platform

Python

Torch BSD Linux,
MacOS,
Windows,
Android,
IOS

Lua, LuaJIT,
C/C++

4.9.4 Universal
• Lack of utilizing defect-related information beyond

code: Current methods do not fully leverage defect-related
information beyond code, such as comments and commit
details. Exploring this area presents a future challenge.

• Software quality and security: Issues in software
qual i ty and secur i ty pose s ignif icant threats to
organizations. Timely prediction and identification of
software defects are crucial for delivering reliable software
products.

• Effectiveness of feature representation and class
imbalance issues: Effectively representing software defect
features is challenging, and class imbalance issues within
datasets need to be addressed.

• Experimental dataset selection: Choosing appropriate
datasets, considering factors like data imbalance, size,
and defect rates, is crucial to ensure the generality of
experimental results.

5 Conclusion

Software Defect Prediction utilizes a variety of
techniques to automatically identify defects in software,
which aids in reducing the effort required to rectify these
defects. In today’s context of continually increasing
software quantities and relatively limited quality assurance
resources, this technology is particularly important.
Especially in recent years, Software Defect Prediction
based on learning algorithms has received considerable
attention. Our study involved an extensive literature
review of SDP methods employing machine learning
and deep learning technologies, aiming to capture the
latest advancements in these areas. These studies include
both quantitative and qualitative analyses, covering
various aspects of SDP: application scenarios, types of
machine learning/deep learning, datasets, source code
representation, granularity of prediction, evaluation
metrics, validation methods, as well as proposed solutions
and challenges.

The findings reveal an uptick in SDP research recently,
incorporating various techniques, datasets, and validation
methods. We have compiled insights on data, models,
and the prevalent challenges in SDP, summarizing some
solutions proposed by the researchers. These research
outcomes are helpful for newcomers to the SDP field, as
they help in understanding the scope of different methods.
For experienced researchers, they assist in focusing their
research directions for the coming years.

References

[1] W. E. Wong, X. Li, P. A. Laplante, Be More Familiar with
Our Enemies and Pave the Way Forward: A Review of the
Roles Bugs Played in Software Failures, Journal of Systems
and Software, Vol. 133, pp. 68-94, November, 2017.

[2] W. E. Wong, V. Debroy, A. Surampudi, H. J. Kim, M.
F. Siok, Recent Catastrophic Accidents: Investigating
How Software Was Responsible, Proceedings of the 4th
International Conference on Secure Software Integration
and Reliability Improvement, Singapore, 2010, pp. 14-22.

A Systematic Review of Learning-Based Software Defect Prediction 509

[3] D. K. Yadav, S. K. Chaturvedi, R. B. Misra, Early Software
Defects Prediction Using Fuzzy Logic, International
Journal of Performability Engineering, Vol. 8, No. 4, pp.
399-408, July, 2012.

[4] W. E. Wong, J. R. Horgan, M. Syring, W. Zage, D. Zage,
Applying Design Metrics to Predict Fault‐Proneness: A
Case Study on a Large‐Scale Software System, Software:
Practice and Experience, Vol. 30, No. 14, pp. 1587-1608,
November, 2000.

[5] R. Bhandari, S. Singla, P. Sharma, S. S. Kang, AINIS: An
Intelligent Network Intrusion System, International Journal
of Performability Engineering, Vol. 20, No. 1, pp. 24-31,
January, 2024.

[6] S. Omri, C. Sinz, Deep Learning for Software Defect
Prediction: A Survey, IEEE/ACM 42nd International
Conference on Software Engineering Workshops, Seoul,
South Korea, 2020, pp. 209-214.

[7] C. Ni, W. S. Liu, X. Chen, Q. Gu, D. X. Chen, Q. G.
Huang, A Cluster Based Feature Selection Method for
Cross-Project Software Defect Prediction, Journal of
Computer Science and Technology, Vol. 32, No. 6, pp.
1090-1107, November, 2017.

[8] D. Chen, X. Chen, H. Li, J. Xie, Y. Mu, DeepCPDP: Deep
Learning Based Cross-Project Defect Prediction, IEEE
Access, Vol. 7, pp. 184832-184848, December, 2019.

