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Abstract

Event-based vision sensors efficiently capture changes 
in motion in a scene in real time. Unlike traditional camera 
principles, event cameras only report pixel-level brightness 
changes with low latency, low redundancy, and high 
dynamic range. Therefore, cameras have been widely used 
in image processing, computer vision, state estimation 
and other research directions. This paper explains the 
basic principles and structure of event cameras, compares 
three typical event cameras, and analyzes their respective 
advantages and application scenarios. Secondly, this 
paper reviews the application of event cameras in the 
research directions of event stream noise reduction, feature 
extraction, object detection, depth estimation, visual 
SLAM, optical flow estimation and multi-sensor fusion, 
summarizes the advantages and disadvantages of event 
cameras, and evaluates and prospects its development 
prospects in different application scenarios. Finally, its 
future development trend is discussed.

Keywords: Event camera, High-speed target recognition, 
Event stream processing

1  Introduction

With the development of object detection technology, 
the requirements for camera performance in different 
fields are also increasing. A traditional camera is a frame-
based vision sensor. The principle is to transmit all the 
information in the scene back at the same moment by 
presetting a certain exposure time. In practical applications, 
traditional cameras still have the following shortcomings. 
1. The camera output is a fixed-time frame sequence, 
which cannot detect the change of the target in the adjacent 
image frame. This characteristic results in the loss of a lot 
of inter-frame information. The problem of information 
loss is particularly serious when detecting some high-speed 
moving objects [1]. 2. The traditional camera is to obtain 
all the information in the scene at a certain moment and 
then outputs the image. When studying the moving object, 
we only focus on the moving object. Repeated feedback of 
the entire image information will cause a large amount of 

background information redundancy and become a burden 
of information processing [1]. 3. The traditional camera 
adopts synchronous exposure technology to record the 
light intensity information of each pixel in the scene. When 
facing a scene with too high or too low light intensity, the 
traditional camera will be overexposed or underexposed 
due to the characteristics of directly obtaining the absolute 
value of the light intensity. Therefore, it will not be able to 
reflect the information of the target object well [1].

Faced with the shortcomings of traditional cameras 
in the above situations, people wanted to invent a new 
camera to meet the needs of special scenarios. In the early 
20th century, researchers found through biological vision 
that the way the human eye obtains information is different 
from the synchronous recording and transmission of data 
by traditional cameras. The human eye obtains scene 
information and asynchronously transmits it back to the 
brain [2] and it pays more attention to the moving objects 
in the picture. Based on such biological phenomena, 
researchers invent an event-based vision sensor. This 
event-based vision sensor independently detects changes 
in light intensity per pixel and records and compares 
them logarithmically, and this dynamic vision sensor can 
accomplish some tasks that standard frame-based cameras 
cannot do, such as high-speed motion estimation, high 
dynamic range mapping, and so on. Event cameras are 
rapidly developing in various fields, including embedded 
event cameras (eDVS), inertial event cameras DAVIS240 
[3], high-speed event cameras using the G-AER protocol 
DVS-Gen [4], optical flow event cameras CeleX-4/5 [5-
6], color event cameras SDAVIS192 and ColorDAVIS346 
[7-8], and superspeed full-event cameras that mimic the 
fovea of the retina SpikeOne [9] and others. The new event 
camera is constantly improving its working performance 
and improving the application scenarios. The new event 
camera can more fully simulate the effect of the biological 
retina in the foreseeable future.

This paper first explains the basic principle and 
structure of event cameras, and compares the application 
scenarios of different event cameras. Secondly, this paper 
introduces the development and application of event 
cameras in various research directions such as event stream 
noise reduction, feature extraction, and object detection. 
Finally, the future development trend of event cameras is 
discussed. 



480   Journal of Internet Technology Vol. 26 No. 4, July 2025

2  Introduction to Event Camera

2.1 Event Camera Overview
In the traditional field of vision, cameras use the 

method of synchronous transmission of information. At a 
certain moment, the camera makes exposure and transmits 
information from all pixels at that moment at the same 
time. All pixel information on the image is generated at the 
same time. The event camera mimics some characteristics 
of the human retina, and its shooting idea is completely 
different from that of standard cameras.

Event cameras are also known as silicon retinas. In the 
early 90s, Mahowald et al [10]. developed the first silicon 
retina, which was the earliest form of event camera. In 
the subsequent research process, researchers continue to 
add other sensors on this basis, so that their functions are 
constantly improved and expanded. In 2008, as Delbruck 
et al. [11] proposed the event camera of the dynamic vision 
sensor (DVS). It marks that the event camera officially 
entered the process of commercialization.

