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Abstract

This survey paper on Learning-Based Software Defect 
Prediction reviews recent advancements in applying 
machine learning (ML) and deep learning (DL) techniques 
for software defect prediction (SDP). It covers topics 
including application scenarios, types of ML/DL, datasets, 
source code representation, prediction granularity, 
evaluation metrics, validation methods, and challenges 
with existing solutions. The paper highlights the increased 
interest in SDP due to the growing complexity of software 
and presents a detailed analysis of various ML and DL 
approaches, their capabilities, and the challenges they 
present in the context of SDP. It also discusses the evolving 
nature of these technologies in SDP and their impact on 
developing reliable and maintainable software systems.

Keywords: Software defect prediction, Deep learning, 
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1  Introduction

Studies have shown that software defects can cause 
dramatic failures with severe consequences [1-2]. Thus, 
software defect prediction has become the cornerstone 
of quality assurance in the Software Development Life 
Cycle (SDLC) [3]. With the growing complexity and size 
of software systems, conventional quality assurance and 
defect detection techniques are proving to be insufficient. 
Early identification of software defects not only makes the 
development process more efficient but also significantly 
reduces the cost associated with post-deployment fixes 
[4]. The need for this has greatly increased interest in 
employing machine learning (ML) and deep learning (DL) 
technologies for software defect prediction (SDP) [5].

Integrating ML and DL into SDP marks a shift from 
manual inspection to automated, intelligent prediction 
models. These models undergo training using historical 
data on defects and the static attributes of code from prior 
versions of software, aiming to predict modules with 
potential defect tendencies. Early application of these 
models in the SDLC helps prioritize resources and focus 
on risky modules.

Over the past two decades, there has been a transition 

from traditional ML to more complex DL methods in SDP. 
DL, a subset of ML, automatically identifies necessary 
features from raw data, which is beneficial for detecting 
complex defect patterns that traditional methods miss. 
In SDP, this is especially beneficial because the intricate 
patterns and relationships that could result in defects are 
often too complicated for traditional algorithms to discern.

Despite DL’s advancements in SDP, challenges remain, 
including data insufficiency, model interpretability, 
computational demands, and the need for extensive 
hyperparameter tuning [1]. Moreover, the computational 
requirements for training deep architectures and the 
extensive adjustment of hyperparameters present major 
hurdles.

This review synthesizes current knowledge on ML 
and DL in SDP, highlighting their capabilities, challenges, 
and future directions. It aims to provide insights into their 
impact and how they can enhance software reliability and 
maintainability.

The following sections of this paper are structured in 
the following manner: Section 2 presents the preliminaries 
of the study. Section 3 summarizes related reviews. 
Section 4 details this study’s focus on learning-based SDP, 
covering datasets, code representations, prediction levels, 
methods, metrics, validation approaches, challenges, 
and solutions. The final section outlines conclusions and 
suggests directions for future research.

2  Background

2.1 Software Defect Prediction
Software Defect Prediction represents a critical field 

within software engineering, focused on the proactive 
detection of potential defects in software systems. This 
predictive approach plays a vital role in enhancing 
software quality by pinpointing areas where errors might 
occur, which could evolve into more serious issues during 
testing or later stages of deployment. 

At its core, SDP is about predicting software segments 
likely to harbor faults, thus enabling early remediation. 
The nature of this task is inherently complex, requiring 
high precision in predictions to be genuinely effective. 
Throughout the years, numerous methods and techniques 
have been investigated to improve the precision and 
efficiency of SDP models. Common strategies in SDP 
include the application of ML algorithms, which have 
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evolved to include recent DL technologies. These 
advanced computational methods demonstrate the potential 
to develop robust SDP models by learning from historical 
defect data and identifying complex patterns that might not 
be evidently discernable through traditional analysis.

