
Journal of Internet Technology Vol. 26 No. 4, July 2025 435

*Corresponding Author: Shih-Yeh Chen; Email: sychen-ncku@gs.ncku.edu.tw
DOI: https://doi.org/10.70003/160792642025072604002

Integrating STEM Teaching into Digital Game Aids to Explore
Non-Technical Students’ C# Programming Learning

Outcomes and Perceptions

Yu-Sheng Su1, Chia-Jung Chang2, Jia-Hong Li2, Shih-Yeh Chen3*

1 Department of Computer Science and Information Engineering, National Chung Cheng University, Taiwan
2 Department of Computer Science and Engineering, National Taiwan Ocean University, Taiwan

3 Department of Engineering Science, National Cheng Kung University, Taiwan
ccucssu@gmail.com, s95026540@gmail.com, tom862828@gmail.com, sychen-ncku@gs.ncku.edu.tw

Abstract

With programming development skills becoming
one of the most important skills for many jobs in the
workplace, there is a growing demand for STEM
talent. Beginners usually learn C# programming using
traditional teaching methods, resulting in poor learning
outcomes. This study endeavors to probe the efficacy of
integrating diverse learning aids, specifically digital game
programming aids and conventional teaching aids, within
the ambit of STEM education to bolster C# programming
proficiency. Non-science and technology students from a
university in Taiwan were the experimental subjects. The
students were divided into an experimental group and
a control group. Both groups learned C# programming
using the STEM teaching method. The experimental group
focused on digital game programming aids, while the
control group focused on traditional programming aids.
The results found that implementing the STEM teaching
approach with digital game programming aids for learning
C# programming improved student learning outcomes
and perceptions. Learning C# programming through game
creation enables students to visualize code execution,
deepen their understanding of programming concepts, and
enhance their problem-solving skills.

Keywords: STEM education, C# Programming, Learning
performance, Learning perceptions, Digital games

1 Introduction

1.1 Programming Education
In the 2018 Higher Education Sprout Project, the

Ministry of Education in Taiwan mandated that at least
half of all college students must take courses related
to logical operations before graduation. The goal is
to develop problem-solving skills through practical
programming education [1]. Most colleges and universities
in Taiwan offer courses related to basic logic operations
in response to the policy to meet the needs of students.
However, beginners who are new to programming often

face difficulties. This leads to poor learning performance
[2-3]. Tan et al. researched the factors that make it
difficult for college students to learn programming in
programming courses and the appropriate learning
methods of programming. Their study highlights the
importance of using appropriate teaching methods to
help students overcome these challenges. They found
that most students lacked a programming foundation and
considered basic fundamental concepts of programming to
be difficult to learn [2]. Tek et al. researched and analyzed
why non-science and technology students struggle to learn
programming. They found that most students believe it is
irrelevant to their major, which affects their motivation to
learn and, in turn, their learning achievement [3]. Bubica
and Boljat researched the teaching methods for university
programming courses and found that most universities
still use traditional methods of instruction [4]. Therefore,
to help non-science and technology students learn
programming, universities should consider using specially
designed courses or additional teaching aids.

Previous studies have used digital games to increase
students’ learning motivations [5]. For example, Végh
and Takáč used Unity to teach and learn programming
in their courses, and challenged students to create 2D
games, thereby stimulating students’ interest in game
development and programming [5]. We decided to apply
digital games to programming courses, hoping to reduce
the difficulties encountered by non-science and technology
students in programming courses. It is necessary to
determine the game engine required for the development
of digital games. Sharif et al. compared a variety of game
engines and found that Unity had good ratings in terms
of visual fidelity, functionality, etc., so we decided to use
Unity as the game engine in our study. Because of the
need to work with the game engine, the programming
language learned in the programming course could be
the C# programming language or Python programming
language. Although a few people use Python in Unity,
and Python is often used in basic programming courses,
Unity cannot directly call Python scripts. C#, on the
other hand, is the main programming language used
in Unity [6]. Moreover, comparing the advantages and
disadvantages of programming languages, Bahar et al.

