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Abstract

Mill ions of  crowdsourced workers  are  using 
crowdsourced platforms for their second jobs. They 
have different testing skills, styles, preferences, etc. 
Understanding them is important for making collaborative 
decisions such as crowdsourced task assignments. 
Existing crowdsourced platforms do not provide enough 
information about crowdsourced workers, and we need 
to spend a lot of effort searching for this information on 
crowdsourced platforms. In contrast to the basic worker 
information displayed on crowdsourced platforms, we 
propose describing workers as a quick way to characterize 
and understand them. We discuss how to build portraits 
of workers that are concise and informative. We propose 
a multidimensional model for Android crowdsourced 
worker portraits to specify attributes about various aspects 
of software testing. Then, we propose a methodology that 
utilizes text analytics, web data analytics, and test script 
analytics techniques to analyze various sources of data 
about workers on a crowdsourced testing platform in order 
to construct the portraits. The constructed portraits can be 
vividly displayed on the web to help people quickly learn 
about crowdsourced workers and make better decisions 
when collaborating on testing software. Results show the 
potential for recommended improvements and correct 
assignments when using our portraits. Worker portraits are 
an effective form of characterizing workers. It helps one to 
quickly understand workers and can be applied to a variety 
of applications in the software testing process.

Keywords: Crowdsourced testing, Android, Portraits, 
Worker selection

1  Introduction

In a crowdsourced task, the behavior and attitude of 
the crowdsourcer are important characteristics that attract 
people. Crowd workers must perform the task to the best 
of their abilities since the engagement of crowd workers 
is significantly dependent on obtaining valuable results. 
Crowdsourced platforms will recruit suitable individuals 
from a large pool, and crowd-worker engagement may be 
influenced by both the crowd-workers’ characteristics and 
the characteristics of the crowd-testing jobs. 

To reduce the cost of software testing, improve 
software quality [1-2], and speed up testing progress, 
many methods and approaches have been proposed to use 
crowdsourced software testing to replace or assist in-house 
testing [3-6]. One of the most fundamental functions is 
identifying the appropriate worker for a specific testing 
task [7-9]. It is important to keep in mind that even 
though crowdsourced resources are cost-effective, they 
are not entirely free. Therefore, to ensure the sustainable 
development of crowdsourced technology, it is crucial to 
allocate tasks efficiently. However, previous technologies 
have been lacking in terms of considering the continuity 
between time and historical data, which has resulted in 
a reduction in the efficiency of task allocation. When it 
comes to scaling up crowdsourced testing, it is essential to 
maximize the information available to each member.

Additionally, not all group workers are equally 
skilled at finding bugs. The wrong employee can miss 
bugs or report duplicate bugs, and hiring them requires 
an extraordinary budget. Due to the extensive, uncertain 
nature of crowdsourced workers, it is difficult to predict 
outcomes. [10], we should only allow some workers to 
participate in crowdsourced testing tasks. Therefore, it is 
valuable to recommend a suitable group of workers for 
testing tasks so that more software bugs can be detected 
with fewer workers. To help identify suitable workers for 
crowd-testing tasks, many different methods have been 
proposed, e.g., based on the testing environment [9-10], 
experience [11-13], abilities [9, 14], or expertise on the 
task [15-20], and so on. Unfortunately, these methods have 
limited applicability to the volatile crowdsourced software 
testing process.

Crowd worker characteristics include personnel 
expectations, extrinsic motivation, and satisfaction 
motivation. Personnel expectations represent crowd 
workers’ expectations of participating in the crowd-
testing task during the event. Deviations from these 
expectations can affect crowd workers’ motivation, 
commitment, and satisfaction. Before participating in a 
crowdsourced task, contractors must provide relevant 
information, including task requirements, completion 
time, and accurate compensation details for participants. 
Workers’ lack of task information may lead them to take 
on tasks that do not match their abilities, resulting in 
wasted time and underpayment. This, in turn, affects crowd 
workers’ motivation and engagement, ultimately reducing 
overall crowd-worker participation. Crowd workers are 
extrinsically motivated to participate in crowd-testing 
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tasks to receive monetary or material rewards. There is a 
linear relationship between crowd workers’ engagement 
and extrinsic motivation. Another characteristic of crowd 
workers is satisfaction motivation; they want to improve 
their skills in participating in crowdsourced tasks or 
completing them to gain a sense of satisfaction and 
achievement. Crowd workers rely on improved skills to 
perform crowdsourced tasks more effectively.