The general workflow for constructing an SDP model 
can be summarized into several key steps, as shown in 
Figure 1:

Data collection
& pre-process

Feature extraction

(optional)
Dataset balancing

SDP model training

Defects prediction

Evaluate 
performance of the 

SDP model

Figure 1. General steps for building a SDP model 

Beyond the diverse choices in the aforementioned 
steps, SDP research can be classified by its application 
scenarios. Traditionally, literature identifies two primary 
SDP scenarios: Within-Project Defect Prediction (WPDP) 
and Cross-Project Defect Prediction (CPDP). In WPDP, 
a project’s historical data (such as different versions) is 
used to predict defective parts [6], meaning WPDP focuses 
on predicting faults in the same software project where 
training occurs [7]. Therefore, both the training and test 
sets originate from the same project. In contrast, CPDP 
utilizes data from various projects (source projects) to 
train the SDP model, which is subsequently employed to 
predict defects in a different project (target project) [8]. As 
a derivative of transfer learning, this method is particularly 
useful when there is no labeled data to train on in the target 
project. In this approach, the primary challenge is reducing 
the disparity between the source and target projects in 
terms of feature distribution.

One of the principal challenges in CPDP is the 
requirement for all projects within the CPDP framework to 

adhere to identical metric standards. As a counterbalance, 
heterogeneous defect prediction (HDP) helps predict 
defects in projects with different metrics by mapping 
source and target projects’ data into a unified frame of 
reference [9-10].

There are also other widely used approaches beyond 
these SDP contexts, including JIT-SDP [11], focusing on 
the prediction of defects at the level of software changes 
[12]. By integrating JIT-SDP with Change-Level Defect 
Prediction, developers can identify and fix defects faster, 
preserving software quality. It is particularly significant in 
SDP because it offers timely assistance to developers at a 
more detailed level (change level). It eliminates the need 
for lengthy code reviews and extensive testing with JIT-
SDP [11, 13]. Finally, an emerging SDP methodology is 
CVDP, which analyzes failure data from previous versions 
of the same project in order to forecast defects in the 
current version [14].

2.2 ML in SDP
ML is crucial for Software Defect Prediction, 

automating defect identification and prediction. In SDP, 
ML is categorized into supervised and unsupervised 
learning [2]. By analyzing input-output relationships, 
supervised learning predicts defects. Unsupervised learning 
identifies potential defects by analyzing data patterns.

Supervised learning, a common approach in SDP, 
uses labeled data to train algorithms for reliable category 
prediction [15]. It predicts unseen instances based on 
attributes, distinguishing between classification and 
regression problems based on the label type. In SDP, 
software instances are data instances with features as 
attributes and defects as output categories to predict 
defective modules. Addressing category imbalance with 
data sampling improves prediction accuracy. Early defect 
detection using ML enhances software reliability and 
quality.

2.3 DL in SDP
Deep learning uses layered models to extract complex 

data representations, which apply to tasks like regression, 
clustering, classification, ranking, and synthesis. The steps 
for software defect prediction using deep learning are 
illustrated in Figure 2.

Deep Neural Networks (DNNs) have three types 
of layers: input, hidden, and output. The input layer 
introduces data, hidden layers process it, and the output 
layer produces results like classification or regression. 
Layers are usually fully connected, linking every neuron to 
the next layer’s neurons.

Within the scope of defect prediction, researchers are 
now utilizing various DNN architectures and learning 
techniques, including Convolutional Neural Networks 
(CNN), Recurrent Neural Networks (RNN), Deep 
Autoencoders (DAE), Siamese Neural Networks (SNN), 
and Long Short-Term Memory (LSTM) networks. These 
methods are increasingly being used for predicting 
software defects.
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3  Related Works

In recent research in the field of Software Engineering 
(SE), the application of Machine Learning models has 
become particularly important. Derived from diverse 
data formats in SE, these models utilize resources like 
source code, requirement specifications, and test cases. 
Specifically, Deep Learning techniques have garnered 
extensive attention for their applications in Software 
Defect Prediction. Against this backdrop, this paper seeks 
to investigate the application and efficacy of ML and DL in 
addressing SE issues, particularly SDP.