436 Journal of Internet Technology Vol. 26 No. 4, July 2025

mentioned that Python programming language is prone
to errors in programming, and it is difficult to clarify and
track where the errors occur in the code [7]. They pointed
out that the C# programming language has the advantages
of easy integration of visual suites, easy learning of C#
programming language for beginners, more teaching
resources, and easy understanding of the code structure.
After all the above considerations, we decided to use C# in
the programming course.

1.2 Applying STEM Teaching to Digital Game Aids in
Programming Education
In recent years, STEM teaching methods have become

increasingly important and have attracted attention in
various countries which have actively promoted STEM
education to cultivate more relevant talents and improve
STEM literacy [8]. STEM education incorporates ideas
proposed by Dewey [6]. The core idea is to develop
students’ reasoning and problem-solving skills, and
to enhance their motivation to learn and their learning
performance [9-11]. Christensen et al. pointed out
that STEM education has five characteristics, namely
real-world application of learning, learning from real
problems, applying learned skills to solve new problems,
promoting teamwork for problem solving, and integrating
knowledge across disciplines. These characteristics are
different from conventional teaching methods [9]. Hu et
al. found that integrating problem-solving teaching into an
electronic music pencil-making course for non-science and
technology students can enhance understanding of STEM
concepts and improve learning outcomes and motivation
[12]. Yuliati et al. integrated inquiry-based learning with
STEM concepts into a physics mechanics course. Students
were required to understand and observe Newtonian
mechanics (science concept), learn to apply mechanical
formulae to solve problems (technology concepts),
assemble and create mechanical concept prototypes
(engineering concepts), and perform calculations and
verify physics experiments (mathematics concepts). Their
results showed that their teaching approach effectively
deepened students’ understanding of physics concepts and
scientific literacy [13].

However, Freeman et al. found that the application
of the STEM teaching approach to programming did
not effectively engage learners and did not significantly
improve their programming learning outcomes [14].
They pointed out that programming courses should be
engaging to increase students’ motivation to learn. Calvo
et al. developed a C language script using the LEGO
Mindstorms add-on kit with NXC (C-like programming
language for the NXT brick) to increase the fun factor of
the course [15]. The activity required the application of
STEM concepts, such as understanding electrical science
(science concepts), using the NXC compiler to program
components for desired effects (technology concepts),
assembling the extension kit (engineering concepts), and
performing arithmetic operations in the script (mathematics
concepts). The results showed an improvement in student
learning in programming and in course completion rates.
Based on the above, the application of STEM teaching

approaches in programming course still needs to increase
the fun factor to enhance learning motivation, improve
learning achievement and mitigate the negative impact of
traditional teaching methods.

Li and Watson suggested that learning digital
game programming differs from learning traditional
programming [16]. Integrating digital games into
programming education allows students to visually observe
the results of code execution within the game, which helps
to avoid difficulties in understanding abstract concepts.
This approach enhances students’ understanding of
programming concepts, thereby improving their learning
performance and motivation. Hacıoğlu et al. integrated
STEM teaching strategies into the Scratch ecological
aquarium game programming course for primary school
students [17]. During the STEM activities, students have to
learn and apply ecological concepts (the science concept)
and image programming language to build algorithms
(the technology concept), game object assembly, software
engineering concepts (the engineering concept), and
addition and subtraction (the mathematics concept)
conditional judgement to solve course problems. The
results showed that the students were actively involved
in the course activities and that they could stimulate their
interest in STEM and the concepts of programming.

To promote willingness to learn and reduce poor
motivation, we integrated STEM teaching into digital game
programming aids. This was achieved by using digital
game design as STEM teaching content. Yuliati et al. [13]
presented science concepts related to the production of the
modular programming project for war games, including
the physical phenomenon of the rebound of the reaction
force when a piece hits a pawn or a blood replenishment
element. The Unity engine is used for programming,
along with a compiler, to achieve specified effects for
game components and other scripting applications. This
includes the technology concepts mentioned in Calvo et
al. [15]. Hu et al. [12] discussed the engineering concept
of assembling game components. Hacıoğlu et al. [17]
discussed programming scripts for additive and subtractive
operations in mathematical concepts.

