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Abstract

Music recommendation systems are becoming 
increasingly popular among users. With the explosive 
growth of songs on the web, most music streaming 
platforms have launched online music listening services, 
providing millions of music choices for users. However, 
how to accurately recommend songs for users that match 
their preferences has become a challenging challenge, 
which we call music cold-start matching. In this paper, 
we delve into the multimodal information of music and 
take full advantage of the unique strengths of graph 
neural networks in capturing the collaborative filtering 
relationship between users and music. However, due to 
the inherent characteristics of graph neural networks, it is 
difficult to easily add new nodes to perform subsequent 
tasks in the inference phase. Therefore, we creatively 
propose a novel neural network architecture, the dynamic 
node graph neural network. In the training phase, we 
adopt a knowledge distillation strategy, using the graph 
neural network as the teacher model and the dynamic node 
graph neural network as the student model, thus enabling 
the student model to comprehensively learn and master 
the collaborative filtering relationship between users and 
music. In the inference phase, we use the trained dynamic 
node graph neural network to match new music accurately. 
After extensive experimental validation on the MSD public 
dataset, our approach demonstrates excellent effectiveness 
and efficiency, bringing users a more accurate music 
recommendation experience. Experimental results show 
that the state-of-the-art method improves our model by an 
average of 11.8% on the complete dataset and 7.1% on the 
cold-start problem compared to the best method, proving 
the effectiveness of our model.

Keywords: Multimodal, Music recommendation, Graph 
neural network, Recommendation system

1  Introduction

Personalized recommendation systems have become 
a powerful tool for users to find relevant information in 
the vast amount of Internet content [1], especially in the 
music domain [2], where personalized recommendation 

systems play a crucial role in discovering potentially 
great tracks and accurately delivering them to the right 
listeners. However, when faced with cold-start songs 
that lack interactive information, how to effectively 
incorporate them into a user’s playlist is a challenge. 

Content-based recommendation is a well-solved 
approach that recommends content with similar attributes 
by identifying feature similarities of items. For example, 
Bogdanov et al. [3] decomposed audio into 62 semantic 
descriptors as a way to extract deep features of music, 
while Chen et al. [4] clustered by extracting the Mel 
Frequency Cepstrum Coefficients (MFCCs) to accurately 
portray music characteristics. Considering that each song 
contains rich multimodal information, such as images, text, 
and audio, the reasonable utilization of such information 
can undoubtedly alleviate the cold start problem to a 
certain extent. However, content-based recommendation 
methods, while unique, neglect the collaborative filtering 
(CF) relationship between users and music. Such 
relationships can be largely presented through graph 
structures, and graph neural networks (GNNs) show great 
potential in capturing non-linear and non-trivial user-
item relationships and can easily incorporate multiple data 
sources. For example, Gori et al. [5] used a PageRank-
like algorithm for recommendation ranking; Kabbur et al. 
[6] effectively dealt with the problem of sparse datasets by 
decomposing the item-item similarity matrix into a product 
of low-rank latent factor matrices; and Xie et al. [7] 
proposed the SCCF method by combining local and global 
information in similar users, which significantly improves 
the recommendation performance.

GNNs recommendations still appear to be impotent 
when they face cold-start songs that lack interaction 
information. In order to remedy this shortcoming, 
researchers have started to explore new approaches. 
Jain et al. [8-9] attempted to combine recurrent neural 
networks with GNNs and introduced self-encoders to deal 
with dynamic graph structures [10]. In addition, Yan et 
al. [11] even cleverly transformed temporal relationships 
into temporal connections and proposed spatiotemporal 
graph neural networks, which provided a new idea for the 
solution to the cold-start problem.