[9] H. Chen, X. Y. Jiang, Y. Zhou, B. Li, B. Xu, Aligned
Metric Representation Based Balanced Multiset Ensemble
Learning for Heterogeneous Defect Prediction, Information
and Software Technology, Vol. 147, Article No. 106892,
July, 2022.

[10] J. Nam, S. Kim, Heterogeneous Defect Prediction,
Proceedings of the 2015 10th Joint Meeting on Foundations
of Software Engineering, Bergamo, Italy, 2015, pp. 508-
519.

[11] Y. Kamei, E. Shihab, B. Adams, A. E. Hassan, A. Mockus,
A. Sinha, N. Ubayashi, A Large-Scale Empirical Study of
Just-In-Time Quality Assurance, IEEE Transactions on
Software Engineering, Vol. 39, No. 6, pp. 757-773, June,
2013.

[12] G. G. Cabral, L. L. Minku, E. Shihab, S. Mujahid, Class
Imbalance Evolution and Verification Latency in Just-In-
Time Software Defect Prediction, 2019 IEEE/ACM 41st
International Conference on Software Engineering (ICSE),
Montreal, QC, Canada, 2019, pp. 666-676.

[13] W. Zheng, T. Shen, X. Chen, P. Deng, Interpretability
Application of the Just-In-Time Software Defect Prediction
Model, Journal of Systems and Software, Vol. 188, Article
No. 111245, June, 2022.

[14] J. Zhang, J. Wu, C. Chen, Z. Zheng, M. R. Lyu, CDS: A
Cross-Version Software Defect Prediction Model with Data
Selection, IEEE Access, Vol. 8, pp. 110059-110072, June,
2020.

[15] X. Chen, D. Zhang, Y. Zhao, Z. Cui, C. Ni, Software Defect
Number Prediction: Unsupervised vs. Supervised Methods,
Information and Software Technology, Vol. 106, pp. 161-
181, February, 2019.

[16] C. Catal, B. Diri, A Systematic Review of Software Fault
Prediction Studies, Expert Systems with Applications, Vol.
36, No. 4, pp. 7346-7354, May, 2009.

[17] T. Hall, S. Beecham, D. Bowes, D. Gray, S. Counsell,
A Systematic Literature Review on Fault Prediction
Performance in Software Engineering, IEEE Transactions
on Software Engineering, Vol. 38, No. 6, pp. 1276-1304,
November-December, 2012.

[18] R. Malhotra, A Systematic Review of Machine Learning
Techniques for Software Fault Prediction, Applied Soft

Computing, Vol. 27, pp. 504-518, February, 2015.
[19] L. H. Son, N. Pritam, M. Khari, R. Kumar, P. T. M.

Phuong, P. H. Thong, Empirical Study of Software Defect
Prediction: A Systematic Mapping, Symmetry, Vol. 11, No.
2, Article No. 212, February, 2019.

[20] R. Malhotra, S. Gupta, T. Singh, A Systematic Review on
Application of Deep Learning Techniques for Software
Quality Predictive Modeling, 2020 International
Conference on Computational Performance Evaluation
(ComPE), Shillong, India, 2020, pp. 332-337.

[21] S. K. Pandey, R. B. Mishra, A. K. Tripathi, Machine
Learning Based Methods for Software Fault Prediction: A
Survey, Expert Systems with Applications, Vol. 172, Article
No. 114595, June, 2021.

[22] G. Giray, K. E. Bennin, Ö. Köksal, Ö. Babur, B.
Tekinerdogan, On the Use of Deep Learning in Software
Defect Prediction, Journal of Systems and Software, Vol.
195, Article No. 111537, January, 2023.

[23] T. Sharma, A. Jatain, S. Bhaskar, K. Pabreja, Ensemble
Machine Learning Paradigms in Software Defect
Prediction, Procedia Computer Science, Vol. 218, pp. 199-
209, 2023.