Therefore, we applied STEM teaching to digital
game aids for learning C# programming, using digital
game design as STEM teaching content, and making and
presenting the modular programming project from war
chess games.

1.3 STEM Learning Perceptions
Previous scholars believed that learning perception

is one of the factors that affects learning motivation and
learning achievement [18]. Zheng and Li explored the
influence of learning perception on learning outcome,
and the results indicated that learning perception can
significantly affect self-regulated learning strategies,
thereby improving learning performance [18]. Wild and
Schiefele developed the LIST (Learning Strategies in
Studying) questionnaire to evaluate students’ learning
behavior and learning perceptions in a course. The
questionnaire was divided into three strategies, namely
cognitive strategy, metacognitive strategy, and resource

Integrating STEM Teaching into Digital Game Aids to Explore Non-Technical Students’ C# Programming Learning Outcomes and Perceptions 437

management strategy [19]. Griese et al. increased the
number of questions in the LIST questionnaire with the
original questionnaire structure, and implemented the
questionnaire in STEM courses. The results showed
that the improved LIST questionnaire can well reflect
the students’ learning perceptions in the course [20].
Mathew et al. integrated problem-solving teaching into
undergraduate programming courses. Through the analysis
of learning questionnaires, it was found that most of the
students’ feedback on the teaching was positive, and the
students could really understand the structure, concepts
and problem-solving skills of the programming [21].
Chang and Tao integrated STEM into inquiry-based
teaching, enabling students with no game programming
experience to learn Web game programming. According to
the learning perception questionnaire, most of the students
gave positive feedback about their experience with STEM
game programming courses [22].

Therefore, we modified the questionnaire designed by
Wild and Schiefele [19], and Griese et al. [20], and applied
its design concept to the C# programming STEM learning
perception questionnaire, so as to analyze the impact of
applying the STEM teaching approach in the digital game
project of C# programming on non-science and technology
students’ learning perceptions.

1.4 Research Objective
In this study, we focused on STEM teaching and the

digital game aids in the C# programming course, and used
the digital game project of the war chess game modular
programming framework to carry out course activities
to improve the programming learning achievement and
learning perceptions of non-science and technology
students. The following are the two research questions we
aimed to answer:

1. What is the impact of C# programming applying
STEM teaching and digital game aids on the learning
outcomes of non-STEM students?

2. What is the impact of C# programming applying
STEM teaching and digital game aids on the learning
perceptions of non-science and technology students?

2 Methodology

2.1 Participants
This study was an experiment that was carried out

at a college in the east of Taiwan. The subjects of the
experiment were first year non-science and engineering
students studying programming courses, most of whom
had no background in programming. One class was the
experimental group, using the modular programming
project for war chess games for digital game programming
aids, using C# to design Unity game program scripts, with
a total of 31 students. The other class served as the control
group, who learned with the traditional programming aids,
and comprised a total of 31 students. These classes had the
same instructors and took place in a classroom.

2.2 Learning Materials
Both groups of students in this study used the C#

programming language for course instruction. The
teaching materials were selected from the “New Concept
Visual C# Programming Example Textbook” [23], a
resource designed to provide comprehensive coverage
of C# programming concepts with a focus on practical
application. The integration of this textbook aimed to
provide a solid foundation in programming fundamentals
for all participants. In addition, the programming courses
were strategically designed to align with the principles of
various STEM (Science, Technology, Engineering, and
Mathematics) subjects.

Table 1. Learning materials for the experimental group

Item STEM concepts Description

Science
(S)

Physical
phenomena.

Component scripts
are used to achieve
the rebound function
of the reaction force
when the chess piece
component hits.

Technology
(T)

Application
of compiler,
debugger and
scenario builder.

Application of Unity
engine, Visual Studio
compiler operation,
debugging tools and
scene building tools.

Engineering
(E)

Analyze program
requirements,
assemble
components,
and implement
appropriate
program syntax.

