
Journal of Internet Technology Vol. 26 No. 3, May 2025 389

*Corresponding Author: Yongming Yao; E-mail: yaoyongming@aeu.edu.cn
DOI: https://doi.org/10.70003/160792642025052603011

Understanding Android Crowdsourced Worker through Portraits

Yongming Yao*, Tongtong Bai, Jiangtao Lu, Changyou Zheng, Song Huang

Command and Control Engineering College, Peoples Liberation Army Engineering University, China
yaoyongming@aeu.edu.cn, btt070619@163.com, lujiangtao2024@163.com,

zhengcy@aeu.edu.cn, huangsong@aeu.edu.cn

Abstract

Mill ions of crowdsourced workers are using
crowdsourced platforms for their second jobs. They
have different testing skills, styles, preferences, etc.
Understanding them is important for making collaborative
decisions such as crowdsourced task assignments.
Existing crowdsourced platforms do not provide enough
information about crowdsourced workers, and we need
to spend a lot of effort searching for this information on
crowdsourced platforms. In contrast to the basic worker
information displayed on crowdsourced platforms, we
propose describing workers as a quick way to characterize
and understand them. We discuss how to build portraits
of workers that are concise and informative. We propose
a multidimensional model for Android crowdsourced
worker portraits to specify attributes about various aspects
of software testing. Then, we propose a methodology that
utilizes text analytics, web data analytics, and test script
analytics techniques to analyze various sources of data
about workers on a crowdsourced testing platform in order
to construct the portraits. The constructed portraits can be
vividly displayed on the web to help people quickly learn
about crowdsourced workers and make better decisions
when collaborating on testing software. Results show the
potential for recommended improvements and correct
assignments when using our portraits. Worker portraits are
an effective form of characterizing workers. It helps one to
quickly understand workers and can be applied to a variety
of applications in the software testing process.

Keywords: Crowdsourced testing, Android, Portraits,
Worker selection

1 Introduction

In a crowdsourced task, the behavior and attitude of
the crowdsourcer are important characteristics that attract
people. Crowd workers must perform the task to the best
of their abilities since the engagement of crowd workers
is significantly dependent on obtaining valuable results.
Crowdsourced platforms will recruit suitable individuals
from a large pool, and crowd-worker engagement may be
influenced by both the crowd-workers’ characteristics and
the characteristics of the crowd-testing jobs.

To reduce the cost of software testing, improve
software quality [1-2], and speed up testing progress,
many methods and approaches have been proposed to use
crowdsourced software testing to replace or assist in-house
testing [3-6]. One of the most fundamental functions is
identifying the appropriate worker for a specific testing
task [7-9]. It is important to keep in mind that even
though crowdsourced resources are cost-effective, they
are not entirely free. Therefore, to ensure the sustainable
development of crowdsourced technology, it is crucial to
allocate tasks efficiently. However, previous technologies
have been lacking in terms of considering the continuity
between time and historical data, which has resulted in
a reduction in the efficiency of task allocation. When it
comes to scaling up crowdsourced testing, it is essential to
maximize the information available to each member.

Additionally, not all group workers are equally
skilled at finding bugs. The wrong employee can miss
bugs or report duplicate bugs, and hiring them requires
an extraordinary budget. Due to the extensive, uncertain
nature of crowdsourced workers, it is difficult to predict
outcomes. [10], we should only allow some workers to
participate in crowdsourced testing tasks. Therefore, it is
valuable to recommend a suitable group of workers for
testing tasks so that more software bugs can be detected
with fewer workers. To help identify suitable workers for
crowd-testing tasks, many different methods have been
proposed, e.g., based on the testing environment [9-10],
experience [11-13], abilities [9, 14], or expertise on the
task [15-20], and so on. Unfortunately, these methods have
limited applicability to the volatile crowdsourced software
testing process.

Crowd worker characteristics include personnel
expectations, extrinsic motivation, and satisfaction
motivation. Personnel expectations represent crowd
workers’ expectations of participating in the crowd-
testing task during the event. Deviations from these
expectations can affect crowd workers’ motivation,
commitment, and satisfaction. Before participating in a
crowdsourced task, contractors must provide relevant
information, including task requirements, completion
time, and accurate compensation details for participants.
Workers’ lack of task information may lead them to take
on tasks that do not match their abilities, resulting in
wasted time and underpayment. This, in turn, affects crowd
workers’ motivation and engagement, ultimately reducing
overall crowd-worker participation. Crowd workers are
extrinsically motivated to participate in crowd-testing

390 Journal of Internet Technology Vol. 26 No. 3, May 2025

tasks to receive monetary or material rewards. There is a
linear relationship between crowd workers’ engagement
and extrinsic motivation. Another characteristic of crowd
workers is satisfaction motivation; they want to improve
their skills in participating in crowdsourced tasks or
completing them to gain a sense of satisfaction and
achievement. Crowd workers rely on improved skills to
perform crowdsourced tasks more effectively.