Software Defect Projects

Feature Engineering

Train

Validation

Test

Model Training

CNN

RNN

MLP

DBN

...

GAN

Prediction Model

Defective Non-Defective

Figure 2. DL-based SDP steps

The SDP and ML methods were comprehensively 
reviewed by Catal and Diri [16] in their analysis of 74 
studies published between 1990 and 2007. Compared to 
previous years, the number of principal studies increased 
significantly in 2007. According to Hall et al. [17], 36 
studies released between Jan. 2000 and Dec. 2010 were 
analyzed quantitatively and qualitatively.

Malhotra [18] reviewed 64 studies spanning from 1991 
to 2013 to explore the application of ML in SDP. Son et al.  
[19] carried out a systematic mapping study of 156 research 
papers, examining the use of ML and DL on SDP. DL’s use 
in predicting software quality was reviewed by Malhotra 
et al. [20]. Pandey et al. [21] published their results in 
their systematic review of the application of ML and DL 
on SDP. Giray et al. [22] published a review focused on 
the application of DL in SDP. Sharma et al. [23] examined 
the use of integrated machine learning in software defect 
prediction from 2018 to 2021. Nevendra and Singh [24] 
delved into the deep learning techniques used over the 
past six years and conducted comparative research on 

software defect prediction at both file and change levels. 
Prabha and Shivakumar [25] investigated various ML-
based SDP techniques in industrial applications and 
proposed corresponding hybrid approaches. Matloob 
[26] specifically studied supervised machine learning 
techniques aimed at improving performance and reducing 
costs.

This study differs from related research in the 
following ways: (1) it comprehensively focuses on the 
latest applications of DL and ML in SDP in recent years; 
(2) it delves into multiple aspects; (3) it covers a wide 
range of literature, including 112 main studies published 
up to mid-2023; (4) it employs a systematic review on 
research methods.

4  Discussion

4.1 Paper Collection Methodology and Result
We performed precise keyword searches in databases 

like Google Scholar, DBLP, arXiv, and IEEE Xplore to 
gather high-quality sources on learning-based software 
defect prediction. After screening over 50 searches and 300 
papers, we selected 112 papers that reflect the high quality 
and current state of this technology.

Figure 3. Learning-based SDP Publications during 2015-
2023

Figure 3 shows the publication trend of the 112 high-
quality papers we collected, with solid dots indicating 
annual publications and dashed lines showing trends. Few 
papers were published before 2018 due to the limited 
use of ML and DL. From 2018 to 2022, research in this 
area surged. The data from 2023 is insufficient for trend 
analysis.

4.2 Training and Testing Dataset
The datasets utilized in each study were extracted and 

are enumerated in Table 1, with most being developed in 
programming languages like Java, C, and C++. The most 
frequently used dataset is from the PROMISE repository 
[27], which is a dataset developed in Java language. 
Some studies, such as Huang et al. [28] used datasets for 
Android mobile applications developed in Java, Kotlin, 
JavaScript, and C++, like Android Firewall, Android SDK, 
etc. Dong et al. [29] concentrated on forecasting errors in 
Android binary executables, commonly referred to as ‘apk’. 
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They sourced Android projects from GitHub, including 
Wikipedia and chess applications, and built datasets for 
defect prediction. The experimental methods developed 
by Xu et al. [30] and Zhao et al. [31-32] have also been 
applied to Android projects in developing and evaluating 
error prediction models.