Assemble game scenes
and components,
analyze program
fragments, and
implement conditional
narrative grammar
to enable conditional
judgment effects in
game components.

Mathematics
(M)

Addition and
subtraction

A program script that
produces functions
for addition and
subtraction operations
on blood volume, an
application algorithm
module for calculating
the shortest distance
between points, and a
module for calculating
the shortest distance
between points and
points.

This interdisciplinary approach sought to emphasize
the interconnectedness of programming with other

438 Journal of Internet Technology Vol. 26 No. 4, July 2025

STEM disciplines and to provide students with a holistic
understanding of the role of programming in real-world
applications. The infusion of STEM concepts aimed to
increase the relevance and applicability of programming
skills in different contexts. In order to ensure consistency
in teaching content, both the experimental and control
groups followed the same curriculum structure and used
the same set of learning materials. The content covered
in the programming courses included basic programming
concepts and practical examples, facilitating a systematic
and progressive learning experience for all participants.
For a detailed comparison of the learning materials used
by the experimental and control groups, see Table 1
and Table 2 below, which provide a detailed breakdown
of the specific topics and modules covered during the
course. This alignment of the learning materials helps to
establish a standardized basis for evaluating the impact of
the different learning materials used in the experimental
and control groups on students’ learning outcomes and
perceptions.

Table 2. Learning materials for the control group

Item STEM concepts Description

Science
(S)

Physical
phenomena.

Develop a basic
program for
temperature conversion
that utilizes the physical
formula for converting
Fahrenheit to Celsius.

Technology
(T)

Application
of compiler,
debugger and
scenario builder.

Application of Visual
Studio compiler
operation and
debugging tools.

Engineering
(E)

Analyze program
requirements,
assemble
components,
and implement
appropriate
program syntax.

To achieve the specified
result, analyze the
program fragments
and import them into
the program code. For
instance, you can import
conditional judgment
into the temperature
conversion program. If
the input value exceeds
the set temperature, a
warning message will
be displayed.

Mathematics
(M)

Addition and
subtraction

Operators are
used to create
computer programs
for performing
basic arithmetic
operations such as
addition, subtraction,
multiplication, and
division.

2.3 Procedure
This study employed the quasi-experimental research

method. Two groups participated in experimental activities
lasting 8 weeks, with one 3-hour session per week, in
accordance with university course hours. The flow chart of
the experimental procedure is shown in Figure 1.

Figure 1. Experimental procedure

During the first week of the study, the curriculum
focused on teaching basic programming concepts and pre-
tests were conducted to establish a baseline understanding
of the participants.

Subsequently, from the second to the seventh week,
the experimental group (E.G.) and the control group
(C.G.) engaged with different programming teaching aids,
as outlined in Table 3, to navigate through the course
material.

Post-tests were administered in the final week to
measure the participants’ learning. In addition to the
quantitative assessments, a STEM learning perception
questionnaire was administered to both groups to capture
their subjective experiences and perceptions of the STEM
learning environment. This questionnaire aimed to gain
insights into how students in both the experimental and
control groups perceived the integration of digital game-
based programming tools or traditional teaching aids in
their learning process.

Table 3. Curriculum content of the experimental group and
control group

Time Group Description

Second
week

E.G.
Understand basic programming syntax
concepts, including variables, data
types, and operators.

C.G.
Understand basic programming syntax
concepts, including variables, data
types, and operators.

Integrating STEM Teaching into Digital Game Aids to Explore Non-Technical Students’ C# Programming Learning Outcomes and Perceptions 439

Third
week

E.G.

1. Understand basic programming
concepts, including conditional
statements, loops, string arrays,
function calls, etc.
2. Unity engine, compiler operation
and debugging tool application.

C.G.

1. Understand fundamental
programming concepts, including
conditional statements, loops, string
arrays, function calls, etc.
2. Application of Visual Studio
compiler operation and debugging
tools.

Fourth
week

E.G.
Use the component scripts in the
teaching resources to create the
physical effect of collision and bounce.

C.G.

Refer to the program examples in the
learning resources to create a simple
temperature conversion program using
the physical formula for converting
Fahrenheit to Celsius.