Characteristics of crowd workers’ work include
task characteristics, crowd worker visibility, and work
environment. Characteristics of crowd-worker jobs include
task characteristics, crowd-worker visibility, and work
environment. Differences in crowdsourced tasks may
affect employee engagement, especially if irresponsible
crowdsourcers violate the rules of crowdsourced tasks.
Crowd workers’ performance will improve with feedback
related to their tasks, and they will be diligent in
performing various tasks. The visibility of crowd workers is
the second characteristic; all crowd workers are visible on
the crowdsourced platform, and appropriate crowd workers
can be identified in a large group of people. The third
characteristic of the crowd worker’s work characteristics
is the work environment, where the work environment and
environmental characteristics play a vital role in the crowd
worker’s execution of tasks. Crowdsourcing platforms
provide multiple engagement options for crowdsourcing.
Crowd workers can participate virtually from their homes,
shops, or workplaces. As potential work environments
increase, so do employees’ availability, flexibility, and
independence, which can also improve performance and
satisfaction. As workers and test tasks accumulate on the
crowdsourcing platform, a large amount of data is retained,
including personal characteristics of the crowdsourced
workers, such as name, age, job, and other important
information. It also includes characteristic behavioral data
such as the number of projects the crowdsourced workers
have participated in, the completion of the projects, and
the test reports submitted. It is a challenge to improve the
match between crowdsourced workers and projects and
ensure the dedication of crowdsourced workers through
these characteristic data.

In summary, this paper makes the fol lowing
contributions: we utilize crowd workers’ personal
information and behavioral characteristic data on a crowd-
testing platform. We use user profiling technology to
extract user feature labels, establish personal and group
portrait models of the crowd workers, and verify the
model’s effectiveness through simulation experiments.
We also compare the results with those obtained from the
random selection method to evaluate the accuracy of this
new method.

The remainder of this paper is organized as follows. In
Section 2, we propose an Android crowdsourced software
worker portrait model. Experimental validation of our
method is performed in Section 3. Section 4 discusses
related work. Section 5 discusses validity threats. Finally,
in Section VI, we conclude this work.

2 Android Crowdsourced Software
Worker Portrait Model

To construct the user portrait of Android crowdsourced
software workers, we limited the type of testing involved
to Android testing so that all the relevant behaviors of the
crowdsourced software workers are related to Android
testing. Specifically, they include the number of times
they have participated in executing Android tests, the test
scores they have achieved in Android testing, the number
of Android defects they have found, the frequency with
which they have participated in Android testing, and so on.
The situation of the match between crowdsourced software
workers’ work and the work on Android has a significant
impact on the construction of the user portrait of Android
crowdsourced software workers.

Therefore, the construction of Android crowdsourced
software workers’ labels will be highly relevant to
Android. At the same time, the Android crowdsourced
software workers’ personnel user portrait model includes
essential information and dynamic information about
workers, etc., which can be obtained. Figure 1 shows the
labeling system of the Android crowdsourced software
worker portrait. Android crowdsourced software worker
portrait model consists of two types: basic information
and dynamic information. The basic information includes
identity/occupation and mobile device used labels, and the
dynamic information includes behavioral characteristics
labels.

Figure 1. Android crowdsourced software worker portrait
labelling system

2.1 Android Crowdsourced Software Worker Label
Definition
The user portrait of Android crowdsourced software

workers should include two aspects: basic information
about the workers, such as identity/occupation and use
of devices, and dynamic information extracted from
their behavioral data, such as motivation to participate in
testing, relevance of their testing experience, and testing
ability.

(1) Identity/job is one of the most basic information
about workers and a basic reflection of their field.
The identity/job characteristic value is agreed to
be Tjob, and it is defined as Equation 1:

Understanding Android Crowdsourced Worker through Portraits 391

1,

,skil j Android skil j
job

skil j Android skil j

L R L
T

L R L
− −

− − −

=  <

≧
 (1)

where RAndroid denotes the worker’s work and Android
system correlation denotes a degree that the options
for Android-related work content are given by the test
platform. The selection of compliant options is determined
by the worker’s work content. The formula for RAndroid is
shown in Equation 2:

Android
Android

total

Opt
R

Opt
= (2)

where OptAndroid indicates the number of options selected
by the worker, and Opttotal indicates the total number of
options; Lskil indicates the skill level embodied in the
worker, based on the content of the work selected on the
previous working day, and the specific rating is determined
by the test platform according to the content of the work of
the various levels of Android engineers. By combining the
content of the work of the workers and their abilities with
each other, it is possible to further categorize the skill level
of these people into introductory, beginners, intermediates,
and advanced. We can further classify them as beginners,
elementary, middle, and advanced. The skill level Lskil is
expressed as Lskil−j (j = 1,2,3,4,5), where Lskil−1 = 0.1, Lskil−2
= 0.2, Lskil−3 = 0.4, Lskil−4 = 0.6, and Lskil−5 = 0.

(2) The role of using the device is extremely
important; it is the main source for workers to
contact and obtain system information, and it is
also the embodiment of workers’ familiarity with
different operating systems, such as the familiarity
with Android, IOS, etc. The characteristic value
of using the device, denoted as Tacq, is defined as
Tacq = Luse−j; Luse−j represents the worker’s use level
of using the Android device. The usage level of
the device is classified into novice, average, and
expert level according to the different functions
of using the Android device. The usage level
Luse−j is denoted as Luse−j (𝑗=1,2,3,4), where Luse−1 =
0.1, Luse−2 = 0.3, Luse−3 = 0.5, and Luse−4 = 0.8.