[24] M. Nevendra, P. Singh, A Survey of Software Defect
Predict ion Based on Deep Learning, Archives of
Computational Methods in Engineering, Vol. 29, No. 7, pp.
5723-5748, November, 2022.

[25] C. L. Prabha, N. Shivakumar, Software Defect Prediction
Using Machine Learn ing Techniques , 2020 4 th
International Conference on Trends in Electronics and
Informatics (ICOEI), Tirunelveli, India, 2020, pp. 728-733.

[26] F. Matloob, S. Aftab, M. Ahmad, M. A. Khan, A. Fatima,
M. Iqbal, W. M. Alruwaili, N. S. Elmitwally, Software
defect prediction using supervised machine learning
techniques: a systematic literature review, Intelligent
Automation & Soft Computing, Vol. 29, No.2, pp. 403-421,
June, 2021.

[27] M. Jureczko, L. Madeyski, Towards Identifying Software
Project Clusters with Regard to Defect Prediction,
Proceedings of the 6th International Conference on
Predictive Models in Software Engineering, Timişoara,
Romania, 2010, pp. 1-10.

[28] Q. Huang, Z. Li, Q. Gu, Multi-task Deep Neural Networks
for Just-in-Time Software Defect Prediction on Mobile
Apps, Concurrency and Computation: Practice and
Experience, Vol. 36, No. 10, Article No. e7664, May, 2024.

[29] F. Dong, J. Wang, Q. Li, G. Xu, S. Zhang, Defect Prediction
in Android Binary Executables Using Deep Neural
Network, Wireless Personal Communications, Vol. 102,
No. 3, pp. 2261-2285, October, 2018.

[30] Z. Xu, K. Zhao, T. Zhang, C. Fu, M. Yan, Z. Xie, X. Zhong,
G. Catolino, Effort-aware Just-in-Time Bug Prediction for
Mobile Apps via Cross-Triplet Deep Feature Embedding,
IEEE Transactions on Reliability, Vol. 71, No. 1, pp. 204-
220, March, 2022.

[31] K. Zhao, Z. Xu, M. Yan, Y. Tang, M. Fan, G. Catolino,
Just-in-Time Defect Prediction for Android Apps via
Imbalanced Deep Learning Model, Proceedings of the 36th
Annual ACM Symposium on Applied Computing, Virtual
Event, Republic of Korea, 2021, pp. 1447-1454.

[32] K. Zhao, Z. Xu, M. Yan, L. Xue, W. Li, G. Catolino, A
Compositional Model for Effort-Aware Just-In-Time Defect
Prediction on Android Apps, IET Software, Vol. 16, No. 3,
pp. 259-278, June, 2022.

[33] Z. Xu, S. Li, J. Xu, J. Liu, X. Luo, Y. Zhang, T. Zhang,
J. Keung, Y. Tang, LDFR: Learning Deep Feature
Representation for Software Defect Prediction, Journal

510 Journal of Internet Technology Vol. 26 No. 4, July 2025

of Systems and Software, Vol. 158, Article No. 110402,
December, 2019.

[34] D. Spinellis, Tool Writing: A Forgotten Art? (Software
Tools), IEEE Software, Vol. 22, No. 4, pp. 9-11, July-
August, 2005.

[35] F. Rahman, P. Devanbu, How, and Why, Process Metrics
Are Better, 2013 35th International Conference on Software
Engineering (ICSE), San Francisco, CA, USA, 2013, pp.
432-441.

[36] X. Yang, D. Lo, X. Xia, Y. Zhang, J . Sun, Deep
Learning for Just-in-Time Defect Prediction, 2015 IEEE
International Conference on Software Quality, Reliability
and Security, Vancouver, BC, Canada, 2015, pp. 17-26.

[37] P. Ardimento, L. Aversano, M. L. Bernardi, M. Cimitile,
M. Iammarino, Just-in-Time Software Defect Prediction
Using Deep Temporal Convolutional Networks, Neural
Computing and Applications, Vol. 34, No. 5, pp. 3981-
4001, March, 2022.