In the entire area that the event camera can detect, 
as long as a one-pixel brightness change exceeds the 
set threshold, a message will be transmitted back. The 
information it sends back is called an event, and the 
format of an event is a four-dimensional vector, e = (x, 
y, t, p). (x, y) reflects the coordinates of the location of 
the change in light intensity, t represents the time of the 
event, and p represents the polarity information of whether 
the pixel becomes lighter or darker. Each event carries a 
timestamp. All events occur asynchronously because even 
the smallest time intervals are impossible to be completely 
simultaneous. The light intensity of pixel xk at tk time is 
expressed logarithmically as [12]:

( , ) log( , )k k k kL x t x t=                            (1)

It is specified that the difference between the 
logarithmic change of light intensity that occurs at the time 
of tk and the logarithm of light intensity at the time of the 
previous excitation event exceeds the preset threshold, that 
is [2]:

kx , k kL t P C∆ =（ ）                                (2)

, ( , ) ( , )k k k k k k kL x t L x t L x t t∆ = − − ∆（ ）               (3)

At this time, the event ek is fired. All pixels in the 
sensor simultaneously perform asynchronous light 
intensity detection and output event information, forming 
an asynchronous event stream.

As shown in Figure 1, different events are output 
at each moment. The red dot indicates that the pixel is 
brightened and the blue dot indicates that the pixel is 
darkened.

With the continuous improvement of event-based 
algorithms, event cameras are gradually becoming 
commercialized. The most typical event cameras are DVS 

[13] , asynchronous time based image sensor (ATIS) [14], 

and dynamic and active pixel vision sensor (DAVIS).

Figure 1. Schematic diagram of event flow [2]

2.2 DVS
Dynamic Vision Sensor. It is the first and most basic 

event camera. DVS simulates the characteristics of 
biological retinal spatial vision. It is committed to detecting 
dynamic information in the scene, and can complete the 
most basic functions of event cameras. Each pixel of 
it detects changes in light intensity independently and 
compares them logarithmically. Output an asynchronous 
event when the amount of change reaches the set value. 
However, DVS can only output event information, not 
grayscale information, so its visibility is poor. The circuit 
structure of DVS is shown in Figure 2. It consists of a 
differential circuit, logarithmic photoreceptors and two 
comparators.

Figure 2. DVS circuit structure [12]

2.3 ATIS
Image sensors based on asynchronous events were 

proposed in 2008. The above DVS only transmits the 
address, time, and polarity of the pixel, and does not 
output environmental grayscale information. Therefore, it 
cannot meet the needs of visualization. Based on obtaining 
event information, the requirements of visualization [12] 
were also met, and ATIS came into being. The ATIS 
circuit structure is shown in the Figure 3 and Figure 4. It 
contains a change detector and a photometric device. The 
change detector section contains the complete DVS pixel 
structure. It can detect changes in light intensity and output 
asynchronous event streams, which is responsible for 
completing the event stream acquisition of the camera.

The photoreceptor of the photometric device detects 
changes in light intensity and exposes it. The exposure 
method of ATIS light measurement equipment is different 
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from that of conventional cameras. The exposure method 
of traditional cameras is generally global exposure. It 
adopts the method of presetting the exposure time and 
determines the gray value of the pixel by measuring the 
voltage across the capacitor after exposure, and there is 
a mechanical limit for the minimum exposure time. The 
optical measurement section of ATIS resets a capacitor 
to a high level when the change detector detects a change 
in light intensity for event transmission. As the time 
of exposure to light increases, the voltage across the 
capacitor drops. The voltage drop time across the capacitor 
determines the gray value of the pixel. Although ATIS has 
a certain degree of visibility, because of its time-based 
exposure method, it is prone to abnormal exposure when 
the ambient brightness does not change significantly.

Figure 3. ATIS change detector circuit structure [12]

Figure 4. Circuit structure of ATIS optical measurement 
part [12]

2.4 DAVIS
Although DVS has been successfully used in 

computer vision tasks, it is difficult to recover its video 
compression signal. ATIS allows overcoming this problem 
by providing access to absolute light intensity, but there 
is a problem with motion artifacts. In 2014, Brandli et al. 
[15] developed a new event camera called DAVIS. The 
structure of DAVIS is shown in Figure 5. It is divided 
into two parts: APS (Active pixel sensor) and DVS. DVS 
is responsible for detecting changes in light intensity 
and outputting asynchronous event stream information, 
and APS performs synchronous exposure to obtain the 
grayscale information of the scene. The grayscale image 
obtained by APS does not have the problem of abnormal 
exposure and information loss of APIS. Because it adopts 
the synchronous exposure method. In fact, DAVIS is a 
combination of event cameras and traditional cameras. As 
a result, it is temporally and spatially redundant, and the 
APS cannot adapt to high dynamic range environments 
like event cameras. Therefore, DAVIS is suitable for 
applications where visualization is critical.