Characteristics of crowd workers’ work include 
task characteristics, crowd worker visibility, and work 
environment. Characteristics of crowd-worker jobs include 
task characteristics, crowd-worker visibility, and work 
environment. Differences in crowdsourced tasks may 
affect employee engagement, especially if irresponsible 
crowdsourcers violate the rules of crowdsourced tasks. 
Crowd workers’ performance will improve with feedback 
related to their tasks, and they will be diligent in 
performing various tasks. The visibility of crowd workers is 
the second characteristic; all crowd workers are visible on 
the crowdsourced platform, and appropriate crowd workers 
can be identified in a large group of people. The third 
characteristic of the crowd worker’s work characteristics 
is the work environment, where the work environment and 
environmental characteristics play a vital role in the crowd 
worker’s execution of tasks. Crowdsourcing platforms 
provide multiple engagement options for crowdsourcing. 
Crowd workers can participate virtually from their homes, 
shops, or workplaces. As potential work environments 
increase, so do employees’ availability, flexibility, and 
independence, which can also improve performance and 
satisfaction. As workers and test tasks accumulate on the 
crowdsourcing platform, a large amount of data is retained, 
including personal characteristics of the crowdsourced 
workers, such as name, age, job, and other important 
information. It also includes characteristic behavioral data 
such as the number of projects the crowdsourced workers 
have participated in, the completion of the projects, and 
the test reports submitted. It is a challenge to improve the 
match between crowdsourced workers and projects and 
ensure the dedication of crowdsourced workers through 
these characteristic data.

In  summary,  this  paper  makes the fol lowing 
contributions: we utilize crowd workers’ personal 
information and behavioral characteristic data on a crowd-
testing platform. We use user profiling technology to 
extract user feature labels, establish personal and group 
portrait models of the crowd workers, and verify the 
model’s effectiveness through simulation experiments. 
We also compare the results with those obtained from the 
random selection method to evaluate the accuracy of this 
new method.

The remainder of this paper is organized as follows. In 
Section 2, we propose an Android crowdsourced software 
worker portrait model. Experimental validation of our 
method is performed in Section 3. Section 4 discusses 
related work. Section 5 discusses validity threats. Finally, 
in Section VI, we conclude this work.

2  Android Crowdsourced Software 
Worker Portrait Model

To construct the user portrait of Android crowdsourced 
software workers, we limited the type of testing involved 
to Android testing so that all the relevant behaviors of the 
crowdsourced software workers are related to Android 
testing. Specifically, they include the number of times 
they have participated in executing Android tests, the test 
scores they have achieved in Android testing, the number 
of Android defects they have found, the frequency with 
which they have participated in Android testing, and so on. 
The situation of the match between crowdsourced software 
workers’ work and the work on Android has a significant 
impact on the construction of the user portrait of Android 
crowdsourced software workers.

Therefore, the construction of Android crowdsourced 
software workers’ labels will be highly relevant to 
Android. At the same time, the Android crowdsourced 
software workers’ personnel user portrait model includes 
essential information and dynamic information about 
workers, etc., which can be obtained. Figure 1 shows the 
labeling system of the Android crowdsourced software 
worker portrait. Android crowdsourced software worker 
portrait model consists of two types: basic information 
and dynamic information. The basic information includes 
identity/occupation and mobile device used labels, and the 
dynamic information includes behavioral characteristics 
labels.

 

Figure 1. Android crowdsourced software worker portrait 
labelling system

2.1 Android Crowdsourced Software Worker Label 
Definition
The user portrait of Android crowdsourced software 

workers should include two aspects: basic information 
about the workers, such as identity/occupation and use 
of devices, and dynamic information extracted from 
their behavioral data, such as motivation to participate in 
testing, relevance of their testing experience, and testing 
ability. 