[38] H. Tong, B. Liu, S. Wang, Software Defect Prediction
Using Stacked Denoising Autoencoders and Two-Stage
Ensemble Learning, Information and Software Technology,
Vol. 96, pp. 94-111, April, 2018.

[39] L. Zhao, Z. Shang, L. Zhao, T. Zhang, Y. Y. Tang, Software
Defect Prediction via Cost-Sensitive Siamese Parallel
Fully-Connected Neural Networks, Neurocomputing, Vol.
352, pp. 64-74, August, 2019.

[40] L. Mou, G. Li, L. Zhang, T. Wang, Z. Jin, Convolutional
Neural Networks Over Tree Structures for Programming
Language Processing, Proceedings of the AAAI Conference
on Artificial Intelligence, Vol. 30, No. 1, pp. 1287-1293,
February 2016.

[41] H. Liang, Y. Yu, L. Jiang, Z. Xie, Seml: A Semantic LSTM
Model for Software Defect Prediction, IEEE Access, Vol. 7,
pp. 83812-83824, June, 2019.

[42] J. Li, P. He, J. Zhu, M. R. Lyu, Software Defect
Prediction via Convolutional Neural Network, 2017 IEEE
International Conference on Software Quality, Reliability
and Security (QRS), Prague, Czech Republic, 2017, pp.
318-328.

[43] H. K. Dam, T. Pham, S. W. Ng, T. Tran, J. Grundy, A.
Ghose, T. Kim, C. J. Kim, Lessons Learned from Using a
Deep Tree-Based Model for Software Defect Prediction in
Practice, 2019 IEEE/ACM 16th International Conference
on Mining Software Repositories (MSR), Montreal, QC,
Canada, 2019, pp. 46-57.

[44] Q. Liu, J. Xiang, B. Xu, D. Zhao, W. Hu, J. Wang, Aging-
Related Bugs Prediction via Convolutional Neural Network,
2020 7th International Conference on Dependable Systems
and Their Applications (DSA), Xi’an, China, 2020, pp. 90-
98.

[45] K. Shi, Y. Lu, J. Chang, Z. Wei, PathPair2Vec: An AST
Path Pair-Based Code Representation Method for Defect
Prediction, Journal of Computer Languages, Vol. 59,
Article No. 100979, August, 2020.

[46] H. Li, X. Li, X. Chen, X. Xie, Y. Mu, Z. Feng, Cross-
project defect prediction via ASTToken2Vec and BLSTM-
based neural network, 2019 International Joint Conference
on Neural Networks (IJCNN), Budapest, Hungary, 2019,
pp. 1-8.

[47] A. V. Phan, M. Le Nguyen, Convolutional neural networks
on assembly code for predicting software defects, 2017 21st
Asia Pacific Symposium on Intelligent and Evolutionary
Systems (IES), Hanoi, Vietnam, 2017, pp. 37-42.

[48] A. V. Phan, M. Le Nguyen, L. T. Bui, Convolutional neural
networks over control flow graphs for software defect
prediction, 2017 IEEE 29th International Conference on

Tools with Artificial Intelligence (ICTAI), Boston, MA,
USA, 2017, pp. 45-52.

[49] J. Chen, K. Hu, Y. Yu, Z. Chen, Q. Xuan, Y. Liu, V. Filkov,
Software visualization and deep transfer learning for
effective software defect prediction, Proceedings of the
ACM/IEEE 42nd International Conference on Software
Engineering, Seoul South Korea, 2020, pp. 578-589.

[50] G. Fan, X. Diao, H. Yu, K. Yang, L. Chen, Deep semantic
feature learning with embedded static metrics for software
defect prediction, 2019 26th Asia-Pacific Software
Engineering Conference (APSEC), Putrajaya, Malaysia,
2019, pp. 244-251.

[51] J. Lin, L. Lu, Semantic Feature Learning via Dual
Sequences for Defect Prediction, IEEE Access, Vol. 9,
13112-13124, January, 2021.

[52] S. Qiu, H. Xu, J. Deng, S. Jiang, L. Lu, Transfer
Convolutional Neural Network for Cross-Project Defect
Prediction, Applied Sciences, Vol. 9, No. 13, Article No.
2660, July, 2019.