We know that mining similarities between music and 
exploring their collaborative filtering relationships with 
users is the key to achieving accurate recommendations 
on songs without interaction information. Therefore, we 
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propose a novel model, Dynamic Node Graph Neural 
Network for Multimodal Music Recommendation 
(DNGNN), which aims to fully extract the multimodal 
information of music and deeply mine the multimodal 
CF relationship between users and music. Our main 
contributions include:

 ● Aiming at the limitations of existing approaches 
to the music cold-start matching problem, we 
innovatively propose a new model that leverages 
knowledge distillation to learn the collaborative 
filtering capability of graph neural networks. 
The model also can join dynamic nodes, thus 
effectively alleviating the music cold-start 
matching problem.

 ● To make full use of the semantic information in 
the feature fusion process, we carefully designed a 
multimodal feature fuser, which takes into account 
both the semantic divide of multimodal features 
and the complementarity between multiple 
modalities.

 ● We employ collaborative filtering-based feature 
fusion loss to facilitate knowledge transfer from 
the teacher model to the student model, which 
further enhances recommendation accuracy.

 ● We conduct exhaustive experimental validation on 
the real-world music dataset MSD, and the results 
fully demonstrate the superiority of our approach 
in solving the music cold-start problem.

2  Related Work

2.1 Multimodal Recommendation
Various types of auxiliary information [12-13], such 

as attributes [14-15], comments [16], and images [17-18], 
play an increasingly important role. However, existing 
models tend to process this information separately 
rather than fusing it when utilizing it. While multimodal 
features can provide complementary information to 
each other, effectively combining different forms of 
information remains a challenge. To this end, researchers 
have proposed several innovative approaches such 
as JRL [19-20] which uses deep neural networks to 
extract user and item features from multiple information 
sources and connect them to form a final representation. 
Recommendation models based on multimodal graph 
neural networks combine the advantages of graph neural 
networks and multimodal data to effectively model and 
exploit the relationships between multiple types of data. By 
representing data of different modalities as graph structures 
and jointly modeling them using graph neural networks, 
these models enable interaction and fusion between 
modalities. For example, GCN-PHR [21] attempted to 
introduce multimodal information into a user-item graph 
and extracted the features of the nodes through a graph 
neural network algorithm, which improved the accuracy 
of recommendations. In addition, multimodal graph neural 
network recommendation models also introduce advanced 
techniques such as graph enhancement techniques and 
knowledge graphs to further improve the accuracy of 

recommendations. MMGCL [22] introduces two graph 
enhancement techniques, by randomly deleting some edges 
between modalities and masking part of the information 
in the modalities, these models can efficiently learn 
correlations between modalities. Meanwhile, introducing 
the knowledge graph as a separate graph into the model can 
also provide richer semantic and structural information, 
which can help to better understand and predict the user’s 
behaviors. MKGAT [23] introduces the knowledge graph 
into a multimodal graph neural network recommendation 
system for the first time, and proposes a multimodal graph 
attention mechanism to model multimodal knowledge 
graphs; while MMKGV [24] proposes a graph attention 
network for message propagation over knowledge graphs.

2.2 Knowledge Distillation
Knowledge distillation has made significant progress 

in the field of graph neural networks, and numerous 
studies have attempted to apply this technique to the field. 
The Graph Markov Neural Network (GMNN) [25] is 
one of the leaders, which cleverly uses the EM algorithm 
optimization framework to iteratively optimize two graph 
convolutional networks, which can be regarded as a 
teacher and a student, respectively. Sun et al. [26], on the 
other hand, integrate multiple graph convolutional neural 
networks with the same structure by training them to 
act as a student network, and, by integrating them, these 
students outperform the teacher network. TinyGNN [27], 
on the other hand, transfers the knowledge from a deep 
GNN to a smaller GNN through knowledge distillation, 
allowing it to gain a strong inferred node representation 
in a short period while maintaining the capture of local 
neighborhood information. Yang [28] et al. by designing a 
specific student model and combining it with a knowledge 
distillation framework, succeeded in making this model 
outperform traditional graph neural networks. SGDD 
[29], on the other hand, distill knowledge from GNNs to 
multilayer perceptual machines (MLPs), enabling MLPs 
to exhibit robust performance without relying on graph 
topology.