(3) The extent to which workers are active in Android
testing at a crowdsourced software testing platform
is captured by the motivation of each worker to
participate in testing. The activeness includes
the time when the worker starts the first test
task, denoted as Tstart, the time of the last test task
completed at this crowdsourced software testing
platform, denoted as Tend, the number of Android
tests that the worker participates in, denoted as
AAndroid , and the eigenvalue of the activeness of the
participation in Android testing, denoted as Tact,
This is defined in equation 3, as shown below:

Android
act

end start

A
T

T T
=

−
 (3)

(4) The number of tests related to Android testing in
the test tasks operated and completed by workers
is determined by the relevance of their testing
experience. The worker’s total number of involved
test tasks is denoted as Atotal, and the eigenvalue of
the relevance of testing experience is denoted as
Trel, as shown in Equation 4:

Android
rel

total

A
T

A
= (4)

(5) One of the most important characteristics of
workers is their own testing ability, which directly
determines the quality of the test report. Testing
ability is reflected in the number of defects found
by workers in Android testing and the weight of
the defects. The more defects are found, the higher
the weight of the defects is, which directly reflects
the stronger ability of the workers. Because the
importance of each defect is different, the number
of defects with different weights is also different;
therefore, the average weighted number of defects
can be calculated, which is denoted as Abug. Bugi
represents the ith defect found, and according
to the different weights of the defects, it can be
further classified into the following four levels:
no weight, low weight, general weight, high
weight. The weight of the defects is denoted as
BWLj(j=1,2,3,4), where BWL1 = 0, BWL2 = 0.5,
BWL3 = 1.5, and BWL4 = 4.5. The average weighted
number of defects can be calculated as Abug

= ,4
1, 1

n
i j= =Σ Bugi ×BWLj/ 1

n
i=Σ Bugi. The eigenvalue Tabi

of worker’s testing ability is defined as Tabi = Abug.
In the previous section, we described the feature labels

in the user portrait model of constructing crowdsourced
software workers from the perspectives of some of the
workers’ attributes, such as occupation/identity, use of
equipment, motivation to participate in testing, relevance
of testing experience, and testing ability, respectively.
When the relevant data of the workers are acquired, the
corresponding feature values can be further derived after
analyzing the data. However, the weights of these feature
values are different. According to the research of An et
al. [21] in crowdsourced software testing, the features of
crowdsourced software workers satisfy the relationship of
“ability > experience > preference”, so in the construction
of the user portrait model, the importance of the above
feature values are ranked as follows: testing ability >
testing Relevance of experience > Occupation/identity >
Motivation to participate in testing > Use of equipment.
According to the different weights of these features, we
can quickly determine what type of workers are suitable to
participate in Android testing.

It is judged by the worker’s competence profile Tabi,
which combines two key factors that reflect the quality
of the test report: the number of defects and the weight
of the defects. After calculating the proportion of defects
with different weights and their scores, it can be seen

392 Journal of Internet Technology Vol. 26 No. 3, May 2025

that the higher the weight of the defects, the higher the
score it accounts for. Therefore, discovering defects with
weights and earning scores indicates that the worker is
more competent. Based on the value of this feature, the
competence level of Android workers can be quickly
classified as excellent, medium or mediocre competence.

Judged by the correlation Trel of testing experience, the
correlation feature Trel of testing experience combines the
total number of tests completed and the number of Android
tests completed by the worker. The higher the percentage
of Android tests that workers have participated in, the
relative ability to respond to the worker’s preference and
familiarity with testing on Android, and workers with a
high degree of familiarity and a tendency to complete
Android tests are more likely to get a good test score in
Android testing. By evaluating this feature, it is possible to
classify workers in Android testing at the experience level
into experienced, average experience or lack of experience.

Judging by the workers’ own occupation/identity
characteristics, if the workers themselves are engaged
in some software development work, such as Android
engineers, Android software test engineers, etc., they
are bound to have a more obvious advantage when they
perform this kind of task of Android testing; at the same
time, engineers at different levels have their own strengths
and weaknesses in their abilities, so the testing platform
lets workers choose their usual work content to compare
the match with the demand points of the testing tasks.
Generally speaking, the closer the workers’ work content
is to the testing tasks and the more in-depth the skills they
have mastered, the better their performance will be when
completing this type of testing task. Therefore, the skill
levels of workers are categorized as introductory, beginner,
intermediate, intermediate-advanced and advanced.

Then, the activity of workers in executing Android
testing tasks is judged by the motivation Tact of participating
in testing, and the total ratio of the number of completed
Android tests to the total time of executing all testing tasks
reflects the workers’ willingness to execute Android testing
life and the efficiency of completing the test tasks, and
the workers who are willing to execute Android testing
and complete the test tasks efficiently will be better in
completing the testing tasks. workers will be better at
completing the testing tasks. Therefore, through the scores
of this characteristic, workers’ motivation towards Android
testing can be classified into positive, average and negative
types.

Finally, through the discussion of the worker’s use
of the device characteristics Tact, different users, the use
of Android/IOS device level is actually very different.
While most people most commonly used to the phone’s
communication functions (such as phone calls, emails,
text messages), the use of various types of applications
(such as chatting, gaming, shopping) and so on, the
general public will not be able to use the mobile phone
is more biased to the bottom level of the general public
will not use the more low-level functions of the mobile
phone (such as reinstallation and brushing, modification
of applications). Some users will write a custom desktop
system, modify the application installation package and

other more kernel operations. The use of the device and
the ability to understand the test user will also affect the
implementation of the test process. Therefore, the workers’
use of the device is classified as novice, average, expert,
and specialist.

Based on the above order, to gradually delineate the
type of workers belonging, the characteristic attributes of
Android workers in this test type can be derived, and the
user portrait model of workers can be derived.