Figure 5. DAVIS circuit structure diagram [2]

According to the differences in performance and 
principle, the characteristics and use cases of these three 
cameras are listed in the Table 1.

Table 1. DVS, APIS, DAVIS comparison table [12]

Types Features Usage
DVS It is the most basic event camera, which can 

complete the output of the event stream and has 
the characteristics of high dynamic range and low 
latency, but low visibility.

It is generally used to detect high-
speed moving objects and has low 
visualization requirements.

ATIS It can obtain grayscale information and has good 
visibility, but due to its time-based exposure 
method, it is easy to lead to exposure failure and 
information loss

It is suitable for scenes with frequent 
changes in scene brightness and high-
speed motion.

DAVIS It can output environmental event information and 
grayscale information and has good visibility, but 
its part is composed of APS. It is limited by the 
shortcomings of traditional cameras.

It is used in scenarios that require high 
visibility, such as target identification, 
tracking, and positioning.
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3  Pros and Cons of Event Camera

This section discusses the advantages, shortcomings 
and application scenarios of event cameras. He has the 
advantages of high dynamic range, low latency to reduce 
data and bandwidth, but also suffers from incompatibility 
with traditional algorithms, the need for noise processing, 
and the large amount of output data. Overall, event cameras 
offer significant advantages in terms of dynamic range 
and speed, but need to be offer significant advantages, but 
new processing techniques are needed to fully utilize their 
potential and manage their data output. This paper will 
analyze the strengths and weaknesses of event cameras in 
detail.

3.1 Advantages
1) High dynamic range. The event camera detects the 

change of the object by outputting the event according to 
the brightness change and is not sensitive to the absolute 
brightness of the image. The brightness detection of its 
pixels is logarithmic. 

Therefore, in scenes with large or small light intensity, 
traditional cameras cannot represent the target object well, 
while event cameras are not affected [1].

2) Low latency. Compared with the frame-based image 
acquisition method of standard cameras, the brightness 
change of event camera captures without exposure time 
limitation [12], and real-time feedback can be achieved 
for the motion change of the target. Event cameras can 
generate event information in sub-millisecond times. 
This high-speed feature makes it suitable for high-
speed motion applications. Event cameras cost less and 
have more computing power than conventional cameras 
capable of achieving the same frame rate. Figure 6 shows 
a comparison of the display results of a standard camera 
and an event camera in a high-speed motion scene. From 
the figure, we can clearly see that when the object moves 
rapidly, the output of the event camera can more clearly 
express the movement trajectory.

Figure 6.  Comparison between event camera and 
traditional camera [16]

3) Small amount of data, low bandwidth. The output 
form of an event camera is a vector that represents 
information about the change in brightness of image pixels. 
The entire image information is not transmitted back, 

which greatly reduces data redundancy and transmission 
bandwidth occupation. If the objects in the scene do not 
move and the light source does not change, asynchronous 
events will not be output, and the transmission bandwidth 
will not be occupied. In addition, frame-based pre-
processing operations in standard cameras are no longer 
required in event-based processing, so algorithms enable 
faster responses, which is especially beneficial for 
embedded real-time systems.

3.2 Shortcoming
1) Event streams cannot be used directly by traditional 

algorithms. Before the advent of event cameras, traditional 
object detection algorithms were used to detect frame 
images recorded by standard cameras. The event stream 
output by the event camera cannot be directly detected 
by traditional machine vision algorithms, so a paradigm 
shift is required [1]. At present, some researchers use the 
method of cumulative events to change the event stream 
into event frames, and then use traditional algorithms to 
detect them. In 2020, Chen’s team proposed a method for 
luminance image reconstruction [17]. The model is trained 
on the simulated event dataset, and the perceived loss of 
the generated image is gradually reduced through training, 
so that the generated image gradually approaches the target 
image. In 2022, Kun Xiao’s team proposed a new method 
for accumulating pseudo-image frames from event cameras 
called time slicing and digital slicing [18]. Figure 7 shows 
a schematic of this method. This method can output event 
frames of the same window size at the same time interval, 
which is compatible with traditional SLAM systems and 
reflects scene information well.