Table 1. Data sets applied in 10 more studies

Project Nums Programming language
camel 57 Java
xalan 54 Java
xerces 50 Java

poi 49 Java
log4j 46 Java

lucene 45 Java
synapse 45 Java

jedit 44 Java
ant 40 Java
ivy 33 Java

velocity 22 Java
pc1 22 C
cm1 20 C
kc1 20 C++

eclipse jdt 19 Java
pc3 18 C
pc4 18 C
jm1 18 C
mw1 17 C
kc2 15 C++
mc1 14 C++
pc2 12 C
mc2 12 C

4.3 Representation of Source Code
In contrast to source code, DL algorithms operate on 

numerical vectors. In order to represent source code, we 
need to transform it into a format that can be analyzed 
by DL algorithms. This conversion process must aim to 
minimize information loss during the transformation. 
Figure 7 shows the methods of source code representation 
adopted in our pool of major studies. The representation 
techniques in SDP are heavily influenced by a variety 
of metrics, including software structure and size, as 
well as product and process metrics. 40 studies utilized 
intermediate representations (some involving multiple 
types), such as AST, assembly code, CFGs, PDGs, DFGs, 
and images, to form numerical vectors processable by 
DL algorithms. In 8 studies, metrics were integrated 
with intermediate representations. Two studies directly 
converted source code into numerical vectors.

67 studies employed a set of metrics for representing 
source code. Xu et al. [33] utilized the CKJM tool [34] 
to extract software sizes and fundamental metrics from 
the bytecode for generated Java documents in their 
investigation. These metrics include the number of 
methods per class, the level of connectivity among object 
classes, as well as McCabe’s cyclomatic complexities. 

Characteristics of processes or changes, derived from 
the change history of software projects, act as indicators 
in defect prediction [35]. For example, Yang et al. [36] 
used change metrics like the number of modified files, 
the count of developers modifying these files, and the 
lines of code added or removed, for JIT-DP. Ardimento 
et al. [37] employed many measures, such as submit rate, 
developer experience, authored commits, and the average 
interval among contributions, to describe the method of 
development. Another metric type used in defect prediction 
is product metrics, which describe the quality of the source 
code’s internal structure. These metrics include the number 
of inherited properties, the width of the inheritance tree, 
the count of methods, and the quantity of methods that 
are static. Some researchers, including Tong et al. [38] 
and Zhao et al. [39], standardized metric values prior to 
creating numerical vectors.

The Abstract Syntax Tree (AST) represents the 
abstract syntax framework of source-code as a tree (Mou 
et al. [40]). Thirty-eight studies employed AST as an 
intermediate representation to develop numerical vectors. 
Liang et al. [41] converted source code into AST and 
generated token sequences by extracting tokens from AST 
nodes. Chen et al. [8] utilized a streamlined version of 
Abstract Syntax Tree (AST), where they disregarded node 
types that were not relevant to the project and excluded 
project-specific function and parameter names. Researchers 
like Li et al. [42], Dam et al. [43], and Liu et al. [44] 
utilized word embeddings to derive numerical vectors from 
ASTs. Shi et al. [45] used a source code representation 
method based on AST path pairs, PathPair2Vec, to build 
embedding vectors.

Li et al. [46] modeled and analyzed the relationships 
between AST paths of different methods using PDG and 
DFG. While buggy paths in the AST represent the local 
context of buggy code, the global context is depicted 
through the relationships between buggy methods, 
illustrated by program and data flow dependencies. Phan 
and Nguyen [47] favored using assembly instruction 
sequences rather than ASTs, arguing that they more 
effectively simulate program behavior because they are 
closer to machine code and better reflect program structure. 
Phan et al. [48] built control flow graphs from assembly 
instructions derived from compiled source code. According 
to Chen et al. [49], source code can be visualized as images 
and defects are predicted using an image classification 
model. An image was then generated from this vector for 
classification by a pre-trained ImageNet AlexNet model. 
Eight studies integrated inputs based on ASTs with a 
collection of metrics. Fan et al. [50], Li et al. [42], Lin and 
Lu [51], Qiu et al. [52], Shi et al. [53], and Wang et al. [54] 
combined word embeddings from ASTs with metrics.