2.2 Visualization of User Portrait Models for Android
Crowdsourced Software Workers
The worker’s user portrait model is the result of the

feature extraction process of the user portrait, and the final
result generated includes the worker’s name and his feature
combinations. This process is done autonomously by the
crowdsourced software testing platform. The purpose of
studying the user portraits of Android workers is to get
precise information about the worker’s capabilities, to
make it easier to find a suitable worker to perform the
task when performing this type of testing task, and also to
make it easier for the worker to be pushed or invited to the
testing tasks that are suitable for him. So, to make it easier
for the workers and the crowdsourced software testing
task senders to perceive the process and use it for their
convenience, the workers’ previously obtained user portrait
model needs to be visualized.

The visualization of the individual worker user
portrait model is specific to the worker himself, whose
personal user portrait can be seen on his homepage on the
crowdsourced software testing platform.

The individual worker user portrait will contain more
personalized information, such as an evaluation of the
individual’s activity in the category of Android testing.
These evaluations are based on the amount of time the
user spends executing Android testing tasks on the test
platform compared to the execution time of workers across
the platform, such as an evaluation of the user’s activity
in the category of Android testing, the number of Android
testing tasks the user performs on the test platform, such
as an evaluation of the degree of expertise of the worker
in the field of Android testing, the achievements of the
worker in Android testing tasks, which is an evaluation
of his competence in Android testing can be derived. The
degree mentioned above of activity, area of expertise, and
ability evaluation are used as labels for individual workers
to evaluate the behavior of individual workers in Android
testing. Some values need to be quantified in numbers,
such as average contribution value, average number of
defects found, average number of active defects, average
revenue earned, etc., in Android testing.

To visualize these contents above into a single worker
user portrait, we choose to present the activity level, the
area of expertise, and the ability evaluation, which can
be evaluated qualitatively. These aspects are presented
through a worker graph combining the evaluation of these
labels; we can get the labeled graphs of the abbreviated
version of the Android worker user portrait, as shown in
Figure 2.

Understanding Android Crowdsourced Worker through Portraits 393

Figure 2. Label for Android worker user portraits

In addition, some other values need to be measured
numerically, such as the average contribution value in the
field of Android testing, the average number of defects
found, the average number of valid defects, the average
income earned, and other specific values about the worker’s
user portrait characteristics that can be displayed in a radar
chart. This gives a more intuitive view of the numerical
distribution of the values of these characteristics, reflecting
the areas in which the performance is outstanding and
the areas in which they are lacking. Figure 3 shows an
abbreviated version of the Android worker competencies
radar chart. The graph expresses the worker’s competence
in four dimensions, with the darker parts representing the
worker’s scores.

Figure 3. Radar chart of android worker competencies

The group Android worker user portrait is constructed
by extracting the user characteristics of all participating
workers and refining the user labels for the performance
of workers in Android testing, which ultimately serves the
testing task contractors and helps them to make decisions.

The visualization of the group Android worker user
portrait model is convenient for the test task contractors
to browse the workers better. Based on the user portraits
given to the workers, contractors can sieve out the workers
that meet their current test task. It can be achieved as
much as possible with fewer workers, resulting in lower
commission to pay for a high-quality test report.

The Android crowdsourced sof tware worker
user portrait model constructed in this chapter is for
the crowdsourced software testing task contractor.
Characteristics such as testing ability, the relevance
of testing experience, occupation/status, motivation to
participate in testing, and use of devices can be both
qualitatively evaluated and quantitatively analyzed.
When crowdsourced software testing tasks, it is difficult
to quantify the average number of defects found and the

average number of practical defects found by workers.
Still, using terms such as excellent testing ability and
testing experience is more accessible. However, the test
task contractor sometimes also needs to see the specific
distribution of values, so this design first allows the test
task contractor to select labels, such as excellent testing
ability, testing experience, and other labels. After clicking
on it, a list of workers who meet the requirements will
appear in descending order of testing ability. The list will
appear in the list of workers in all the task grades related
to the labels. When the test task contractor can not be
selected, click on the player, which will also appear in
the specific value of the distribution of the radar chart.
This is the best of both worlds, making it easy for the test
contractor to select workers quickly and satisfactorily.
Figure 4 shows an abbreviated version of this process.

Figure 4. A simplified diagram of the selection process for
group Android worker competencies

3 Experiment Design and Results
Analysis

In this section, we will experimentally validate
our approach and design experiments to validate the
construction, efficacy, and implementation of user portraits
for Android crowdsourced software testing proposed in
this paper based on the following two research questions,
respectively.

RQ1: Can the method effectively construct portraits of
Android crowdsourced software workers?

RQ2: Can Android crowdsourced software worker
portraits enhance the effectiveness of crowdsourced
software testing projects?

3.1 Experimental Design
In order to answer the above research questions, we

design the following two experiments: to validate the
effectiveness of the Android crowdsourced software
worker portrait model through large-scale analog data
simulation, and to verify the enhancement of the user
portrait technique on the effectiveness of the crowdsourced
software testing project by using the scoring rate, the
accuracy rate, and the F-value as the evaluation metrics in
comparison with the randomly selecting workers method.

Experimental Design 1: This paper uses the following
data and methods to conduct experiments. The current

394 Journal of Internet Technology Vol. 26 No. 3, May 2025

crowdsourced software testing platform has less content
about Android testing, and it is difficult to obtain the
information and test reports of crowdsourced software
workers, so simulated data is used to verify. Firstly, it is
assumed that there are 1000 workers on board a certain
crowdsourced software testing platform, which has various
types of testing tasks, including Android functionality
testing, Android compatibility testing, Android security
and privacy testing, etc. Secondly, the initial values of
the identity/occupational characteristics of the workers,
Tjob, the characteristics of the use of devices, Tacq, the
eigenvalues of the motivation to participate in testing, Tact,
and the eigenvalues of the relevance of the trial experience,
Trel, etc., are set, and the relevant data are calculated after a
certain number of test tasks are simulated.