(1) Identity/job is one of the most basic information 
about workers and a basic reflection of their field. 
The identity/job characteristic value is agreed to 
be Tjob, and it is defined as Equation 1:
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where RAndroid denotes the worker’s work and Android 
system correlation denotes a degree that the options 
for Android-related work content are given by the test 
platform. The selection of compliant options is determined 
by the worker’s work content. The formula for RAndroid is 
shown in Equation 2: 
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where OptAndroid indicates the number of options selected 
by the worker, and Opttotal indicates the total number of 
options; Lskil indicates the skill level embodied in the 
worker, based on the content of the work selected on the 
previous working day, and the specific rating is determined 
by the test platform according to the content of the work of 
the various levels of Android engineers. By combining the 
content of the work of the workers and their abilities with 
each other, it is possible to further categorize the skill level 
of these people into introductory, beginners, intermediates, 
and advanced. We can further classify them as beginners, 
elementary, middle, and advanced. The skill level Lskil is 
expressed as Lskil−j (j = 1,2,3,4,5), where Lskil−1 = 0.1, Lskil−2 
= 0.2, Lskil−3 = 0.4, Lskil−4 = 0.6, and Lskil−5 = 0.

(2) The role of using the device is extremely 
important; it is the main source for workers to 
contact and obtain system information, and it is 
also the embodiment of workers’ familiarity with 
different operating systems, such as the familiarity 
with Android, IOS, etc. The characteristic value 
of using the device, denoted as Tacq, is defined as 
Tacq = Luse−j; Luse−j represents the worker’s use level 
of using the Android device. The usage level of 
the device is classified into novice, average, and 
expert level according to the different functions 
of using the Android device. The usage level          
Luse−j is denoted as Luse−j (𝑗=1,2,3,4), where Luse−1 = 
0.1, Luse−2 = 0.3, Luse−3 = 0.5, and Luse−4 = 0.8.

(3) The extent to which workers are active in Android 
testing at a crowdsourced software testing platform 
is captured by the motivation of each worker to 
participate in testing. The activeness includes 
the time when the worker starts the first test 
task, denoted as Tstart, the time of the last test task 
completed at this crowdsourced software testing 
platform, denoted as Tend, the number of Android 
tests that the worker participates in, denoted as 
AAndroid , and the eigenvalue of the activeness of the 
participation in Android testing, denoted as Tact, 
This is defined in equation 3, as shown below:
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(4) The number of tests related to Android testing in 
the test tasks operated and completed by workers 
is determined by the relevance of their testing 
experience. The worker’s total number of involved 
test tasks is denoted as Atotal, and the eigenvalue of 
the relevance of testing experience is denoted as 
Trel, as shown in Equation 4:

Android
rel

total

A
T

A
=                                  (4)

(5) One of the most important characteristics of 
workers is their own testing ability, which directly 
determines the quality of the test report. Testing 
ability is reflected in the number of defects found 
by workers in Android testing and the weight of 
the defects. The more defects are found, the higher 
the weight of the defects is, which directly reflects 
the stronger ability of the workers. Because the 
importance of each defect is different, the number 
of defects with different weights is also different; 
therefore, the average weighted number of defects 
can be calculated, which is denoted as Abug. Bugi 
represents the ith defect found, and according 
to the different weights of the defects, it can be 
further classified into the following four levels: 
no weight, low weight, general weight, high 
weight. The weight of the defects is denoted as 
BWLj(j=1,2,3,4), where BWL1 = 0, BWL2 = 0.5, 
BWL3 = 1.5, and BWL4 = 4.5. The average weighted 
number of defects can be calculated as Abug 

= ,4
1, 1

n
i j= =Σ Bugi ×BWLj/ 1

n
i=Σ Bugi. The eigenvalue Tabi 

of worker’s testing ability is defined as Tabi = Abug.
In the previous section, we described the feature labels 

in the user portrait model of constructing crowdsourced 
software workers from the perspectives of some of the 
workers’ attributes, such as occupation/identity, use of 
equipment, motivation to participate in testing, relevance 
of testing experience, and testing ability, respectively. 
When the relevant data of the workers are acquired, the 
corresponding feature values can be further derived after 
analyzing the data. However, the weights of these feature 
values are different. According to the research of An et 
al. [21] in crowdsourced software testing, the features of 
crowdsourced software workers satisfy the relationship of 
“ability > experience > preference”, so in the construction 
of the user portrait model, the importance of the above 
feature values are ranked as follows: testing ability > 
testing Relevance of experience > Occupation/identity > 
Motivation to participate in testing > Use of equipment. 
According to the different weights of these features, we 
can quickly determine what type of workers are suitable to 
participate in Android testing.