Figure 7. Schematic diagram of time slices and digital 
slices [18]

However, this processing method still uses the 
traditional image frame method, does not take advantage of 
the asynchronous nature of the event stream, and abandons 
the high-speed advantage of the event camera. Therefore, 
scholars should design an event processing algorithm that 
integrates asynchronous event streams to bring out the 
rapidity of event cameras. 

The Figure 8 shows the pseudo-image frame obtained 
through the cumulative event. When the sampling interval 
is set to be small, less information about the brightness 
change is obtained, so the outline in the image is blurred. 
When the time interval is large, the scene outline is 
obvious, but there may be information redundancy.
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Figure 8. (a) to (d) Fixed time accumulated event frame

In 2019, Scheerlinck’s team [19] proposed a method for 
calculating the convolution of linear spatial kernels with 
event camera outputs. This method differs from the current 
method of synthesizing pseudo-image frames through 
cumulative events but operates directly on asynchronous 
event streams. The core of this method is to introduce the 
internal state of directly encoded convolutional image 
information, which is updated asynchronously when each 
event arrives from the camera. The state information is 
read at any time. Through real-time asynchronous updates, 
it is synchronized with changes in event information for 
use by other vision algorithms in real-time robot systems.

2) Existence of noise. Due to its sensitivity to 
brightness changes, event cameras still have the problem 
of noise interference in practical applications. The 
structure of the event camera is to detect changes in the 
ambient brightness, so some background changes in 
the environment will also cause the camera to output 
event streams, and there are many environmental noise 
interferences in the output event streams. Increasing the 
threshold of the camera to detect light intensity changes 
will help reduce noise. But at the same time, the collection 
of information on pixel light intensity changes caused by 
object movement will also be reduced, which will lead to 
information loss. Therefore, denoising the event stream 
is a very important preprocessing link. In 2008 Delbruck 
et al. [20] proposed a noise-filtering method based on the 
temporal and spatial correlation of events. This method 
records the time when the target event occurs and compares 
it with the events that occurred within the set time in its 
spatial domain. If the interval between two events exceeds 
the set time, it will be identified as noise and filtered. This 
noise reduction method takes advantage of the spatial and 
temporal continuity of moving objects. It can effectively 
reduce the interference of background noise. In 2019, 
Fairouz et al. [21] compared the trigger conditions of event 
transmission between the actual system and the virtual 
reference system and constructed an online estimator to 
derive the interference value. But this method needs to 
check the event trigger condition at each time point and is 
not a self-triggering scheme. In 2020, Changda Yen et al. 
and others proposed a noise processing method based on 
time-space continuity [22]. Events occur continuously in 
space and time, while noise occurs randomly. Therefore, 
when you want to process an image at a certain time, you 
only need to consider whether there are related events in 
the spatial field before and after the event to determine 
whether the event is noise. Figure 9 is a comparison of the 
effects of using the noise reduction method proposed by 
Changda Yan’s team.

Figure 9. Output comparison before and after denoising 
[22]

In 2023, Xiaoli Zhou’s team proposed a spatial 
target event stream noise reduction algorithm [23]. 
Aiming at the noise processing problem of event stream 
data of spatial targets, they perform local spatial noise 
reduction processing on each time domain on the classical 
spatiotemporal filter. At the same time, cascaded filters 
for NDSEF (Neighborhood Density-based Spatiotemporal 
Event Filter) are proposed for different scenarios and 
targets. Both the classical filter and the NDSEF algorithm 
are single-stage filters with limited noise reduction effects 
for spatial event streams. The cascade filter algorithm 
gradually refines the event data by increasing the 
accumulation window of the pixel dimension, ensuring the 
filtering speed of the algorithm, retaining the originality of 
the target event, and improving the signal-to-noise ratio. 
Figure 10 compares the noise reduction results of the 
classic filter, NDSEF filter, and cascade filter.

Figure 10. A comparison chart of three noise reduction 
methods [23]

It can be seen from the above figure that the NDSEF 
algorithm can effectively reduce noise interference 
compared with classical filters, but there are still some 
interferences that have not been removed. The cascaded 
filter performance is the best.

3) The data volume of event cameras is huge. 
When detecting high-speed moving objects, the event 
vector output by the event camera per second is very 
large. Although this can make it well represent the 
motion changes of the scene, it also puts pressure on 
data processing. In 2022, Rosa et al. proposed a high-
throughput asynchronous convolution method based on 
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event cameras for this situation. This method can achieve 
processing more than 10 million events per second [24].