Experimental Design 2: In order to validate the
efficacy of this paper’s user portrait technique in an
Android crowdsourced software testing project. The
effectiveness of this paper’s method is compared with the
traditional method of randomly selecting crowdsourced
software workers. We select five Android application
crowdsourced software testing projects from Mooctest
crowdsourced software testing platform to conduct
experiments. Firstly, n workers are recommended for a
crowdsourced software testing project according to the
user portrait method in this paper, and in order to ensure
the fairness of the experiment, we again use a random
selection of the same number (n) of workers. For example,
in crowdsourced software testing task 1, the user portrait
technique in this paper selects 12 crowdsourced software
workers that satisfy the testing requirements based on the
user label characteristics, and we again randomly select 12
workers for crowdsourced software testing task 1. Then,
for each crowdsourced software worker in each project, we
invite the crowdsourced software testing project contractor
to score them based on the test results they submit. The
ratings were divided into 4 levels, namely very satisfied,
satisfied, average, and unsatisfied, and were scored as 3, 2,
1, and 0. Finally, this paper uses the following 3 evaluation
metrics for calculation. The formula for calculating the
score rate is shown in Equation 5:

1

3

n
i iValue

S
n

=Σ
=

∗
 (5)

S refers to the score rate, which indicates the degree
of satisfaction of the crowdsourced software testing
contractor with this testing task. Valuei refers to the score
of the ith crowdsourced software worker, i=1−n, where
n is the number of people in this crowdsourced software
testing task, and 1

n
i=Σ Valuei denotes the total score of all

selected workers in this task. Since the maximum score of
each person is 3, the maximum score of a crowdsourced
software testing task is 3*n. For example, in crowdsourced
software testing task 1, the scores of 12 randomly selected
crowdsourced software workers are 2, 1, 0, 0, 1, 0, 2, 0, 0,
0, 0, 1, and 3. The total score of the crowdsourced software
testing task is 10, and the maximum score is 36; the

scoring rate is 10/36 = 0.278. The formula for calculating
the accuracy is shown in Equation 6:

Number of people satisfiedAccuracy
total number of people

= (6)

Accuracy refers to the accuracy rate, which indicates the
probability that the recommended crowdsourced software
worker meets the requirements of that crowdsourced
software testing task. We consider crowdsourced software
workers with satisfactory or very satisfactory evaluation
results from the crowdsourced software testing task sender
to be suitable recommenders (with a score of 2 and above).
For example, in crowdsourced software testing task 1,
the total number of 12 randomly selected crowdsourced
software workers with scores of 2 and above is 3, and
the accuracy of their recommendation is 3/12 = 0.25. We
consider the above two evaluation metrics to be equally
important, so we used the reconciled average of score
and recommendation accuracy for our calculations. The
F-value is calculated as shown in Equation 7:

2S AccuracyF
S Accuracy
∗ ∗

=
+

 (7)

3.2 Analysis of Results
Result Analysis 1: We randomly selected 10 workers

out of 1,000 workers to generate a line chart of test data
for Android testing, as shown in Figure 5. The horizontal
axis represents the worker’s characteristic parameters, the
vertical axis represents the worker’s characteristic value,
and the numbers 102, 203, etc. are the numbers of the 10
workers.

Figure 5 shows the testing ability of each worker,
which reflects the impact of identity/job Tjob, equipment
usage Tacq, enthusiasm for participating in testing Tact and
test experience correlation Trel and other characteristic
values on the final testing ability Tabi.

1) Test positivity Tact

From the two workers No. 203 and No. 354 in Figure
5(a), there is a big difference between them only in their
enthusiasm for participating in testing, and worker No. 354
is higher than No. 203 in terms of test enthusiasm and test
experience correlation. Worker No. 203 only has slightly
higher identity/work characteristic values than Worker
No. 354. As a result, Worker No. 203 performed better in
terms of testing ability, indicating that the impact of this
characteristic of the enthusiasm for participating in testing
Tact on testing ability is weak. On identity/job Tjob.

From the curves of workers No. 835 and No. 994 in
Figure 5(b), it can be seen that No. 835 is slightly lower
than No. 994 in terms of testing enthusiasm, and there is
also some gap between No. 994 and No. 994 in terms of
test experience correlation, but No. 994 performed better in
the final test. The performance in terms of ability is better,
which shows that the influence factor of this characteristic
of test participation enthusiasm Tact on testing ability is
weaker than the test experience correlation Trel.

Understanding Android Crowdsourced Worker through Portraits 395

The characteristic values of workers No. 672 and No.
775 in terms of identity/job Tjob, device usage Tacq and test
experience correlation Trel are very close. Worker No. 672
is slightly more enthusiastic about participating in the
test than No. 775. Finally, No. 672 staff’s testing ability is
higher than that of No. 775, which means that when the
characteristic values of the other three aspects are close;
the enthusiasm for participating in the test Tact will affect
the performance of the testing ability. If the enthusiasm is
high, the performance of the testing ability will be better,
so this may be A characteristic value that has a less obvious
impact on the testing capability Tabi.

2) Influence factors of identity/job Tjob

It can be seen from the polyline in the figure that the
changes in the two characteristic values of identity/job Tjob

and device usage Tacq are positively correlated. Perhaps it
is because behind the growth of the eigenvalue of identity/
job Tjob is the improvement of development skills and the
improvement of the system. Device understanding, so the
impact factor of identity/job Tjob will be greater than the
use of device Tacq.