In two studies, source code was directly transformed 
into numerical vectors without using intermediate 
representations. Hoang [55] et al. employed NLTK to 
parse commit messages and code changes, representing 
each word in the commit information and code changes as 
n-dimensional vectors. Tian and Tian [56] used Word2vec 
(Mikolov et al. [57]) to convert source code into fixed-
length vectors.
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4.4 Granularity Level of Prediction
Predicting software defects at various granularity 

levels is the goal of constructing machine learning/
deep learning models (Nam et al. [58]), and these 
levels include file, module, change, category, function, 
program, and statement. Previous studies have shown 
that the granularity level of prediction not only affects the 
predictive performance of the model but also impacts the 
effort required to locate defects (Koru and Liu [59]; Calikli 
et al. [60]). There were 41 studies dedicated to file-level 
defect prediction models, and 33 studies focused on the 
module level. 13 studies were concerned with the change 
level. Four studies dealt with category-level predictions 
in software systems created with object-oriented 
programming languages. Three studies each targeted finer-
grained predictions at the method or line level (Refer to 
Figure 4).

DL has become increasingly popular for finer-grained 
SDP over the last few years, in keeping with Kamei and 
Shihab’s observations [61]. Since 2019, ten studies (two 
in 2019, four in 2020, three in 2021, one in 2022) have 
reported their experimental results in category, statement, 
and program-level predictions. The application of DL 
algorithms to change-level defect prediction has also been 
published by researchers since 2018. Over the last four 
years, there have been 12 follow-up studies: three in 2020, 
four in both 2019 and 2021, and one in 2022.

Figure 4. Distribution of the granularity level of prediction

4.5 DL Approaches in SDP
As shown in Figure 5, the most used deep learning 

model in the SDP field is the Convolutional Neural 
Network (CNN) model. Besides CNN, other widely used 
deep learning models in SDP are LSTM/RNN, MLP, and 
Deep Belief Networks (DBN).

As a classic model in the deep learning field, 
Convolutional Neural Networks perform exceptionally 
well in SDP, capturing local patterns in high-dimensional 
data (Li et al. [42]; Pan et al. [62]) and demonstrating 
good scalability when combined with structures like 
Transformers (Liu et al. [63]) or GRU (Khleel et al. [64]). 
RNN and LSTM architectures are also chosen by many 
researchers due to their ability to capture long-range 
dependencies (Uddin et al. [65]). DBN is used to learn 
representations that can reconstruct training data with high 
probability.

Figure 5. Distribution of the DL approaches

Other models such as GAN and GNN are less 
frequently used in the SDP field. Researchers choose these 
models for specific purposes, such as using GAN to create 
synthetic data (Sun et al. [66]), using Siamese networks for 
limited data (Zhao et al. [67]), and capturing source code 
ASTs in GNN (Xu et al. [68]).

4.6 ML Approaches in SDP
As shown in Figure 6, the most used machine learning 

model in the SDP field is the SVM, followed by ANN, 
DT, and NB models. SVM is a widely used classification 
technique in machine learning, adept at handling high-
dimensional data and complex nonlinear relationships, and 
performs particularly well on small sample datasets. (Liu 
et al. [69]) used an improved dual support vector machine 
technique, yielding excellent results compared to other 
linear and nonlinear techniques. ANN, which simulates 
the neuronal connections of the human brain with multiple 
layers of neurons, can construct complex nonlinear 
models, hence its widespread adoption by researchers 
(Albahli et al. [70]; Goyal et al. [71]). Decision tree 
models are generally used in classification scenarios where 
data features have a clear physical meaning, while Naive 
Bayes is often chosen by researchers for its simplicity. 
Notably, the integration of multiple machine learning 
algorithms has become increasingly common in recent 
technologies, such as Khalid et al. [72] combining particle 
swarm optimization for model enhancement, and Goyal et 
al. [73] proposing a feature selection method using genetic 
evolutionary technology to enhance the accuracy of SVM-
based software defect prediction classifiers by identifying 
the optimal feature subsets.