It is judged by the worker’s competence profile Tabi, 
which combines two key factors that reflect the quality 
of the test report: the number of defects and the weight 
of the defects. After calculating the proportion of defects 
with different weights and their scores, it can be seen 
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that the higher the weight of the defects, the higher the 
score it accounts for. Therefore, discovering defects with 
weights and earning scores indicates that the worker is 
more competent. Based on the value of this feature, the 
competence level of Android workers can be quickly 
classified as excellent, medium or mediocre competence.

Judged by the correlation Trel of testing experience, the 
correlation feature Trel of testing experience combines the 
total number of tests completed and the number of Android 
tests completed by the worker. The higher the percentage 
of Android tests that workers have participated in, the 
relative ability to respond to the worker’s preference and 
familiarity with testing on Android, and workers with a 
high degree of familiarity and a tendency to complete 
Android tests are more likely to get a good test score in 
Android testing. By evaluating this feature, it is possible to 
classify workers in Android testing at the experience level 
into experienced, average experience or lack of experience.

Judging by the workers’ own occupation/identity 
characteristics, if the workers themselves are engaged 
in some software development work, such as Android 
engineers, Android software test engineers, etc., they 
are bound to have a more obvious advantage when they 
perform this kind of task of Android testing; at the same 
time, engineers at different levels have their own strengths 
and weaknesses in their abilities, so the testing platform 
lets workers choose their usual work content to compare 
the match with the demand points of the testing tasks. 
Generally speaking, the closer the workers’ work content 
is to the testing tasks and the more in-depth the skills they 
have mastered, the better their performance will be when 
completing this type of testing task. Therefore, the skill 
levels of workers are categorized as introductory, beginner, 
intermediate, intermediate-advanced and advanced.

Then, the activity of workers in executing Android 
testing tasks is judged by the motivation Tact of participating 
in testing, and the total ratio of the number of completed 
Android tests to the total time of executing all testing tasks 
reflects the workers’ willingness to execute Android testing 
life and the efficiency of completing the test tasks, and 
the workers who are willing to execute Android testing 
and complete the test tasks efficiently will be better in 
completing the testing tasks. workers will be better at 
completing the testing tasks. Therefore, through the scores 
of this characteristic, workers’ motivation towards Android 
testing can be classified into positive, average and negative 
types.

Finally, through the discussion of the worker’s use 
of the device characteristics Tact, different users, the use 
of Android/IOS device level is actually very different. 
While most people most commonly used to the phone’s 
communication functions (such as phone calls, emails, 
text messages), the use of various types of applications 
(such as chatting, gaming, shopping) and so on, the 
general public will not be able to use the mobile phone 
is more biased to the bottom level of the general public 
will not use the more low-level functions of the mobile 
phone (such as reinstallation and brushing, modification 
of applications). Some users will write a custom desktop 
system, modify the application installation package and 

other more kernel operations. The use of the device and 
the ability to understand the test user will also affect the 
implementation of the test process. Therefore, the workers’ 
use of the device is classified as novice, average, expert, 
and specialist.

Based on the above order, to gradually delineate the 
type of workers belonging, the characteristic attributes of 
Android workers in this test type can be derived, and the 
user portrait model of workers can be derived.

2.2 Visualization of User Portrait Models for Android 
Crowdsourced Software Workers
The worker’s user portrait model is the result of the 

feature extraction process of the user portrait, and the final 
result generated includes the worker’s name and his feature 
combinations. This process is done autonomously by the 
crowdsourced software testing platform. The purpose of 
studying the user portraits of Android workers is to get 
precise information about the worker’s capabilities, to 
make it easier to find a suitable worker to perform the 
task when performing this type of testing task, and also to 
make it easier for the worker to be pushed or invited to the 
testing tasks that are suitable for him. So, to make it easier 
for the workers and the crowdsourced software testing 
task senders to perceive the process and use it for their 
convenience, the workers’ previously obtained user portrait 
model needs to be visualized.

The visualization of the individual worker user 
portrait model is specific to the worker himself, whose 
personal user portrait can be seen on his homepage on the 
crowdsourced software testing platform.

The individual worker user portrait will contain more 
personalized information, such as an evaluation of the 
individual’s activity in the category of Android testing. 
These evaluations are based on the amount of time the 
user spends executing Android testing tasks on the test 
platform compared to the execution time of workers across 
the platform, such as an evaluation of the user’s activity 
in the category of Android testing, the number of Android 
testing tasks the user performs on the test platform, such 
as an evaluation of the degree of expertise of the worker 
in the field of Android testing, the achievements of the 
worker in Android testing tasks, which is an evaluation 
of his competence in Android testing can be derived. The 
degree mentioned above of activity, area of expertise, and 
ability evaluation are used as labels for individual workers 
to evaluate the behavior of individual workers in Android 
testing. Some values need to be quantified in numbers, 
such as average contribution value, average number of 
defects found, average number of active defects, average 
revenue earned, etc., in Android testing.