3  Problem Formulation

The recommendation task studied in this paper 
focuses on accurately predicting the probability of a target 
user’s preference for a song in a context where that user 
is known. Based on this probability, we will rank the 
uninteracted songs in descending order and thus generate 
a Top-N song recommendation list. In this study, let U = 
{u1, u2, …, uN} represent the user, M = {m1, m2, …, mP} 
represent the song, and lyr and fre denote the lyrics and 
audio part of the song, respectively. For the processing of 
the lyrics features, we use the pre-trained language model 
BERT [30] for encoding and selecting the transformed 
representation of the last layer of [CLS] markers as the 
representation of the lyrics, denoted as elyr ∈ Rd. As for the 
audio features, we extract them using YAMNet to generate 
the representation of the audio efre ∈ Rd.
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4  Our Method

4.1 Multimodal Recommendation
BERT is a powerful pre-trained language model that 

captures deep contextual information in text. BERT is 
based on the Transformer architecture and learns word- 
word relationships through the self-attention mechanism 
to generate word embeddings that contain rich semantic 
information. YAMNet is a pre-trained audio classification 
model that extracts a variety of features in audio. YAMNet 
can identify different sound events in audio, such as 

instrumental sounds, human voices, environmental sounds, 
etc., and generate corresponding feature representations. 
By using YAMNet to extract audio features, we can 
obtain an audio representation that matches the lyrics 
representation, which facilitates subsequent analysis 
and fusion. The overall framework diagram is shown in 
Figure 1. After obtaining the lyrics embedding and audio 
embedding codes respectively, this paper uses the cross-
coding method of dual-stream structure, i.e., LXMERT 
[31], to perform the feature extraction of the cross as a way 
to achieve modal interaction. 

 

Figure 1. The overall architecture of the DNGNN model 

(It consists of two parts: multimodal characterization and knowledge distillation, and each step is explained in detail in the 
following subsections.)

4.1.1 Multimodal Feature Extraction
We encode the lyrics by a pre-trained language model 

BERT and use the transformed representation labeled 
in the last layer [CLS] as the lyrics representation. At 
the same time, we use YAMNet to extract the audio 
representation. We fine-tune BERT and YAMNet during 
the training phase. The relevant formulas are as follows:

( )lyre BERT lyr=                               (1)

( )free YAMNet fre=                             (2)

4.1.2 Multimodal Feature Fusion
After obtaining the lyrics feature vectors and audio 

feature vectors, to effectively fuse the lyrics feature vectors 
and audio feature vectors, there exist two mainstream 
interaction methods, single-stream and dual-stream. 
Generally speaking, the dual-stream structure performs 
better in feature learning and can capture the correlation 
between different features more comprehensively. 
Therefore, in this paper, we mainly rely on the LXMERT 
model  with the dual-stream structure for  cross-
feature learning, which is an excellent way to achieve 
the interactive learning of lyrics and audio features. 

Specifically, the related calculation formula is described as 
follows:

l l
m lyr fre

l

e e e= ⊕∑                              (3)

( )( )1 1 1 1
1 2, , , ,l l l l l

lyr lyr fre fre frene CrossAtt e e e e− − − −=             (4)

( )( )1 1 1 1
1 2, , , ,l l l l l

fre fre lyr lyr lyrne CrossAtt e e e e− − − −=              (5)

where l is the number of layers in the LXMERT model, 
through the interactive attention mechanism between 
lyrics and audio, we can learn implicit interaction features 
that are reflected in the lyrics and audio features after 
the interaction. This learning of implicit features allows 
the model to better understand the multidimensional 
information of the song.