Figure 6. Distribution of the ML approaches
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Methods like evolutionary algorithms, rule-based 
reasoning, and ensemble techniques are not as frequently 
used in SDP, yet notably, there has been a growing trend 
among researchers to employ random forest algorithms for 
SDP studies, exemplified by Zheng et al [13]. 

4.7 Evaluation Metrics and Validation Methods
Researchers typically use various evaluation metrics 

and validation methods to assess defect prediction models. 
Figure 7 shows the 11 most commonly used evaluation 
metrics in the papers we collected.

Accuracy and error rate are key metrics for evaluating 
classification models. Accuracy ranges from 0 to 1, 
with 0 and 1 indicating completely erroneous or correct 
predictions, respectively. The error rate is the inverse of 
accuracy, indicating the percentage of flaws in predictions.

TP TNAccuracy
TP TN FP FN

+
=

+ + +
                  (1)

 1Error Rate Accuracy= −                        (2)

Precision, the percentage of classes correctly identified 
as defective out of those classified as defective, measures 
our effectiveness in detecting defects. Recall is the ratio 
of actual defects in the categories predicted as defective, 
indicating the extent to which we might overlook defective 
categories.

TPPrecision
TP FP

=
+

                           (3)
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             (4)

The F-measure, which is the harmonic mean of 
precision and recall, ranges from 0 to 1, with higher values 
signifying better performance. G-measure combines the 
true positive and true negative rates. MCC (Matthews 
Correlation Coefficient) ranges from -1 to 1, with values 
of 1, 0, and -1 indicating perfect, random, and incorrect 
predictions, respectively.
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68% of researchers used the F1 score to assess balance 
between precision and recall; 55 studies used recall, 
assessing defect prediction; 48 used precision to reflect 

correctly predicted defects. AUC was used in 44 studies 
to evaluate classification ability; 38 studies used accuracy, 
suitable for imbalanced datasets. Additionally, 23 studies 
used MCC to address class imbalance. Effort-aware 
metrics in software engineering, used in 13 studies, assess 
defect prediction considering the cost of identifying and 
fixing defects, emphasizing both accuracy and practical 
implications in resource allocation.

Additionally, 11 studies used G-measure to balance 
detection and false positive rates; 9 used ROC curve for 
trade-off analysis between true and false positives; 5 used 
mean squared error to assess average error and accurately 
predicted non-defects; 2 used AUC-PR curve to evaluate 
precision-recall trade-offs.

Regarding validation methods, 65 studies used the 
holdout method to divide the original dataset into training 
and testing sets, while 47 studies preferred the cross-
validation method.

Figure 7. Distribution of the evaluation metrics

4.8 Research Reproducibility
A key characteristic of scientific research is the 

reproducibility of its results (González-Barahona & Robles 
[74]). For a study to be considered reproducible, other 
researchers should be able to replicate the experimental 
results reported in the study using the tools (including 
source code and datasets) provided by the original authors 
in a similar experimental setting (Liu et al. [75]). Several 
academics have highlighted the reproducibility issue 
within the software engineering domain (Lewowski 
& Madeyski [76]). Recently, Liu et al. [77] reviewed 
studies on the application of deep learning models 
to software engineering challenges, including defect 
prediction and code clone detection. They discovered 
that over half of the studies did not provide high-quality 
source code or comprehensive datasets, which are 
essential for reproducing their deep learning models. 
Consequently, we assessed whether the primary studies 
had published packages that support reproducibility, using 
the categorization method employed by Lewowski and 
Madeyski [76].

Figure 8 shows the existence of reproducibility 
packages in studies of our researched paper collection. 
It was observed that 54 articles (accounting for 48% of 
studies) made no reference to any kind of reproducibility 
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package. Four studies claimed to provide these packages, 
but the provided links were either missing or inaccessible. 
Additionally, 35 studies furnished solely data, and two 
provided exclusively scripts for replication. Merely 17 
publications (comprising 15% of studies) contained 
comprehensive data and scripts. Moreover, we did 
not observe a marked increase in the trend of sharing 
reproducibility packages.