3) Impact factor of Trel

From curves No. 102 and No. 517 in Figure 5(a) and
No. 751, No. 835, and No. 994 in Figure 5(b), it can be
seen that when the eigenvalues of the identity/job Tjob and
the device Tacq are similar, participation the test enthusiasm
Tact is not much different, and the test enthusiasm Tact has
a weak impact, so the test experience correlation Trel will
significantly affect the final test capability characteristic
value, so combined with the previous description, the test
experience correlation Trel is the influencing factor The
most significant characteristic parameter.

Based on the above data analysis, it can be concluded
that it is consistent with the previous hypothesis, that is,
the impact weight on Android workers’ testing ability is
test experience correlation Trel > identity/work Tjob > testing
enthusiasm Tact > use device Tacq, from which we can
effectively build user portraits of Android crowdsourced
software workers through defined person labels.

Result Analysis 2: Use our method to compare with
the method of randomly selecting workers and use score
rate, accuracy rate, and F value as evaluation indicators to
verify the improvement of the efficiency of crowdsourced
software testing projects by user portrait technology. As
seen from Table 1, compared with the random selection
method, our method has significantly improved the scoring
rate, accuracy rate, and F value. Specifically, in five
crowdsourced software testing projects, the scoring rate of
this method is maintained at around 60%. Compared with
the random selection method, which has an improvement
of 12% to 42%, the accuracy rate of this method is
maintained at about 70%. compared with the 20%-50%
improvement with the random selection method, the F
value of this method is maintained at about 65%; compared
with the 20%-50% improvement with the random selection
method, there is a 16%-46% improvement. To further
verify the significant difference between this method and
the random selection method, we calculated the p-values of
the paired T-test for the three indicators. The results were
0.015, 0.003 and 0.006 respectively. The p-values of the
three indicators were all less than 0.05, indicating that our
method has significantly improved the energy efficiency of
recommending crowdsourced software workers.

(a) No. 102 and other 5 workers’ characteristics parameters
and eigenvalues

(b) No. 672 and other 5 workers’ characteristics
parameters and eigenvalues

Figure 5. Performance of 10 workers on Android testing

Table 1. Comparison of random methods and our method

S Accuracy F
Random Our method Random Our method Random Our method

#1 0.278 0.694 0.25 0.75 0.263 0.721
#2 0.319 0.652 0.304 0.739 0.311 0.693
#3 0.486 0.611 0.458 0.667 0.472 0.638
#4 0.495 0.631 0.459 0.730 0.476 0.677
#5 0.449 0.626 0.388 0.735 0.416 0.676

average value 0.405 0.643 0.372 0.724 0.388 0.681
p-value 0.015 0.003 0.006

396 Journal of Internet Technology Vol. 26 No. 3, May 2025

4 Related Work

As a new software testing method, many people in
academia and industry have paid continuous attention
to crowd testing. The research on crowd testing can be
divided into two major categories: one is to study how
to improve crowd testing itself and study a series of
processes of crowd testing and its related mechanism
issues; the other is to study how to use crowd testing as
a method Solve different kinds of testing problems or
optimize existing testing methods. Research on improving
crowd-testing has seen significant development in recent
years. Since 2013, research has mainly focused on the
integration and decomposition of test reports, the calling
and management of workers, and the deconstruction and
design of test tasks. However, in crowd testing, there are
still some gaps in some areas, such as workers searching
for test tasks, test demand parties distributing test tasks,
and result verification and reproduction in test reports [20,
22-27].

Yan et al. [27] designed a worker selection algorithm
that assigns Web service testing tasks to workers with
similar operating environments (including the same
network type). They were further improved by the Tempo
Spatial Worker Selection algorithm, where the worker’s
calling time and location are considered in the worker
selection activity [28]. Alyahya et al. [29] proposed the
Myers-Briggs Type Indicator (MBTI) test to classify
different types of workers’ personalities. They concluded
that extroverted workers are better suited to black box
testing techniques, and introverted workers perform white
box testing techniques much better than extroverted
workers. Leicht et al. [30] studied the impact of task
complexity and user expertise on workers’ performance
in crowd testing. Their results help us understand which
testing tasks should be assigned to which group of workers
(i.e., experts or novices). They can decide whether a
specific type of testing can be crowdsourced or should be
conducted using other testing methods. Task complexity
is divided into simple tasks and complex tasks. Workers
often need to focus on the user interface for simple tasks
because simple tasks can identify defects by relying purely
on visible input and output. Complex tasks are related to
the underlying structure and processes of the software, and
workers need to consider how the software should behave
when specific steps or operations are performed. Qiang
Cui et al. [18] studied the process of selecting workers
to participate in crowd testing. They found that workers
have an essential role in covering more workers in three
aspects: the relevance of test experience, the initiative to
participate in testing, and the diversity of test experience.
Testing requirements and the detection of more program
defects have a significant impact. They designed a way
to select workers that combined the above three aspects
and verified that the method influenced the Baidu public
testing platform. An Gang et al. [21] are building mobile
applications. When building a public worker profiling
model, we collect workers’ historical test data, analyze the
workers’ behavioral characteristics, test-related experience,

and preferences for selecting test types, and conduct
experiments based on simulation data to prove that
they can improve performance by selecting appropriate
workers—test mass accuracy.

5 Threats to Validity

This section analyzes the possible threats to the
validity of the conclusions of the user portrait experiment
of Android crowdsourced software workers from internal
and external validity threats.