4  Current Application Direction

Due to some problems with the event camera itself, 
researchers are constantly optimizing. Event cameras can 
replace traditional cameras in some applications, such 
as high-speed motion estimation, high dynamic range 
mapping, and so on. Because of its good performance 
compared to traditional cameras, it is currently used 
in many fields of traditional cameras. Such as feature 
detection and tracking, optical flow estimation, 3D 
reconstruction, and attitude estimation. At the same time, 
because the event stream output by the event camera 
cannot be directly used by traditional object detection 
algorithms, researchers are also developing event-based 
direct detection methods. Next, the current application 
direction and research progress of event cameras are 
introduced.

4.1 Event-Based Feature Extraction
In traditional computer vision algorithms, feature 

detection is an important image processing method, mainly 
including corner point detection, edge detection, and 
so on. These image processing methods are to identify 
and intercept the representative features in the image 
to characterize the entire image. These methods can 
greatly reduce the information redundancy during image 
processing and improve the work efficiency of the object 
detection algorithm. These local features represent the 
overall image method is widely used in image retrieval, 
action, and object recognition, texture classification and 
other scenarios.

In the face of high-speed motion scenes, event-based 
feature extraction methods can detect faster and more 
effectively than traditional frame-based feature detection. 
The researchers propose a variety of feature detection 
and tracking methods based on event cameras, and the 
detection and tracking features can be roughly divided into 
corner point features, features based on three-dimensional 
event point cloud distribution, and features based on 
motion/optical flow distribution.

Traditional corner extraction feature extractors 
are generally based on manual design. Because of the 
characteristics of asynchronous event streams, it is 
necessary to design a new corner extraction method. In 
2019, C. Scheerlinck et al. [19] proposed a method for 
calculating the convolution of linear space kernels and 
event camera outputs. This method does not need to 
accumulate event streams to generate pseudo-image frames 
and directly operates on asynchronous event streams. In 
the same year, Li’s team [25] proposed a novel corner 
detection method based on fast asynchronous events, 
called FA-Harris. The proposed G-SAE maintenance 
algorithm and corner candidate algorithm greatly improve 
the real-time detection of corner spots. In 2020, Hochang 
Seok’s team proposed a robust feature tracking method for 

DVS event streams based on B’ezier mapping [26]. They 
employ a method of aligning events along the B-curve 
over time intervals to minimize misalignment. Extensive 
experimental evaluation in 2D feature tracking and 3D 
pose estimation shows that this method is significantly 
superior to traditional methods. In 2022, Xinghua Liu et 
al. [27] proposed the frame-based feature extraction and 
EKF framework of event cameras [28], and developed 
a low-latency, event-based visual mileage calculation 
method. This algorithm detects features and tracks motion 
on the image plane, and then tightly interweaves feature-
based pose estimation and Extended Kalman Filter (EKF) 
frameworks in event-based visual odometry to obtain low-
latency and high-rate tracked trajectories.

Overall, these advances show that event-based feature 
extraction and tracking methods are more effective than 
traditional methods when dealing with fast and dynamic 
scenes, opening up new directions for future research in 
image processing and machine vision.

4.2 Event-Based Object Detection
Object detection is the task of extracting target objects 

from a complex scene and identifying and tracking them. 
Traditional cameras are frame-based, isometric sampling, 
which inevitably leads to the loss of object motion 
information between frames. So traditional cameras 
perform poorly when tracking high-speed moving objects. 
At the same time, at the sampling moment, the image of 
each frame repeatedly records the background information 
in the scene, resulting in a great degree of redundancy in 
image processing. The event camera only reports the part 
of the light intensity change, ignoring the background 
information. So it performs well in the detection and 
tracking of high-speed moving objects.

Lizenberger et al. proposed a target tracking algorithm 
based on monocular DVS in 2006 [29], which was inspired 
by the mean shift method to realize continuous clustering 
of address events and cluster tracking. They use data from 
asynchronous transient vision sensors to monitor and track 
traffic scenarios. Drazen et al. proposed a new camera 
technology for particle tracking velocimetry (PTV) in 2011 
[30]. The technology consists of dynamic vision sensors 
(DVS) that work in parallel with pixels, comparing the 
tracking capabilities of DVS to CMOS cameras. In 2018, 
Akolkar et al. proposed a novel visual flow algorithm 
based on multi-scale plane fitting [31], and the calculation 
speed is fast and efficient. In 2021, Pengju Li et al. [32] 

applied event cameras to the design of monitoring systems 
to achieve the purpose of working in a large brightness 
range. In 2022, Gava et al. [33] combined ATIS cameras 
with PUCK tracking algorithms to apply visual tracking 
tasks for ice hockey.