Figure 8. Distribution of the reproducibility packages

4.9 Challenges and Solutions
The goals of this section are to summarize what 

has been mentioned in the collected papers regarding 
challenges and solutions. We focus on the specific 
challenges of using deep learning or machine learning 
models in the SDP phase of software development, 
including new issues that have not been extensively 
explored in this field. We categorize these challenges into 
three main types: model, data, and universal challenges, 
and summarize the solutions to these problems found in 
existing research.
4.9.1 Model

• Overfitting and performance decline simulation: 
Overfitting and performance decline are potential 
challenges. Employing appropriate techniques (such as 
dropout regularization) and updating models based on user 
feedback can address these issues.

• Semantic features and feature redundancy: Traditional 
features may be insensitive to the semantics of the program 
and have feature redundancy. Solutions include using a 
richer feature set, such as code comments, embeddings, 
AST, and structural features, as well as feature selection 
using deep learners and meta-heuristic methods.

• Manual feature selection and context dependency: 
Manual feature selection might lead to bias, and different 
feature sets perform differently in various contexts. Self-
attention mechanisms and specific LSTM architectures can 
optimize these issues.

• Random parameter initialization and fixed-length 
feature vectors: Randomly chosen parameters might 
reduce performance, while traditional classification 
algorithms assume all feature vectors are of equal length. 
Meta-heuristic methods and the use of latent features with 
variable lengths can solve these problems.

• Sequence network sensitivity to hyperparameters: 

Sequence networks fail to fully capture the tree structure 
and semantic dependencies of ASTs, and different 
hyperparameter settings can lead to performance 
variations. Non-sequential networks like Bidirectional 
LSTM and HNN, along with the application of meta-
heuristic methods, can tackle these challenges.
4.9.2 Data

• Heterogeneous data and dataset size limitations: The 
data utilized in SDP is frequently highly heterogeneous 
and limited in size. Solutions include adopting various 
deep learning architectures to adapt to data differences, and 
introducing standardization and transformation steps in 
data preprocessing and feature extraction. Also, expanding 
dataset sizes to enhance result accuracy is a future 
challenge.

• Insufficient training data and data imbalance: 
Restricted training data and the scarcity of software defects 
lead to data imbalance, affecting model performance. 
Potential solutions include employing deep learning 
architectures that can learn from limited data and 
implementing data balancing techniques within the models.

• Formation of training data and incomplete code 
fragments: Training data may contain invalid defect 
instances, and dealing with incomplete code fragments is 
challenging. These issues can be addressed by manually 
verifying training data and using heuristic methods to 
extract information from incomplete code.
4.9.3 Deep Learning

• Data Dependency: Deep learning algorithms 
gradually learn through datasets. Employing extensive 
datasets guarantees that learning algorithms produce 
expected outcomes. A powerful learning algorithm 
requires adjustment of many parameters, and fine-tuning 
key parameters requires a large amount of data. However, 
artificial neural networks demand substantial data volumes 
for effective learning. Furthermore, most datasets in this 
survey are relatively small because manual labeling, 
external sources, and delegated classification are required.

• Hyperparameter Optimization: Hyperparameters refer 
to the parameters of a learning algorithm that are set prior 
to the initiation of the learning process. Slight alterations 
in the values of these parameters can significantly 
enhance the performance of the learning model. However, 
identifying the optimal hyperparameters poses a challenge, 
as it tends to extend the duration of the training process 
and necessitates considerable training resources and human 
expertise.

• Requires High-Performance Configuration: To 
improve the performance of deep learning algorithms, a 
large number of samples is necessary. However, efficient 
handling of real datasets also demands high processing 
capabilities. It is possible for data scientists to achieve 
significant performance gains in shorter timeframes by 
using multi-core, high-performance GPUs and similar 
processing units. As a result, these units are expensive and 
consume a lot of electricity.