To visualize these contents above into a single worker 
user portrait, we choose to present the activity level, the 
area of expertise, and the ability evaluation, which can 
be evaluated qualitatively. These aspects are presented 
through a worker graph combining the evaluation of these 
labels; we can get the labeled graphs of the abbreviated 
version of the Android worker user portrait, as shown in 
Figure 2.
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Figure 2. Label for Android worker user portraits

In addition, some other values need to be measured 
numerically, such as the average contribution value in the 
field of Android testing, the average number of defects 
found, the average number of valid defects, the average 
income earned, and other specific values about the worker’s 
user portrait characteristics that can be displayed in a radar 
chart. This gives a more intuitive view of the numerical 
distribution of the values of these characteristics, reflecting 
the areas in which the performance is outstanding and 
the areas in which they are lacking. Figure 3 shows an 
abbreviated version of the Android worker competencies 
radar chart. The graph expresses the worker’s competence 
in four dimensions, with the darker parts representing the 
worker’s scores.

Figure 3. Radar chart of android worker competencies

The group Android worker user portrait is constructed 
by extracting the user characteristics of all participating 
workers and refining the user labels for the performance 
of workers in Android testing, which ultimately serves the 
testing task contractors and helps them to make decisions.

The visualization of the group Android worker user 
portrait model is convenient for the test task contractors 
to browse the workers better. Based on the user portraits 
given to the workers, contractors can sieve out the workers 
that meet their current test task. It can be achieved as 
much as possible with fewer workers, resulting in lower 
commission to pay for a high-quality test report.

The Android  crowdsourced sof tware  worker 
user portrait model constructed in this chapter is for 
the crowdsourced software testing task contractor. 
Characteristics such as testing ability, the relevance 
of testing experience, occupation/status, motivation to 
participate in testing, and use of devices can be both 
qualitatively evaluated and quantitatively analyzed. 
When crowdsourced software testing tasks, it is difficult 
to quantify the average number of defects found and the 

average number of practical defects found by workers. 
Still, using terms such as excellent testing ability and 
testing experience is more accessible. However, the test 
task contractor sometimes also needs to see the specific 
distribution of values, so this design first allows the test 
task contractor to select labels, such as excellent testing 
ability, testing experience, and other labels. After clicking 
on it, a list of workers who meet the requirements will 
appear in descending order of testing ability. The list will 
appear in the list of workers in all the task grades related 
to the labels. When the test task contractor can not be 
selected, click on the player, which will also appear in 
the specific value of the distribution of the radar chart. 
This is the best of both worlds, making it easy for the test 
contractor to select workers quickly and satisfactorily. 
Figure 4 shows an abbreviated version of this process.

Figure 4. A simplified diagram of the selection process for 
group Android worker competencies

3  Experiment Design and Results 
Analysis

In this section, we will experimentally validate 
our approach and design experiments to validate the 
construction, efficacy, and implementation of user portraits 
for Android crowdsourced software testing proposed in 
this paper based on the following two research questions, 
respectively. 

RQ1: Can the method effectively construct portraits of 
Android crowdsourced software workers?

RQ2: Can Android crowdsourced software worker 
portraits enhance the effectiveness of crowdsourced 
software testing projects?

3.1 Experimental Design
In order to answer the above research questions, we 

design the following two experiments: to validate the 
effectiveness of the Android crowdsourced software 
worker portrait model through large-scale analog data 
simulation, and to verify the enhancement of the user 
portrait technique on the effectiveness of the crowdsourced 
software testing project by using the scoring rate, the 
accuracy rate, and the F-value as the evaluation metrics in 
comparison with the randomly selecting workers method.