Internal validity refers to the extent to which changes
in the dependent variable in our experiment are attributable
to changes in the independent variable. The design of the
user portrait model is mainly affected by the tag weight
of crowdsourced software workers. When implementing
the method in this article, we refer to the weight priority
algorithm proposed by An et al. and reduce this problem
through manual analysis and comparison with randomly
selecting workers.

External validity refers to how the research results
obtained in this experiment can be generalized to other
scenarios or environments. The experiments in this article
may need to be more generalizable to more general
scenarios. To reduce this threat, the data set selected in this
article comes from the Mooctest crowdsourced software
testing platform, one of China’s largest crowdsourced
software testing platforms. The selected data set is
relatively representative of domestic crowdsourced
software testing data.

6 Conclusion

Based on the essential information and behavioral
characteristic data of workers, extract user feature tags,
build user portrait models for Android crowdsourced
software workers, and implement the construction of
individual and group user portrait models. Through
simulation experiments, verify that the priority of user
tag weights meets expectations, indicating that it can
effectively construct user portraits; by comparing with the
random selection method, our method can improve the
efficiency of crowdsourced software testing projects.

References

[1] A. Arya, S. K. Malik, Software Fault Prediction using
K-Mean-Based Machine Learning Approach. International
Journal of Performability Engineering, Vol. 19, No. 2, pp.
133–143, February, 2023.

[2] K. E. Rao, G. A. Rao, P. S. Rao, A weighted ada-boosting
approach for software defect prediction using characterized
code features associated with software quality, International
Journal of Performability Engineering, Vol. 18, No. 11, pp.
798–807, November, 2022.

[3] R.-Z. Gao, Y.-B. Wang, Y. Feng, Z.-Y. Chen, W. E. Wong,
Successes, challenges, and rethinking–an industrial
investigation on crowdsourced mobile application testing,
Empirical Software Engineering, Vol. 24, No. 2, pp. 537–
561, April, 2019.

Understanding Android Crowdsourced Worker through Portraits 397

[4] M. Gasparic, G. C. Murphy, F. Ricci, A context model for
IDE-based recommendation systems, Journal of Systems
and Software, Vol. 128, pp. 200–219, June, 2017.

[5] R. Hao, Y. Feng, J. A. Jones, Y. Li, Z. Chen, CTRAS:
Crowdsourced test report aggregation and summarization,
IEEE/ACM 41st International Conference on Software
Engineering (ICSE), Montreal, QC, Canada, 2019, pp.
900–911.

[6] J. Wang, Y. Yang, R. Krishna, T. Menzies, Q. Wang,
iSENSE: Completion-aware crowdtesting management,
IEEE/ACM 41st International Conference on Software
Engineering (ICSE), Montreal, QC, Canada, 2019, pp.
912–923.

[7] Q. Cui, J. Wang, G. Yang, M. Xie, Q. Wang, M. Li, Who
should be selected to perform a task in crowdsourced
testing?, IEEE 41st Annual Computer Software and
Applications Conference (COMPSAC), Turin, Italy, 2017,
pp. 75–84.

[8] J. Wang, S. Wang, J. Chen, T., Menzies, Q. Cui, M.
Xie, Q. Wang, Characterizing crowds to better optimize
worker recommendation in crowdsourced testing, IEEE
Transactions on Software Engineering, Vol. 47, No. 6, pp.
1259–1276, June, 2021.

[9] Q. Cui, S. Wang, J. Wang, Y. Hu, Q. Wang, M. Li, Multi-
Objective Crowd Worker Selection in Crowdsourced
Testing, The 29th International Conference on Software
Engineering and Knowledge Engineering, Pittsburgh, PA,
USA, 2017, pp. 218–223.

[10] I. Oliver, Experiences in the Development and Usage of
a Privacy Requirements Framework, 2016 IEEE 24th
International Requirements Engineering Conference (RE),
Beijing, China, 2016, pp. 293–302.

[11] J. Wang, Y. Yang, S. Wang, J. Hu, Q. Wang, Context-and
fairness-aware in-process crowdworker recommendation,
ACM Transactions on Software Engineering and
Methodology (TOSEM), Vol. 31, No. 3, pp. 1–31, July,
2022.

[12] M. Xie, Q. Wang, G. Yang, M. Li, Cocoon: Crowdsourced
testing quality maximization under context coverage
constraint, IEEE 28th International Symposium on Software
Reliability Engineering (ISSRE), Toulouse, France, 2017,
pp. 316–327.

[13] T. Hossfeld, C. Keimel, C. Timmerer, Crowdsourcing
quality-of-experience assessments, Computer, Vol. 47, No.
9, pp. 98–102, September, 2014.

[14] Q. Xu, J. Xiong, Q. Huang, Y. Yao, Robust evaluation for
quality of experience in crowdsourcing, Proceedings of
the 2013 ACM Multimedia Conference, Barcelona, Spain,
2013, pp. 43–52.

[15] T. R. A. Giele, T. Mioch, M. A. Neerincx, J.-J. C. Meyer,
Dynamic Task Allocation for Human-robot Teams,
International Conference on Agents and Artificial
Intelligence, Lisbon, Portugal, 2015, pp. 117–124.

[16] L. Lyu, M. Kantardzic, T. S. Sethi, Sloppiness mitigation
in crowdsourcing: detecting and correcting bias for crowd
scoring tasks, International Journal of Data Science and
Analytics, Vol. 7, No. 3, pp. 179–199, April, 2019.