4.2 Knowledge Distillation based on GNNs
4.2.1 Teacher Model

We adopt 4-layer LightGCN [32] as the teacher model 
with encoded user features and song multimodal features 
as input. After extensive experiments, it is shown that 
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4-layer LightGCN can achieve the best performance. The 
relevant formulas are as follows: 

( ) ( ) ( )( )1 ,
m

m u

ll l
u u T

T

e AGG e e+

∈

= ∑


                      (6)
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l l l
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u

e AGG e e+

∈

= ∑


                      (7)

where l denotes the number of LightGCN layers, AGG 
denotes the aggregation function, eu denotes the user 
feature vector, and mTe  denotes the song feature vector in 
the teacher model.
4.2.2 Student Model

In order to extend the generalization ability of the 
model, we designed a new network as the student model 
and adopted a 4-layer structure to make the student model 
fit the structure of the teacher model more closely. The 
relevant formulas are as follows: 

( 1) ( )
m m

l l
S Se e W b+ = ⋅ +                               (8)

where W denotes the weight matrix and b denotes the bias 

coefficients, when l is 0, em = ( )
m

l
Te = ( )

m

l
Se  .

4.3 Prediction
To preserve the semantic information of each hop, we 

used an average weighting to get the final user features and 
song features, and the relevant equations are shown below:
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Model predictions are defined as the inner product of 
the final representations of users and items:

_ˆ
m

T
um train u Ty e e= ⋅                              (12)

_ˆ
m

T
um test u Sy e e= ⋅                               (13)

In the training phase,  we use _ˆum trainy  as  the 
prediction score and participate in the loss calculation. In 
the inference phase _ˆum testy  is used as the final prediction 
score.

We use Bayesian Personalized Ranking (BPR) loss 
[33], as the predictive loss for LightGCN, with the loss 
function shown below: 

( )ˆ̂
train train

u u

U

BPR ui uj
u i j

ln y yσ
∈ ∉

= − −∑∑ ∑
 

            (14)

where σ() denotes the sigmoid function.
To make the student model learn better and make the 

student model simulate the similarity between the samples 
in the teacher model, the student model can fully exploit 
the structured feature information between the samples in 
the teacher network, and realize to extract generic, rich, 
and sufficient knowledge from the teacher model to guide 
the student model. The relevant formula is shown below: 

( )
( ) ( )( )

,

, , ,
m m m m

L
l l l l

G G S S G T T
l e e e

MSE D e e D e e
′ ∈

′ ′=∑ ∑    (15)

where MSE() denotes the distance metric function that 
represents the constructed graph in minimizing students 
and teachers, and DG denotes the similarity constructor 
between nodes.

For the Dynamic Node Graph Neural Network, we 
propose an objective function defined as follows: 

( ) 2
2BPR G λ= + + ΘΘ                         (16)

where λ denotes the parameter of L2 regularisation 
to prevent overfitting, and we jointly implement the 
optimization of the Dynamic Node Graph Neural Network 
by combining the BPR loss, the distillation loss, and the 
L2 regularization.

5  Experiments

5.1 Dataset and Metrics
We used the MSD-A dataset, as shown in Table 1 which 

is related to the Million Song Dataset (MSD). We used 7 
to 30-second audio previews retrieved from 7digital.com. 
After removing ambiguous artists and missing tracks, the 
final dataset consists of 328,821 tracks by 24,043 artists, 
each with at least 15 seconds of audio and 50 characters in 
length, with 5.2 M interactions. To validate the cold-start 
problem, we retained 10% of the songs for testing. We 
used Recall@50 and NDCG@50 as evaluation metrics and 
evaluated the ranking results on the entire set of songs.

Table 1. Dataset details

Dataset # songs # interactions
MSD-A 328K 5.2M

5.2 Baseline
To verify the effectiveness of our method, we will 

compare it with the following method:
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 ● Dropoutnet [34] imposes random feature dropping 
on the input to satisfy the condition of missing 
preference patterns.

 ● Global Orthogonal Regularization (GOR) [35] 
applies global orthogonal regularization to the 
input to maximize the “unfolding” feature in the 
descriptor space;

 ● Correlated Feature Masking (CFM) [36] applies 
correlated feature masking to the input to learn 
better potential relationships between item 
features.

 ● Bootstrapping Contrastive Learning (BCL) [37] 
improves the quality of learned representations by 
applying contrast regularization.