Overall, these current research advances show the 
advantages of event cameras for high-speed moving object 
detection and tracking, enabling effective applications 
in a variety of complex dynamic scenes by ignoring 
background information and focusing on light intensity 
changes.
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4.3 Event-Based Depth Estimation
Real-world depth-sensing applications require precise 

responses to the rapid movement of a target. Depth 
calculation methods based on standard CMOS cameras 
[34], such as stereo matching, cannot be guaranteed in the 
case of noise or void depth inaccuracy. The event camera 
DVS (Dynamic Vision Sensor) is designed to achieve 
robustness to fast motion and light changes in a low-power 
and sparse representation. It has better performance than 
standard cameras in the field of depth perception.

Depth estimation refers to the problem of extrapolating 
the distance from the vision sensor to an object in the 
scene. Due to the close connection with the human 
binocular system, most of the current related work uses 
binocular event cameras for depth estimation. Traditional 
CMOS cameras have problems such as motion blur in the 
face of high-speed motion and high dynamic range scenes. 
Therefore, it is necessary to apply a new event-based 
depth perception method to the above scenarios. Although 
event-based sensors have good speed, their sparse 
representation and asynchronous output cannot be directly 
used in traditional stereo matching and depth estimation 
frameworks. New algorithms are needed to process this 
data.

Firouzi proposed an event-based parallax matching 
algorithm in 2016 [35]. This method uses dynamic 
collaborative neural networks for reliable 3D depth 
perception. One of the important methods for calculating 
depth by stereoscopic matching depth. Zou et al. [36] 
proposed in 2017 a method for event stream augmentation 
and estimation of density depth through event-driven 
stereo matching. They propose an event feature descriptor 
that is invariant to the translation, scale, and rotation of the 
event map. This event feature is conducive to DVS stereo 
matching and stereoscopic DVS generation of dense depth 
maps. In 2023, Sankeerth Durvasula’s team proposed a 
new EV-conv method [37]. This approach speeds up CNNs 
for tasks such as depth estimation, object recognition, and 
optical flow estimation by a factor of 1.6 with little loss of 
accuracy.

The above studies have shown that event-based 
sensors and algorithms are more efficient and robust than 
traditional CMOS camera approaches when dealing with 
depth perception problems in high-speed dynamic scenes 
and high-dynamic-range scenes, but new algorithmic 
frameworks are needed to deal with these event streaming 
data.

4.4 Event-Based Visual SALM
Vision SLAM using standard cameras is prone to 

failure in scenarios such as motion blur and high dynamic 
range. While the low latency and insensitivity to the 
absolute light intensity of event cameras can improve the 
robustness of vision SLAM systems. As a result, event-
based visual SLAM began to evolve gradually.

In 2013, Hoffmann et al. [38] conducted an autonomous 
indoor exploration of robots using an event-based vision 
SLAM system. They used an embedded event camera 
(eDVS) to provide pre-processed visual features of indoor 
ceilings for simultaneous positioning and mapping in real 

time. This positioning method uses the characteristics of 
the ceiling to accurately locate the position of the object 
in the room, but it cannot visually obtain information 
about obstacles on the floor. Therefore, a physical collision 
sensor is installed in the front of the robot to store the 
position of obstacles on the ground based on the bump 
information. The combination of the two sensors makes 
the autonomous exploration of robots possible. Figure 11 
is a schematic diagram of indoor map construction using 
eDVS.

Figure 11. Indoor map building using eDVS [1]

In 2014, Weikersdorfer et al. [39] proposed an event-
based 3D sensor combination and an event-based full 
3D localization and mapping algorithm. He fused event 
cameras with RGB-D sensors to produce sparse 3D 
point streams. Because event-based sparse point streams 
generate fewer data, they are used efficiently. Moreover, 
their SLAM algorithms run 20 times faster than in real 
time.

In many related studies of event-based synchronous 
localization and mapping, solutions for module alignment 
and dense reconstruction have been proposed instead of 
directly extracting features from images. However, these 
methods are computationally expensive and cannot be 
applied to common robot platforms. Based on this status, 
in 2022, Chamorro et al. proposed a real-time PTAM fast-
tracking algorithm [40], which greatly reduces the error 
of event line reprojection and realizes high-rate accurate 
camera pose estimation. Compared to EVO, its throughput 
is increased by 10-15 times, while also reducing computing 
costs.