[53] K. Shi, Y. Lu, G. Liu, Z. Wei, J. Chang, Mpt-Embedding:
An Unsupervised Representation Learning of Code for
Software Defect Prediction, Journal of Software: Evolution
and Process, Vol. 33, No. 4, Article No. e2330, April, 2021.

[54] H. Wang, W. Zhuang, X. Zhang, Software Defect Prediction
Based on Gated Hierarchical LSTMs, IEEE Transactions
on Reliability, Vol. 70, No. 2, pp. 711-727, June, 2021.

[55] T. Hoang, H. K. Dam, Y. Kamei, D. Lo, N. Ubayashi,
DeepJIT: An End-to-End Deep Learning Framework for
Just-in-Time Defect Prediction, 2019 IEEE/ACM 16th
International Conference on Mining Software Repositories
(MSR), Montreal, QC, Canada, 2019, pp. 34-45.

[56] J. Tian, Y. Tian, A Model Based on Program Slice and Deep
Learning for Software Defect Prediction, In 2020 29th
International Conference on Computer Communications
and Networks (ICCCN), Honolulu, HI, USA, 2020, pp. 1-6.

[57] T. Mikolov, K. Chen, G. Corrado, J. Dean, Efficient
Estimation of Word Representations in Vector Space,
September, 2013. https://arxiv.org/abs/1301.3781

[58] J. Nam, Survey on Software Defect Prediction, Technical
Report, 2014.

[59] A. G. Koru, H. Liu, An Investigation of the Effect of
Module Size on Defect Prediction Using Static Measures,
Proceedings of the 2005 Workshop on Predictor Models in
Software Engineering, St. Louis, Missouri, pp. 1-5.

[60] G. Calikli, A. Tosun, A. Bener, M. Celik, The Effect of
Granularity Level on Software Defect Prediction, 2009 24th
International Symposium on Computer and Information
Sciences, Guzelyurt, Northern Cyprus, 2009, pp. 531-536.

[61] Y. Kamei, E. Shihab, Defect Prediction: Accomplishments
and Future Challenges, 2016 IEEE 23rd International
Conference on Software Analysis, Evolution, and
Reengineering (SANER), Vol. 5, Osaka, Japan, 2016, pp.
33-45.

[62] C. Pan, M. Lu, B. Xu, H. Gao, An Improved CNN Model
for Within-Project Software Defect Prediction, Applied
Sciences, Vol. 9, No. 10, Article No. 2138, May, 2019.

[63] J. Liu, J. Ai, M. Lu, J. Wang, H. Shi, Semantic Feature
Learning for Software Defect Prediction from Source Code
and External Knowledge, Journal of Systems and Software,
Vol. 204, Article No. 111753, October, 2023.

[64] N. A. A. Khleel, K. Nehéz, A Novel Approach for Software
Defect Prediction Using CNN and GRU Based on SMOTE
Tomek Method, Journal of Intelligent Information Systems,
Vol. 60, No. 3, pp. 673-707, June, 2023.

[65] M. N. Uddin, B. Li, Z. Ali, P. Kefalas, I. Khan, I. Zada,
Software Defect Prediction Employing BiLSTM and

A Systematic Review of Learning-Based Software Defect Prediction 511

BERT-Based Semantic Feature, Soft Computing, Vol. 26,
No. 16, pp. 7877-7891, August, 2022.

[66] Y. Sun, X. Y. Jiang, F. Wu, J. Li, D. Xing, H. Chen, Y. Sun,
Adversarial Learning for Cross-Project Semi-Supervised
Defect Prediction, IEEE Access, Vol. 8, pp. 32674-32687,
February, 2020.

[67] L. Zhao, Z. Shang, L. Zhao, A. Qin, Y. Y. Tang, Siamese
Dense Neural Network for Software Defect Prediction
with Small Data, IEEE Access, Vol. 7, pp. 7663-7677,
December, 2018.