5.3 Implementation Details
The method described in this paper is implemented 

using PyTorch and deployed on an NVIDIA Titan XP 
GPU with 24G of memory. To ensure a fair comparison, 
we adhere to the optimal parameters or publicly available 
source code provided by the baseline model as a basis for 
obtaining experimental results. In optimizing the objective 
function, we employ the stochastic gradient descent 
approach. Given the remarkable efficiency demonstrated 
by Adaptive Moment Estimation (Adam) in non-convex 
optimization problems, we utilize the Adam optimizer for 
model optimization and parameter updates. To determine 
the optimal hyperparameter values, we primarily rely 
on a grid search strategy, setting the batch size to 1024 
and the learning rate to 0.001. the features obtained from 
BERT and YAMNet are set to be 300 dimensional for ease 
of feature interaction. Finally, we select Recall@50 and 
NDCG@50 as evaluation metrics to comprehensively 
assess the ranking results across the entire song dataset.

Table 2. Overall results for different models 
(They are trained on the cold start and full training data, 
choosing 10% of the songs as a cold start problem. The 
best results are shown in bold.)

MSA-A Cold-start
Method Recall@50 NDCG@50 Recall@50 NDCG@50

Dropoutnet 0.0481 0.0281 0.0629 0.0389
GOR 0.0504 0.0299 0.0652 0.0421
CFM 0.0551 0.0313 0.0693 0.0430
BCL 0.0619 0.0351 0.0734 0.0475

DNGNN 0.0682 0.0398 0.0785 0.0510

5.4 Performance Comparison
The performance comparison results are shown 

in Table 2. Recall@50 and NDCG@50 are used as 
evaluation metrics. Our DNGNN model achieves the best 
performance on both the MSA-A complete dataset and 
the cold-start problem. Compared to the baseline model 
BCL, our model improves on average by 11.8% on the 
full dataset and 7.1% on the cold-start problem, proving 
the effectiveness of our model. Meanwhile, we performed 
cluster analysis on songs and users, and the song clustering 
results are shown in Figure 2, and the correlation analysis 
between user clusters and song clusters is shown in Figure 

3. This significant improvement can be attributed to three 
reasons:

Figure 2. Song clustering analysis

Figure 3. User-song heat map

Multimodal information fusion: music, as a multimodal 
information carrier, contains multiple dimensions such 
as melody, rhythm, lyrics, and emotion. Traditional 
recommendation methods often only consider a single 
dimension, such as user behavior data or labels of music, 
which makes it difficult to fully capture the characteristics 
of music. Dynamic node graph neural networks can fully 
fuse the multimodal information of music, and more 
accurately capture the collaborative filtering relationship 
between users and music by constructing a complex 
relationship graph between users and music. This fusion of 
multimodal information enables the model to understand 
the user’s preferences more comprehensively, thus 
improving the accuracy of recommendations.

Dynamic Node Processing: Traditional graph neural 
networks have difficulty in easily adding new nodes to 
perform subsequent tasks during the inference phase, 
which limits their application in music recommendation 
systems. Dynamic node graph neural networks can 
solve this problem. By adopting a knowledge distillation 
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strategy in the training phase, the dynamic node graph 
neural network can comprehensively learn and master 
the collaborative filtering relationship between users and 
music. In the inference phase, the model can easily add 
new music nodes and perform fast and accurate analysis 
and matching of new nodes, which makes the model more 
flexible to cope with continuously updated music libraries 
and ensures the timeliness of recommendations.

Efficient and accurate recommendation: the dynamic 
node graph neural network model continuously optimizes 
its node representation and relationship learning 
capabilities during training, enabling it to accurately 
capture the complex relationship between users and music. 
By combining the user’s historical behavior, the music’s 
attributes, and their interactions, the model can generate 
high-quality recommendations. In addition, the model 
has high computational efficiency and can process a large 
amount of user and music data in a short period to meet the 
real-time requirements of music recommendation systems.