Fifth
and sixth
weeks

E.G.

1. Use the components in the resources
to create game scenes and assemble
game components.
2. Refer to programming examples
to analyze and insert code script
fragments to make game components
achieve specified effects.

C.G.

Refer to the program examples in
the programming aids to analyze the
program fragments and insert the
code to make the program achieve the
specified results.

Seventh
week

E.G.

Follow the programming examples in
the teaching aids to create addition and
subtraction functions, use algorithm
modules to calculate and display the
shortest distance between points.

C.G.

Use the programming examples in the
learning resources, use operators to
create computer programs for addition,
subtraction, multiplication and division.

2.4 Instruments
2.4.1 Pretest/Posttest

The test papers of this research mainly refer to the
basic programming concepts practice test questions
adapted from the New Concept Visual C# Programming
Sample Textbook [23]. There was a total of 20 single-
choice questions worth 100 points. The content of the
pretest and posttest questions was the same. The aim was
to understand the variance of the subjects’ knowledge
before programming and their learning after programming.
According to Ebel and Frisbie’s research [24], the higher
the difficulty level, the easier the test questions are,
and the lower the difficulty level, the more challenging
the test questions are. It is more appropriate for the
difficulty (0.58) of the test questions to be around 0.50. A
higher discrimination indicates the ability to effectively

discriminate between high and low scoring students. If the
discrimination of the test questions (0.42) is greater than
0.40, this is considered to be excellent discrimination.
2.4.2 STEM Learning Perceptions Questionnaire

The STEM learning perceptions questionnaire used
in this study was mainly based on and modified from the
questionnaire developed by Wild and Schiefele [19] and
Griese et al. [20]. The questionnaire used a 5-point Likert
scale where respondents could indicate their level of
agreement from “strongly agree” to “strongly disagree.”
On this scale, 5 points indicated strong agreement and
1 point indicated strong disagreement. For reliability
analysis, Cronbach’s alpha was used as a check between
variables. According to Bland and Altman [25], the
reliability coefficient of the questionnaire higher than 0.7
is an acceptable standard, and SPSS Statistics was used to
analyze the reliability of the STEM learning perceptions
questionnaire.

In this study, 59 students were selected to participate
in the pretest before the experimental activities. The
reliability coefficients of these six dimensions (0.72, 0.88,
0.83, 0.86, 0.93, 0.89, 0.92) and the whole questionnaire
were all higher than 0.7, so the questionnaire has
acceptable reliability.

2.5 Data Collection and Analysis
A total of 59 valid pretest and posttest papers and

59 valid STEM learning perception questionnaires
were obtained, and the independent samples t test was
performed using SPSS statistical software.

3 Results

3.1 Pretest and Posttest
The pretest results showed a slightly higher average

score for the experimental group (E.G.) compared to the
control group (C.G.). However, neither group’s average
score met the passing threshold, suggesting that most
students lacked prior programming knowledge. The
posttest results showed a significantly higher average score
in the experimental group compared to the control group.
Both groups showed improved average scores that met
the passing threshold; at the same time, the experimental
group showed relatively constant standard deviations,
whereas the control group showed a slight increase in
standard deviation. This indicates a tendency towards a
greater dispersion of posttest scores in the control group.
The results are shown in Table 4.

Table 4. Descriptive statistics of the pretest and posttest

Test Group N Min Max Mean S.D.

Pretest E.G. 30 30 70 46.000 11.477
C.G. 29 25 65 43.450 8.671

Posttest E.G. 30 40 95 74.000 13.416
C.G. 29 35 90 66.030 13.187

To further compare the average score of the posttest
of the two groups, the independent samples t test was

440 Journal of Internet Technology Vol. 26 No. 4, July 2025

conducted on the pretest and posttest of both groups. The
results showed an F value of 0.11 and a p value of 0.74,
indicating non-significance. This suggests homogeneity
of the regression coefficient within this dataset, which
meets the necessary conditions for covariate analysis.
After analysis of the independent samples t test, the results
showed a significant difference between the experimental
and control groups in the posttest, indicated by an F
value of 5.180 and a corresponding p value of 0.027 (p =
0.027 < 0.05). This indicates statistical significance in the
comparison. The results are presented in Table 5.