Experimental Design 1: This paper uses the following 
data and methods to conduct experiments. The current 
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crowdsourced software testing platform has less content 
about Android testing, and it is difficult to obtain the 
information and test reports of crowdsourced software 
workers, so simulated data is used to verify. Firstly, it is 
assumed that there are 1000 workers on board a certain 
crowdsourced software testing platform, which has various 
types of testing tasks, including Android functionality 
testing, Android compatibility testing, Android security 
and privacy testing, etc. Secondly, the initial values of 
the identity/occupational characteristics of the workers, 
Tjob, the characteristics of the use of devices, Tacq, the 
eigenvalues of the motivation to participate in testing, Tact, 
and the eigenvalues of the relevance of the trial experience, 
Trel, etc., are set, and the relevant data are calculated after a 
certain number of test tasks are simulated.

Experimental Design 2: In order to validate the 
efficacy of this paper’s user portrait technique in an 
Android crowdsourced software testing project. The 
effectiveness of this paper’s method is compared with the 
traditional method of randomly selecting crowdsourced 
software workers. We select five Android application 
crowdsourced software testing projects from Mooctest 
crowdsourced software testing platform to conduct 
experiments. Firstly, n workers are recommended for a 
crowdsourced software testing project according to the 
user portrait method in this paper, and in order to ensure 
the fairness of the experiment, we again use a random 
selection of the same number (n) of workers. For example, 
in crowdsourced software testing task 1, the user portrait 
technique in this paper selects 12 crowdsourced software 
workers that satisfy the testing requirements based on the 
user label characteristics, and we again randomly select 12 
workers for crowdsourced software testing task 1. Then, 
for each crowdsourced software worker in each project, we 
invite the crowdsourced software testing project contractor 
to score them based on the test results they submit. The 
ratings were divided into 4 levels, namely very satisfied, 
satisfied, average, and unsatisfied, and were scored as 3, 2, 
1, and 0. Finally, this paper uses the following 3 evaluation 
metrics for calculation. The formula for calculating the 
score rate is shown in Equation 5:

1

3

n
i iValue

S
n

=Σ
=

∗
                                (5)

S refers to the score rate, which indicates the degree 
of satisfaction of the crowdsourced software testing 
contractor with this testing task. Valuei refers to the score 
of the ith crowdsourced software worker, i=1−n, where 
n is the number of people in this crowdsourced software 
testing task, and 1

n
i=Σ Valuei denotes the total score of all 

selected workers in this task. Since the maximum score of 
each person is 3, the maximum score of a crowdsourced 
software testing task is 3*n. For example, in crowdsourced 
software testing task 1, the scores of 12 randomly selected 
crowdsourced software workers are 2, 1, 0, 0, 1, 0, 2, 0, 0, 
0, 0, 1, and 3. The total score of the crowdsourced software 
testing task is 10, and the maximum score is 36; the 

scoring rate is 10/36 = 0.278. The formula for calculating 
the accuracy is shown in Equation 6:

   
   

Number of people satisfiedAccuracy
total number of people

=           (6)

Accuracy refers to the accuracy rate, which indicates the 
probability that the recommended crowdsourced software 
worker meets the requirements of that crowdsourced 
software testing task. We consider crowdsourced software 
workers with satisfactory or very satisfactory evaluation 
results from the crowdsourced software testing task sender 
to be suitable recommenders (with a score of 2 and above). 
For example, in crowdsourced software testing task 1, 
the total number of 12 randomly selected crowdsourced 
software workers with scores of 2 and above is 3, and 
the accuracy of their recommendation is 3/12 = 0.25. We 
consider the above two evaluation metrics to be equally 
important, so we used the reconciled average of score 
and recommendation accuracy for our calculations. The 
F-value is calculated as shown in Equation 7:

2S AccuracyF
S Accuracy
∗ ∗

=
+

                           (7)

3.2 Analysis of Results
Result Analysis 1: We randomly selected 10 workers 

out of 1,000 workers to generate a line chart of test data 
for Android testing, as shown in Figure 5. The horizontal 
axis represents the worker’s characteristic parameters, the 
vertical axis represents the worker’s characteristic value, 
and the numbers 102, 203, etc. are the numbers of the 10 
workers.

Figure 5 shows the testing ability of each worker, 
which reflects the impact of identity/job Tjob, equipment 
usage Tacq, enthusiasm for participating in testing Tact and 
test experience correlation Trel and other characteristic 
values on the final testing ability Tabi.