Since different event accumulator settings led to 
different cumulative results, Kun Xiao’s team researched 
how to accumulate event frames to achieve better event-
based SLAM performance [18]. Through the analysis and 
adjustment of the slicing method, motion-free processing 
method, the use of polarity and the attenuation function, 
and verified on the dataset, the results show that the 
method has improved on different sequences. 

This subsection discusses event-based vision SLAM 
techniques and their development. Overall, the current 
state of research demonstrates the effectiveness and 
advancement of event-based vision SLAM techniques in 
dealing with high-speed dynamics and complex lighting 
conditions, providing new possibilities for navigation and 
mapping of robots and autonomous systems.
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4.5 Event-Based Optical Flow Estimation
Traditional optical flow estimation refers to the problem 

of calculating the speed of the target motion on the pixel 
plane without prior information about scene geometry 
or camera motion. Due to the camera’s low temporal 
resolution, it is difficult for traditional optical cameras to 
continuously capture the rapid change of the position of 
objects in the imaging plane in high-speed motion scenes, 
resulting in motion blur in the output image frame. [38] 
The low frame rate data output by conventional cameras 
makes optical flow estimation algorithms inefficient for 
continuous optical flow estimation. However, event-based 
optical flow estimation is attractive. Event information 
containing timestamps can measure high-speed optical 
flow at low cost, so there is great promise for applying 
event cameras to optical flow estimation. Figure 12 records 
the display of a standard camera and an event camera 
facing a checkerboard with high-speed motion.

Figure 12. Comparison of optical flow estimation between 
traditional cameras and event cameras [38] 

At present, the optical flow estimation algorithm based 
on an event camera is mainly divided into two types, 
purely based event stream and joint event stream and 
luminance image. The optical flow estimation algorithm 
[41] based solely on event flow can only reflect the optical 
flow information of the trigger position of the event point, 
and cannot obtain complete scene motion information, so 
there is a problem of insufficient spatial information. By 
studying the relationship between the blurred image frame 
and the event points generated during the exposure time, 
the continuous clear luminance image is reconstructed, 
and a smoothing constraint is added to the optical flow 
calculation to obtain a more robust dense optical flow, 
and finally, the continuous optical flow estimation is less 
affected by motion blur in high-speed motion scenes.

In 2017, Alex Junho Lee’s team came up with event-
based real-time optical flow estimation [42]. They 
proposed an algorithm to extract features and estimate 
their optical flow using only the event stream. In the same 
year, Jingyi Fu et al. derived a continuous sparse optical 
flow estimation method based on the joint EDI model 
[43] and the “constant brightness” assumption. It adds 
two smoothing constraint methods, HS [44] and CLG 
[45], to obtain a continuous dense optical flow field with 
robustness to noise. Assuming that the luminance image 
of frame i is Y[i] and the exposure time is T, the image 
generation model can be expressed as Equation (4)

1[ ] ( )
t T

t
Y i I t dt

T

+
= ∫                              (4)

Equation (5) establishes a connection between the 
blurred image, the instantaneous brightness image, and the 
incident. Since the blurred image and the event point are 
known, the instantaneous clear brightness image at any 
moment can be calculated by this formula.

(i) ( ) ( )iY I f E f= •                              (5)

Figure 13. Comparison of the effects of different optical 
flow estimation algorithms [38]

Figure 13 shows the optical flow results obtained by 
different optical flow algorithms in the DAVIS240 dataset, 
where Figure 13(a) is the true value of optical flow. 
Figure 13(b) and Figure 13(c) show the results obtained 
by smoothing the constraint methods using HS and CLG. 
Figure 13(d) to Figure 13(f) are the results obtained by 
traditional methods, DAVIS-OF, DVS-CM, and DVS-
LP. The optical flow estimation results obtained by using 
the EDI model are more in line with the actual true value 
of optical flow. The optical flow obtained by traditional 
methods has problems with motion blur and information 
loss.

This paper discusses the differences between traditional 
optical flow estimation and event-based camera optical 
flow estimation. In contrast, event-based optical flow 
estimation shows great promise for applications due to its 
ability to measure high-speed optical flows at low cost by 
including time-stamped event information.

4.6 Multi-Sensor Fusion
With the continuous development of event cameras, 

many new types of event cameras combine with other 
visual sensors based on ordinary event cameras. The 
inertial measurement unit (IMU), an internal receptor, 
is considered to be an effective supplement to visual 
receptors. So there have been more research results in 
recent years.

Zhu et al. extended the EM-ICP algorithm in 2017 [46] 
and proposed the first visual inertial mileage calculation 
method that combines characteristic events with IMUs, 
called EVIO. In this method, the camera pose estimation is 
completed by extracting the movement trajectory of feature 
points in the image from the event stream and fusing the 
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trajectory with the measurement data of the IMU using the 
filtering method.