Table 5. Independent samples t-test analysis of the
experimental and control groups

Source
Type III
sum of
squares

df
Average
sum of
squares

F p

Two groups *
pretest 20.160 1 20.160 0.110 .741

Two groups 933.022 1 933.022 5.180 .027*
*p <= 0.05

3.2 STEM Learning Perceptions
The independent samples t test was performed on the

STEM learning perceptions questionnaire. The results are
presented in Table 6. For the statistics of the questionnaire,
the experimental group (E.G.) had a higher average score
compared to the control group (C.G.), and there was a
significant difference (p = 0.011 < 0.05); this result means
that the students in the experimental group had better
learning perceptions compared to those in the control
group. It also indicates significant differences in the
learning perceptions of the two groups.

Table 6. The results of the independent sample t-test
analysis for the STEM learning perception questionnaire in
the two groups

Dimension Group Mean S.D. t p

Organization E.G. 3.500 .435 -.812 .420C.G. 3.606 .569

Elaboration E.G. 3.479 .499 .382 .704C.G. 3.418 .713

Repetition E.G. 4.366 .676 2.540 .014*C.G. 3.965 .523

Monitor E.G. 3.020 .650 -.973 .335C.G. 3.200 .767

Attention E.G. 3.683 .499 7.534 .000**C.G. 2.459 .730

Peer Learning E.G. 4.200 .815 2.108 .039*C.G. 3.793 .654

All E.G. 3.708 .371 2.635 .011*C.G. 3.407 .498
**p <= 0.01, *p <= 0.05

Furthermore, the data obtained from each dimension
of the questionnaire were analyzed. The average value of
the experimental group was higher than that of the control

group for the elaboration, repetition, attention, and peer
learning dimensions. Additionally, significant differences
were observed within the repetition, attention, and peer
learning dimensions. This study demonstrates that the use
of the digital game programming project by students in
the experimental group facilitated the learning of basic
programming concepts. The results indicated that the
experimental group had a significantly better perception
of learning compared to the control group, highlighting a
clear distinction between the two groups.

According to the questionnaire results, it can be
inferred that most students in the control group displayed
inattention during the course. Most students in the
experimental group believed in reviewing their learning
or found that similar topics aided their memory. They had
good concentration and spent more time discussing the
course content with their classmates. When encountering
problems in the course, they discussed solutions with their
classmates.

4 Conclusion

In this study, the students from the experimental
group applied the STEM teaching approach in the digital
game project in the C# programming course, while the
students from the control group used the STEM teaching
approach to integrate the traditional programming aids in
the C# programming course. This study aimed to explore
the impact of integrating STEM teaching into different
learning aids (the digital game programming aids and
the traditional programming aids) on the learning of
C# programming. The analytical results of the learning
outcomes indicate that the experimental group of students
had better learning outcomes than the control group. Yulia
and Adipranata [26] found that using the digital game
programming aids in programming courses can enhance
students’ learning performance. Feedback from the course
showed that students in the experimental group generally
felt that the digital game programming aids increased their
motivation to learn programming. Similarly, Calvo et al.
[15] reported that the use of learning materials and fun aids
motivated students to learn, and improved their learning
outcomes in programming. The findings suggest that
integrating digital game programming into STEM teaching
strategies can aid non-technical students in understanding
fundamental programming concepts.

The analytical results of the STEM learning experience
questionnaire indicated that the overall mean of the
experimental group was higher than that of the control
group, with a significant difference. This suggests that
the use of digital game programming aids can lead to a
better learning experience in basic programming concepts
compared to traditional programming aids. Through the
course feedback, it was also found that most students in
the experimental group thought that using the digital game
programming aids as learning materials could arouse their
own learning interest and they would invest more time in
learning, and they could maintain a focused state in the
course. They also thought that when they encountered

Integrating STEM Teaching into Digital Game Aids to Explore Non-Technical Students’ C# Programming Learning Outcomes and Perceptions 441

difficulties in game programming, they would actively
seek help from their peers. This finding is similar to that
of Chang and Tao [22], who found that integrating STEM
digital game programming tools into the curriculum could
make students feel good about learning and also improve
their learning outcomes.