1) Test positivity Tact

From the two workers No. 203 and No. 354 in Figure 
5(a), there is a big difference between them only in their 
enthusiasm for participating in testing, and worker No. 354 
is higher than No. 203 in terms of test enthusiasm and test 
experience correlation. Worker No. 203 only has slightly 
higher identity/work characteristic values than Worker 
No. 354. As a result, Worker No. 203 performed better in 
terms of testing ability, indicating that the impact of this 
characteristic of the enthusiasm for participating in testing 
Tact on testing ability is weak. On identity/job Tjob.

From the curves of workers No. 835 and No. 994 in 
Figure 5(b), it can be seen that No. 835 is slightly lower 
than No. 994 in terms of testing enthusiasm, and there is 
also some gap between No. 994 and No. 994 in terms of 
test experience correlation, but No. 994 performed better in 
the final test. The performance in terms of ability is better, 
which shows that the influence factor of this characteristic 
of test participation enthusiasm Tact on testing ability is 
weaker than the test experience correlation Trel.



Understanding Android Crowdsourced Worker through Portraits   395

The characteristic values of workers No. 672 and No. 
775 in terms of identity/job Tjob, device usage Tacq and test 
experience correlation Trel are very close. Worker No. 672 
is slightly more enthusiastic about participating in the 
test than No. 775. Finally, No. 672 staff’s testing ability is 
higher than that of No. 775, which means that when the 
characteristic values of the other three aspects are close; 
the enthusiasm for participating in the test Tact will affect 
the performance of the testing ability. If the enthusiasm is 
high, the performance of the testing ability will be better, 
so this may be A characteristic value that has a less obvious 
impact on the testing capability Tabi.

2) Influence factors of identity/job Tjob

It can be seen from the polyline in the figure that the 
changes in the two characteristic values of identity/job Tjob 

and device usage Tacq are positively correlated. Perhaps it 
is because behind the growth of the eigenvalue of identity/
job Tjob is the improvement of development skills and the 
improvement of the system. Device understanding, so the 
impact factor of identity/job Tjob will be greater than the 
use of device Tacq.

3) Impact factor of Trel

From curves No. 102 and No. 517 in Figure 5(a) and 
No. 751, No. 835, and No. 994 in Figure 5(b), it can be 
seen that when the eigenvalues of the identity/job Tjob and 
the device Tacq are similar, participation the test enthusiasm 
Tact is not much different, and the test enthusiasm Tact has 
a weak impact, so the test experience correlation Trel will 
significantly affect the final test capability characteristic 
value, so combined with the previous description, the test 
experience correlation Trel is the influencing factor The 
most significant characteristic parameter.

Based on the above data analysis, it can be concluded 
that it is consistent with the previous hypothesis, that is, 
the impact weight on Android workers’ testing ability is 
test experience correlation Trel > identity/work Tjob > testing 
enthusiasm Tact > use device Tacq, from which we can 
effectively build user portraits of Android crowdsourced 
software workers through defined person labels.

Result Analysis 2: Use our method to compare with 
the method of randomly selecting workers and use score 
rate, accuracy rate, and F value as evaluation indicators to 
verify the improvement of the efficiency of crowdsourced 
software testing projects by user portrait technology. As 
seen from Table 1, compared with the random selection 
method, our method has significantly improved the scoring 
rate, accuracy rate, and F value. Specifically, in five 
crowdsourced software testing projects, the scoring rate of 
this method is maintained at around 60%. Compared with 
the random selection method, which has an improvement 
of 12% to 42%, the accuracy rate of this method is 
maintained at about 70%. compared with the 20%-50% 
improvement with the random selection method, the F 
value of this method is maintained at about 65%; compared 
with the 20%-50% improvement with the random selection 
method, there is a 16%-46% improvement. To further 
verify the significant difference between this method and 
the random selection method, we calculated the p-values of 
the paired T-test for the three indicators. The results were 
0.015, 0.003 and 0.006 respectively. The p-values of the 
three indicators were all less than 0.05, indicating that our 
method has significantly improved the energy efficiency of 
recommending crowdsourced software workers.