• Blackbox: Our models and the data that feed 
neural networks are well understood, but we do not 
fully understand how this data is processed. Theoretical 
comprehension of how specific results are derived remains 
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elusive. Neural networks essentially function as black 
boxes, making it challenging for scientists to discern how 
conclusions are reached. Table 2 lists software packages 
that offer deep learning implementations, with different 
columns representing application names, licenses, 
supported platforms, and provided interface information.

Table 2. Opensource software that provide DL imple-
mentations

Name License Platform Interface
BigDL Apache2.0 Spark Scala, Python
Caffe BSD Linux, 

MacOS, 
Windows

Python, Matlab, 
C++

DL4j Apache2.0 Linux, 
MacOS, 
Windows, 
Android

Java, Scala, 
Clojure, Python, 
Kotlin

Dlib Boost 
Software 
License

Cross-
platform

C++

Intel DAAL Apache2.0 Linux, 
MacOS, 
Windows 
with Intel 
CPU

C++, Python, 
Java

Keras MIT license Linux, 
MacOS, 
Windows

Python, R

Microsoft 
CNTK

MIT license Windows, 
Linux, 
MacOS with 
docker

Python, C++, 
BrainScript, 
Shell

Apache 
MXNet

Apache2.0 Linux, 
MacOS, 
Windows, 
Android, 
AWS, IOS

C++, Python, 
Julia, Matlab, 
JavaScript, Go, 
R, Scala
Prel, Clojure

OpenNN GNU LGPL Cross-
platform

C++

PlaidML AGPL Linux, 
MacOS, 
Windows

Python, C++

Pytorch BSD Linux, 
MacOS, 
Windows

Python, C++

Apache 
SINGA

Apache2.0 Linux, 
MacOS, 
Windows

Python, C++, 
Java

TensorFlow Apache2.0 Linux, 
MacOS, 
Windows, 
Android

Python, C/C++, 
Java, Go,
JavaScript,
R, Julia,
Swift

Theano BSD Cross-
platform

Python

Torch BSD Linux, 
MacOS, 
Windows, 
Android, 
IOS

Lua, LuaJIT, 
C/C++

4.9.4 Universal
• Lack of utilizing defect-related information beyond 

code: Current methods do not fully leverage defect-related 
information beyond code, such as comments and commit 
details. Exploring this area presents a future challenge.

• Software quality and security: Issues in software 
qual i ty  and secur i ty  pose s ignif icant  threats  to 
organizations. Timely prediction and identification of 
software defects are crucial for delivering reliable software 
products.

• Effectiveness of feature representation and class 
imbalance issues: Effectively representing software defect 
features is challenging, and class imbalance issues within 
datasets need to be addressed.

• Experimental dataset selection: Choosing appropriate 
datasets, considering factors like data imbalance, size, 
and defect rates, is crucial to ensure the generality of 
experimental results.

5  Conclusion

Software Defect Prediction utilizes a variety of 
techniques to automatically identify defects in software, 
which aids in reducing the effort required to rectify these 
defects. In today’s context of continually increasing 
software quantities and relatively limited quality assurance 
resources, this technology is particularly important. 
Especially in recent years, Software Defect Prediction 
based on learning algorithms has received considerable 
attention. Our study involved an extensive literature 
review of SDP methods employing machine learning 
and deep learning technologies, aiming to capture the 
latest advancements in these areas. These studies include 
both quantitative and qualitative analyses, covering 
various aspects of SDP: application scenarios, types of 
machine learning/deep learning, datasets, source code 
representation, granularity of prediction, evaluation 
metrics, validation methods, as well as proposed solutions 
and challenges.

The findings reveal an uptick in SDP research recently, 
incorporating various techniques, datasets, and validation 
methods. We have compiled insights on data, models, 
and the prevalent challenges in SDP, summarizing some 
solutions proposed by the researchers. These research 
outcomes are helpful for newcomers to the SDP field, as 
they help in understanding the scope of different methods. 
For experienced researchers, they assist in focusing their 
research directions for the coming years.
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