Acknowledgements

This study was supported by the Taiwan Compre-
hensive University System (TCUS) and the National
Science and Technology Council , Taiwan, under
grants NSTC 111-2410-H-019-006-MY3, NSTC
111-2423-H-153-001-MY3 and NSTC 111-2410-H-019
-029 -MY2.

References

[1] Ministry of Education, Higher education deep cultivation
plan performance indicators, measurement standards and
target values, 2018. https://www.edu.tw/News_Content.asp
x?n=0217161130F0B192&sms=DD4E27A7858227FF&s=
48B633D53D143A26

[2] P. H. Tan, C. Y. Ting, S. W. Ling, Learning difficulties in
programming courses: undergraduates’ perspective and
perception, 2009 International Conference on Computer
Technology and Development, Kota Kinabalu, Malaysia,
2009, pp. 42-46.

[3] F. B. Tek, K. S. Benli, E. Deveci, Implicit theories and self-
efficacy in an introductory programming course, IEEE
Transactions on Education, Vol. 61, No. 3, pp. 218-225,
August, 2018.

[4] N. Bubica, I. Boljat, Teaching of novice programmers:
strategies, programming languages and predictors,
International Conference of Information Technology and
Development of Education 2014 (ITRO 2014), Zrenjanin,
Republic of Serbia, 2014, pp. 180-185.

[5] L. Végh, O. Takáč, Teaching and learning computer
programming by creating 2D games in Unity, 14th annual
International Conference of Education, Research and
Innovation, ICERI2021 Proceedings, Seville, Spain, 2021,
pp. 5696-5700.

[6] J. Dewey, Experience and education, The educational
forum, Vol. 50, No. 3, pp. 241-252, 1986.

[7] A. Y. Bahar, S. M. Shorman, M. A. Khder, A. M. Quadir,
S. A. Almosawi, Survey on Features and Comparisons
of Programming Languages (PYTHON, JAVA, AND
C#), 2022 ASU International Conference in Emerging
Technologies for Sustainability and Intelligent Systems
(ICETSIS), Manama, Bahrain, 2022, pp. 154-163.

[8] A. Zollman, Learning for STEM literacy: STEM literacy
for learning, School Science and Mathematics, Vol. 112,
No. 1, pp. 12-19, January, 2012.

[9] R. Christensen, G. Knezek, T. Tyler-Wood, Alignment of
hands-on STEM engagement activities with positive STEM
dispositions in secondary school students, Journal of
Science Education and Technology, Vol. 24, No. 6, pp. 898-
909, December, 2015.

[10] Y. Kalaani, R. J. Haddad, B. Guha, A hybrid simulation and
hands-on experimentation for electric machines laboratory,
2015 ASEE Southeast Section Conference, Gainesville, FL,
USA, 2015, pp. 1-13.

[11] H. T. Wu, P. C. Hsu, C. Y. Lee, H. J. Wang, C. K. Sun, The

impact of supplementary hands-on practice on learning
in introductory computer science course for freshmen.
Computers & Education, Vol. 70, pp. 1-8, January, 2014.

[12] C. C. Hu, H. C. Yeh, N. S. Chen, Enhancing STEM
competence by making electronic musical pencil for non-
engineering students, Computers & Education, Vol. 150,
Article No. 103840, June, 2020.

[13] L. Yuliati, F. Yogismawati, E. Purwaningsih, Y. Affriyenni,
Concept acquisition and scientific literacy of physics within
inquiry-based learning for STEM Education, Journal of
Physics: Conference Series, Vol. 1835, No. 1, Article No.
012012, March, 2021.

[14] J. Freeman, B. Magerko, T. McKlin, M. Reilly, J Permar,
C. Summers, E. Fruchter, Engaging underrepresented
groups in high school introductory computing through
computational remixing with EarSketch, Proceedings of
the 45th ACM technical symposium on Computer science
education, Atlanta, Georgia, USA, 2014, pp. 85-90.