The accuracy of positioning and mapping of SLAM 
systems using filtering methods decreases rapidly due 
to the accumulation of errors caused by the linearization 
process. To face this problem, Rebecq et al. proposed a 
closely coupled visual inertial mileage calculation normal 
flow based on nonlinear optimization in 2017 [47]. This 
method select an event window with a fixed number of 
events to synthesize the event frame and compensate 
for the event stream based on the relative motion of 
the camera. Unlike the EVIO algorithm, this work uses 
keyframe-based nonlinear optimization techniques instead 
of filtering techniques in EVIO. In 2018, Rebecq et al. first 
proposed a state estimation method that tightly fuses event 
streams, standard image frames, and IMU measurement 
data. This method extracts the feature points in the event 
frame from the event camera and the image frame from the 
standard camera at the same time. Then it tracks the feature 
points and takes the tracking results of both as input of the 
nonlinear optimization method to complete the estimation 
of the camera pose. This method has higher accuracy, 
which is 130% higher than the method based only on event 
frames and IMUs, and 85% higher than the method based 
only on standard image frames and IMUs.

The main research directions are event streaming, 
image frame, and IMU fusion. Of course, a better solution 
is to integrate the IMU directly into the event camera, 
eliminating the tedious time synchronization. For example, 
based on DAVIS, the visual inertial odometer based on 
event cameras proposed by Mueggler et al. in 2018 [48] 

provides a method for directly fusing image frames, event 
streams, and IMU measurement data into VIO using 
continuous time frames. In 2020, Jung et al. [49] proposed 
an image, event stream, and IMU fusion pose estimation 
method based on constrained filtering to directly model 
the optical flow of event estimation, and the proposed 
algorithm reduced the position error by an average of 
49.9%.

Overall, current research advances demonstrate the 
potential of event camera fusion with other sensors, such 
as IMUs, to improve accuracy and performance, especially 
in the areas of visual inertial mileage computation and 
state estimation in complex dynamic environments.

5  Conclusions and Potential 
Developments

This paper introduces the working principle, 
development process, and current application direction 
of the event camera. At present, due to its excellent 
characteristics, many researchers have tried to apply it in 
various machine vision fields.

Although the event camera has a good performance in 
many fields, there are still many problems. On the issue 
of the event camera itself, due to its special output format, 
traditional models cannot directly detect it, which makes 
the processing of event streams often become pseudo-

handling. Image frames, this approach loses the most 
innovative part of event cameras. At present, DAVIS, the 
best commercial event camera, still uses a combination of 
asynchronous and synchronous methods. Although there 
are other professional event cameras used in various fields, 
a more universal event-based algorithm framework has not 
yet been built. In the field of target recognition, the event 
camera has poor visibility and can only return the time, 
space, and polarity change information of the event. It 
cannot reflect the grayscale information or even the color 
information of the target. Although the current DAVIS 
can obtain grayscale information, it uses a combination 
of asynchronous and synchronous methods, which will be 
limited by the defects of traditional cameras. It is believed 
that after the development of an event-based algorithm 
framework, event cameras will develop more rapidly. In 
the field of target tracking, although the event camera 
has the characteristics of high dynamic range and low 
latency, the event generation rate will be greatly increased 
in the face of the scene where the camera and the scene 
change rapidly which will put pressure on data processing. 
Based on this situation, we should devote ourselves to the 
development of the framework of the algorithm directly 
based on the event, to give full play to the advantages of 
the event camera in future development.

In future development, in the fields of autonomous 
driving and aerospace, there is still little research on 
event cameras. In 2020, Afshar et al. applied event 
cameras to the aerospace field and proposed a feature-
based detection and tracking method that can meet the 
needs of space situational awareness [50]. In the driving 
scene and the aerospace field, the target objects detected 
are large and have significant appearance characteristics. 
The influence of background noise can be ignored, and 
the scene changes at a high speed. In these fields, due to 
their good characteristics, event cameras may theoretically 
achieve better performance than standard cameras. In 
2007, the Internet of Things gradually developed [51], 
and there are many related researches, such as node 
security [52-55], wireless sensor networks [56-59], data 
transmission between the cloud and mobile devices [60-
62]. Due to their excellent characteristics, event cameras 
can also be developed in the field of IoT in the future. 
In IoT applications, event cameras can be connected to 
IoT domain names through a variety of wireless or wired 
communication networks. Due to its rapidity of reacting to 
scene information, it can better represent information.
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