5.5 Ablation Experiment
We conducted ablation experiments to assess the 

contribution of different components of our proposed 
DNGNN model. Our goal was to understand the impact of 
key design choices and to examine factors that contribute 
to model improvement. We explored the impact of the 
multimodal cross-fusion module as well as the teacher 
module on the DNGNN, and the results of the ablation 
experiments are shown in Table 3,  (w/o Cro) denotes the 
removal of the multimodal cross-fertilization module, 
the component focuses on the fusion of features from 
different modalities such as lyrics and audio in the 
recommending process, by ablating the module this 
study aims to understand the importance of integrating 
information from multiple modalities. (w/o Dis) denotes 
removal removes the teacher module, which is responsible 
for providing guidance and knowledge transfer to the 
student model during the knowledge distillation process 
ablating the teacher module helps to assess the impact 
of knowledge distillation on the learning process of the 
student model, by removing this module, it is possible to 
analyze to what extent the distillation of the teacher model 
contributes to improving the performance of the student 
model. (w/o C&D) denotes the removal of both. For all 
ablation setups, we replicated the experimental setup and 
evaluation metrics used in the original experiments. Based 
on the results of our ablation experiments, we observed the 
following: 

Table 3. Results of ablation experiment

MSA-A Cold-start

Method Recall@50 NDCG@50 Recall@50 NDCG@50

w/o Cro 0.0532 0.0310 0.0600 0.0388

w/o Dis 0.0496 0.0290 0.0550 0.0360

w/o C & D 0.0441 0.0212 0.0484 0.0324

DNGNN 0.0682 0.0398 0.0785 0.0510

Firstly, the removal of the multimodal cross-fusion 

module showed a significant decrease in the performance 
of the DNGNN model. This result fully demonstrates the 
important role of the multimodal cross-fusion module 
in the model. By fusing information from different 
modalities, the model can understand the input data more 
comprehensively, thus improving the accuracy of the 
prediction.

Second, we examined the effect of the teacher module 
on the model performance. In the ablation experiment, we 
remove the teacher module and observe the performance 
change of the student model. The experimental results 
show that the performance of the model also decreases 
after removing the teacher module. This suggests that 
the teacher module plays a key role in the knowledge 
distillation process and helps to improve the performance 
of the student model by transferring knowledge and 
experience from the teacher model.

Finally, we also compared the simultaneous removal 
of the multimodal cross-fusion module and the teacher 
module. The experimental results show that the most 
significant decrease in model performance is found in this 
dual absence scenario. This finding further reinforces the 
centrality of the multimodal cross-fusion module and the 
teacher module in the DNGNN model.

Through the ablation experiments, we gained insights 
into the impact of the multimodal cross-fusion module and 
the teacher module in the DNGNN model on the model 
performance. These results provide important guidance 
for us to further optimize the model. In future work, we 
will continue to explore other possible modules and design 
choices to further improve the performance of the DNGNN 
model.

6  Conclusion

In this paper, we addressed the challenging task of 
multimodal music recommendation, particularly focusing 
on the cold-start problem. Leveraging the unique strengths 
of graph neural networks in capturing collaborative 
filtering relationships between users and music, we 
proposed a novel neural network architecture known as the 
Dynamic Node Graph Neural Network (DNGNN). This 
architecture overcame the limitations of traditional graph 
neural networks in incorporating new nodes during the 
inference phase.

Our approach fused knowledge distillation, using 
a GNN teacher to impart knowledge to the DNGNN 
student. The student model mastered intricate user-music 
relationships. During inference, DNGNN accurately 
matched music to preferences, refining recommendation 
accuracy.

MSA-A dataset tests proved our method’s superior 
efficacy and efficiency, addressing music cold-start issues 
with tailored recommendations. Future graph neural 
network-based multimodal music recommendation 
research will emphasize: 1) integrating more modalities 
beyond lyrics and audio, 2) adapting to evolving user 
preferences and trends, 3) developing interpretable 
models for transparency, and 4) addressing scalability and 
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efficiency for large-scale systems. Goals include enhancing 
personalization and music listening experience.
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