[15] I. Calvo, I. Cabanes, J. Quesada, O. Barambones, A
multidisciplinary PBL approach for teaching industrial
informatics and robotics in engineering, IEEE Transactions
on Education, Vol. 61, No. 1, pp. 21-28, February, 2018.

[16] F. W. Li, C. Watson, Game-based concept visualization
for learning programming, Proceedings of the third
international ACM workshop on Multimedia technologies
for distance learning, Scottsdale, Arizona, USA, 2011, pp.
37-42.

[17] Y. Hacıoğlu, N. D. Usta, Digital game design-based STEM
activity: Biodiversity example, Science Activities, Vol. 57,
No. 1, pp. 1-15, 2020.

[18] L. Zheng, X. Li, The Effects of Motivation, Academic
Emotions, and Self-Regulated Learning Strategies on
Academic Achievements in Technology Enhanced Learning
Environment, 2016 IEEE 16th International Conference on
Advanced Learning Technologies, Austin, TX, USA, 2016,
pp. 376-380.

[19] K. P. Wild, U. Schiefele, Lernstrategien im studium:
Ergebnisse zur faktorenstruktur und reliabilität eines
neuen fragebogens, Zeitschrift für Differentielle und
Diagnostische Psychologie, Vol. 15, No. 4, pp. 185-200,
1994.

[20] B. Griese, M. Lehmann, B. Roesken-Winter, Refining
questionnaire-based assessment of STEM students’ learning
strategies, International Journal of STEM Education, Vol.
2, No. 1, pp. 1-12, 2015.

[21] R. Mathew, S. I. Malik, R. M. Tawafak, Teaching Problem
Solving Skills using an Educational Game in a Computer
Programming Course, Informatics in education, Vol. 18,
No. 2, pp. 359-373, 2019.

[22] C. J. Chang, S. Y. Tao, The Impact of Inquiry-based
Integrated STEM on Student’s Perception of Learning
Science and Computer Programming, International
Conference on Computers in Education, Nanchang, China,
2021, pp. 357-360.

[23] H. Chen, New concept visual C programming example
textbook, China Machine Press, 2019.

[24] R. L. Ebel, D. A. Frisbie, Essentials of educational
measurement, Prentice-Hall, 1972.

[25] J. M. Bland, D. G. Altman, Statistical methods for assessing
agreement between two methods of clinical measurement,
International journal of nursing studies, Vol. 47, No. 8, pp.
931-936, August, 2010.

[26] Yulia, R. Adipranata, Teaching object oriented programming
course using cooperative learning method based on game
design and visual object oriented environment, 2010 2nd
International Conference on Education Technology and
Computer, Shanghai, China, 2010, pp. V2-355-V2-359.

442 Journal of Internet Technology Vol. 26 No. 4, July 2025

Biographies

Yu-Sheng Su is currently an associate
professor of Department of Computer
Science and Information Engineering
at National Chung Cheng University,
Taiwan. His research interests include
cloud computing, big data analytics,
intelligent system, and metaverse.

Chia-Jung Chang is a master’s degree
student in the Department of Computer
Science and Engineering at National
Taiwan Ocean University, Keelung,
Taiwan. Her research interests include
Artificial Intelligence, Metaverse,
Augmented Reality, and Virtual Reality.

Jia-Hong Li received the M.S. degree
from the Department of Computer
Science and Engineering, National
Taiwan Ocean University, Keelung,
Taiwan, in 2023. His research interests
include digital games based learning,
computer architecture and algorithmic
applications.

Shih-Yeh Chen received the Ph.D.
d e g r e e f r o m t h e D e p a r t m e n t o f
Engineering Science, National Cheng
Kung University, Tainan, Taiwan,
in 2016. Since 2024, he has been an
Associate Professor with the Department
of Engineering Science, National Cheng
Kung University, Tainan. His main

research interests include digital twin, human interactions,
and learning support system.