[17] S. Guo, C. Rong, H. Li, A Real-Time Collaborative Testing
Approach for Web Application: Via Multi-tasks Matching,
2016 IEEE International Conference on Software Quality,
Reliability and Security Companion (QRS-C), Vienna,
Austria, 2016, pp. 61–68.

[18] Q. Cui, J. J. Wang, M. Xie, Q. Wang, Towards Crowd
Worker Selection for Crowdsourced Testing Task, Ruan
Jian Xue Bao/Journal of Software, Vol. 29, No. 12, pp.
3648–3664, December, 2018.

[19] S. Alyahya, Crowdsourced software testing: A systematic
literature review, Information & Software Technology, Vol.
127, Article No. 106363, November, 2020.

[20] H. Jiang, X. Li, Z. Ren, J. Xuan, Z. Jin, Toward Better
Summarizing Bug Reports With Crowdsourcing Elicited
Attribute, IEEE Transactions on Reliability, Vol. 68, No. 1,
pp. 2–22, March, 2019.

[21] G. An, T. Zhang, J . Chen, A Mobile Application
Crowdsourced Method Based on Behavior Workers
Portrait Analysis, Journal of Northwestern Polytechnical
University, Vol. 35, No. 6, pp. 1083–1088, December,
2017.

[22] N. Wang, L. Cai, M. Chen, C. Zhang, Research Progress in
the Processing of Crowdsourced Test Reports, Testbeds and
Research Infrastructures for the Development of Networks
and Communications: 14th EAI International Conference,
Changsha, China, 2019, pp. 150–160.

[23] J. Wang, Q. Cui, S. Wang, Q. Wang, Domain adaptation
for test report classification in crowdsourced testing,
International Conference on Software Engineering, Buenos
Aires, Argentina, 2017, pp. 83–92.

[24] S. Yu, Crowdsourced Report Generation via Bug Screenshot
Understanding, Automated Software Engineering, San
Diego, CA, USA, 2019, pp. 1277–1279.

[25] J. Wang, S. Wang, Q. Cui, Q. Wang, Local-based active
classification of test report to assist crowdsourced testing,
Automated Software Engineering, Singapore, 2016, pp.
190–201.

[26] Z. Hui , S . Huang, Exper ience Repor t : How Do
Metamorphic Relations Perform in Geographic Information
Systems Testing, 40th IEEE Annual Computer Software
and Applications Conference, COMPSAC Workshops 2016,
Atlanta, GA, USA, 2016. pp. 598–599.

[27] M. Yan, H. Sun, X. Liu, ITest: Testing software with mobile
crowdsourcing, the 1st International Workshop on Crowd-
based Software Development Methods and Technologies,
Hong Kong, China, 2014, pp 19–24.

[28] M. Yan, H. Sun, X. Liu, Efficient testing of web services
with mobile crowdsourcing, the 7th Asia-Pacific Symposium
on Internetware, Wuhan, China, 2015, pp. 157–165.

[29] S. Alyahya, D. Alrugebh, Process Improvements for
Crowdsourced Software Testing, International Journal of
Advanced Computer Science and Applications, Vol. 8, No.
6, pp. 32–40, 2017.

[30] N. Leicht, M. Rhyn, G. Hansbauer, Can Laymen
Outperform Experts? The Effects of User Expertise and
Task Design in Crowdsourced Software Testing. 24th
European Conference on Information Systems, (ECIS),
Istanbul, Turkey, 2016, pp. 1–11.

Biographies

Yongming Yao received the B.S.
degree in communication engineering
from Nanjing University of Posts and
Telecommuni-cations in 2010 and
the M.S. degree in computer system
architect-ture from Xi’an University of
Posts and Telecomm-unications in 2013.
He received the Ph.D. degree in software

engine from Army Engineering University of PLA. He is
currently an assistant professor of software engineering
with the Software Testing and Evaluation Center, Army
Engineering University of PLA. He has contributed more

398 Journal of Internet Technology Vol. 26 No. 3, May 2025

than 10 journal articles to professional journals. His
current research interests include software testing, quality
assurance, and empirical software engineering. He is a
member of CCF.

Tongtong Bai received the B.S. degree
in software engineering from Southwest
University of Science and Technology
in 2018 and the M.S. degree in software
engineering from Southwest University
of Science and Technology in 2023.
He is currently pursuing the Ph.D.
degree in software engineering at Army

Engineering University of PLA. He previously served
as a Performance Test Engineer at NetEase. His research
interests are in the area of intelligent software testing and
autonomous vehicle testing.

Jiangtao Lu received the B.S. degree
in Network Engineering from Xiamen
University of Technology in 2016
and the M.S. degree in Computer
Technology from the Xiamen University
of Technology in 2020. He is currently
pursuing the Ph.D. degree in software
engineering at Army Engineering

University of PLA, with a focus on open-source software
vulnerability PoCs.

Changyou Zheng received the Ph.
D. degree in millitary information
from PLA University of Science and
Technology in 2013. He is currently a
teacher at Army Engineering University
of PLA. His research interests are in the
area of software testing, codeblocks.

Song Huang received the Ph.D. degree
from the PLA University of Science
and Technology. He is currently a
Professor of software engineering with
the Software Testing and Evaluation
Center, Army Engineering University of
PLA. He has contributed more than 100
journal articles to professional journals.

His current research interests include software testing,
quality assurance, data mining, and empirical software
engineering. He is a member of CCF and ACM. He is also
a member of the advisory boards of Journal of Systems
and Software and IEEE Transactions on Reliability.