[68] J. Xu, F. Wang, J. Ai, Defect Prediction with Semantics and
Context Features of Codes Based on Graph Representation
Learning, IEEE Transactions on Reliability, Vol. 70, No. 2,
pp. 613-625, June, 2021.

[69] J. Liu, J. Lei, Z. Liao, J. He, Software Defect Prediction
Model Based on Improved Twin Support Vector Machines,
Soft Computing, Vol. 27, No. 21, pp. 16101-16110,
November, 2023.

[70] S. Albahli, G. N. A. H. Yar, Defect Prediction Using Akaike
and Bayesian Information Criterion, Computer Systems
Science and Engineering, Vol. 41, No. 3, pp. 1117-1127,
November, 2022.

[71] S . Goyal , Handl ing Class- Imbalance wi th KNN
(Neighbourhood) Under-sampling for Software Defect
Prediction, Artificial Intelligence Review, Vol. 55, No. 3,
pp. 2023-2064, March, 2022.

[72] A. Khalid, G. Badshah, N. Ayub, M. Shiraz, M. Ghouse,
Software Defect Prediction Analysis Using Machine
Learning Techniques, Sustainability, Vol. 15, No. 6, Article
No. 5517, March, 2023.

[73] S. Goyal, Genetic Evolution-Based Feature Selection
for Software Defect Prediction Using SVMs, Journal of
Circuits, Systems and Computers, Vol. 31, No. 11, Article
No. 2250161, July, 2022.

[74] J . M . G o n z á l e z - B a r a h o n a , G . R o b l e s , O n t h e
Reproducibility of Empirical Software Engineering Studies
Based on Data Retrieved from Development Repositories,
Empirical Software Engineering, Vol. 17, No. 1-2, pp. 75-
89, February, 2012.

[75] W. Liu, B. Wang, W. Wang, Deep Learning Software Defect
Prediction Methods for Cloud Environments Research,
Scientific Programming, Vol. 2021, pp. 1-11. 2021.

[76] T. Lewowski, L. Madeyski, How Far Are We from
Reproducible Research on Code Smell Detection? A
Systematic Literature Review, Information and Software
Technology, Vol. 144, Article No. 106783, April, 2022.

[77] C. Liu, C. Gao, X. Xia, D. Lo, J. Grundy, X. Yang, On
the Reproducibility and Replicability of Deep Learning
in Software Engineering, ACM Transactions on Software
Engineering and Methodology (TOSEM), Vol. 31, No. 1,
pp. 1-46, January, 2022.

Biographies

Changjian Li is a graduate student in
computer science at China University
of Geosciences (Wuhan). His research
interests include intelligent algorithms
and software defect prediction.

Dongcheng Li earned his Ph.D. and
M.S. degrees in Software Engineering
f rom the Unive r s i ty o f Texas a t
Dallas and holds a B.S. in Computer
Science from the University of Illinois,
Springfield. Currently, he serves as an
Assistant Professor in the Department
of Computer Science at California State

Polytechnic University, Humboldt. His research is centered
on search-based software engineering, test generation,
program repair, and intelligent optimization algorithms.

Hui Li is a professor at China University
of Geosciences (Wuhan). Her main
research direction is to use intelligent
computing theories and methods to
solve various complex problems in the
aerospace field.

W. Eric Wong received his Ph.D.
in computer science from Purdue
Unive r s i ty. He was a t Te lcord ia
Technologies (formerly, Bellcore)
as a Senior Research Scientist and
a Project Manager, where he was in
charge of dependable telecom software
development. He is currently a Full

Professor and the Founding Director of the Advanced
Research Center for Software Testing and Quality
Assurance, Computer Science Department, The University
of Texas at Dallas. He also has an appointment as a Guest
Researcher with the National Institute of Standards and
Technology (NIST). His research focuses on software
testing, debugging, risk analysis/metrics, safety, and
reliability. In 2014, he was named as the IEEE Reliability
Society Engineer of the Year.

Man Zhao is currently an associate
professor a t China Univers i ty of
Geosc iences (Wuhan) . Her main
research directions are computer science
and technology, intelligent computing
and artificial intelligence.