      

(a) No. 102 and other 5 workers’ characteristics parameters 
and eigenvalues

(b) No. 672 and other 5 workers’ characteristics 
parameters and eigenvalues 

Figure 5. Performance of 10 workers on Android testing

Table 1. Comparison of random methods and our method

S Accuracy F
Random Our method Random Our method Random Our method

#1 0.278 0.694 0.25 0.75 0.263 0.721
#2 0.319 0.652 0.304 0.739 0.311 0.693
#3 0.486 0.611 0.458 0.667 0.472 0.638
#4 0.495 0.631 0.459 0.730 0.476 0.677
#5 0.449 0.626 0.388 0.735 0.416 0.676

average value 0.405 0.643 0.372 0.724 0.388 0.681
p-value 0.015 0.003 0.006
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4  Related Work

As a new software testing method, many people in 
academia and industry have paid continuous attention 
to crowd testing. The research on crowd testing can be 
divided into two major categories: one is to study how 
to improve crowd testing itself and study a series of 
processes of crowd testing and its related mechanism 
issues; the other is to study how to use crowd testing as 
a method Solve different kinds of testing problems or 
optimize existing testing methods. Research on improving 
crowd-testing has seen significant development in recent 
years. Since 2013, research has mainly focused on the 
integration and decomposition of test reports, the calling 
and management of workers, and the deconstruction and 
design of test tasks. However, in crowd testing, there are 
still some gaps in some areas, such as workers searching 
for test tasks, test demand parties distributing test tasks, 
and result verification and reproduction in test reports [20, 
22-27].

Yan et al. [27] designed a worker selection algorithm 
that assigns Web service testing tasks to workers with 
similar operating environments (including the same 
network type). They were further improved by the Tempo 
Spatial Worker Selection algorithm, where the worker’s 
calling time and location are considered in the worker 
selection activity [28]. Alyahya et al. [29] proposed the 
Myers-Briggs Type Indicator (MBTI) test to classify 
different types of workers’ personalities. They concluded 
that extroverted workers are better suited to black box 
testing techniques, and introverted workers perform white 
box testing techniques much better than extroverted 
workers. Leicht et al. [30] studied the impact of task 
complexity and user expertise on workers’ performance 
in crowd testing. Their results help us understand which 
testing tasks should be assigned to which group of workers 
(i.e., experts or novices). They can decide whether a 
specific type of testing can be crowdsourced or should be 
conducted using other testing methods. Task complexity 
is divided into simple tasks and complex tasks. Workers 
often need to focus on the user interface for simple tasks 
because simple tasks can identify defects by relying purely 
on visible input and output. Complex tasks are related to 
the underlying structure and processes of the software, and 
workers need to consider how the software should behave 
when specific steps or operations are performed. Qiang 
Cui et al. [18] studied the process of selecting workers 
to participate in crowd testing. They found that workers 
have an essential role in covering more workers in three 
aspects: the relevance of test experience, the initiative to 
participate in testing, and the diversity of test experience. 
Testing requirements and the detection of more program 
defects have a significant impact. They designed a way 
to select workers that combined the above three aspects 
and verified that the method influenced the Baidu public 
testing platform. An Gang et al. [21] are building mobile 
applications. When building a public worker profiling 
model, we collect workers’ historical test data, analyze the 
workers’ behavioral characteristics, test-related experience, 

and preferences for selecting test types, and conduct 
experiments based on simulation data to prove that 
they can improve performance by selecting appropriate 
workers—test mass accuracy.

5  Threats to Validity

This section analyzes the possible threats to the 
validity of the conclusions of the user portrait experiment 
of Android crowdsourced software workers from internal 
and external validity threats.

Internal validity refers to the extent to which changes 
in the dependent variable in our experiment are attributable 
to changes in the independent variable. The design of the 
user portrait model is mainly affected by the tag weight 
of crowdsourced software workers. When implementing 
the method in this article, we refer to the weight priority 
algorithm proposed by An et al. and reduce this problem 
through manual analysis and comparison with randomly 
selecting workers. 

External validity refers to how the research results 
obtained in this experiment can be generalized to other 
scenarios or environments. The experiments in this article 
may need to be more generalizable to more general 
scenarios. To reduce this threat, the data set selected in this 
article comes from the Mooctest crowdsourced software 
testing platform, one of China’s largest crowdsourced 
software testing platforms. The selected data set is 
relatively representative of domestic crowdsourced 
software testing data.

6  Conclusion

Based on the essential information and behavioral 
characteristic data of workers, extract user feature tags, 
build user portrait models for Android crowdsourced 
software workers, and implement the construction of 
individual and group user portrait models. Through 
simulation experiments, verify that the priority of user 
tag weights meets expectations, indicating that it can 
effectively construct user portraits; by comparing with the 
random selection method, our method can improve the 
efficiency of crowdsourced software testing projects.
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