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Abstract

Self-Admitted Technical Debt is a key research area in 
the current software engineering field. By detecting Self-
Admitted Technical Debt, potential bugs in software code 
can be detected early, thus improving software quality. 
We have systematically organized and analyzed SATD 
detection in recent years and proposed several future 
research directions.
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1  Introduction

Technical debt in software development is a kind 
of specific debt that refers to the errors introduced by 
programmers consciously or unconsciously in the process 
of software coding or unfinished code [1]. The purpose of 
software development is to develop high-quality, defect-
free, and structurally complete code. However, in the actual 
software development process, due to limited resources, 
such as the limitation of development cost, the requirement 
of developing time, and the shortage of human resources, 
the original software development plan will be disrupted 
[2-3]. In order to deliver software products according to the 
original plan, programmers may adopt suboptimal schemes 
to complete software code, including hard coding, function 
simplification, etc. These suboptimal solutions will affect 
the robustness of software products in the long run, 
requiring timely code refactoring [4]. In particular, there 
is a specific type of technical debt known as self-admitted 
technical debt (SATD). This technical debt is actively 
introduced by programmers, such as hard coding function 
parameters, and is recorded in code comments. Many 
previous studies have shown that code annotation plays a 
key role in ensuring the quality of software products [5-6]. 
Therefore, Potdar et al. investigated this kind of technical 
debt in code comments and called it self-admitted technical 
debt [7]. Their research shows that SATD is widespread 
and may have a negative impact on software maintenance. 
Subsequently, Wehaibi et al. conducted an empirical study 
[8], indicating a correlation between SATD and software 
quality. SATD may not only lead to software defects but 
also to the failure of software system reconstruction in 

future iterations. Therefore, it is necessary to identify 
SATD in time in the process of software development and 
repay the existing technical debt. This problem is called 
self-admitted technical debt in academia.

To systematically analyze, summarize and compare 
this issue, important academic search engines at home and 
abroad (such as Google Scholar, DBLP, CNKI, etc.) are 
selected to search for papers related to this review topic. 
Select the English keyword “self-admitted technical debt 
detection” and search in DBLP. Seven papers directly 
related to SATD detection were reviewed, including one 
paper on empirical research for self-adaptive technical 
debt detection in blockchain software projects, which is 
the latest achievement of the research group in 2022.

Select the English keyword “self-admitted technical 
debt” and search in DBLP. 

There have been 75 relevant SATD research papers 
since 2014. In recent years, it has shown an increasing 
trend year by year. In 2022, 23 related papers were 
published, and Emad Shihab and others were the main 
researchers in this field. To understand the research on 
SATD in China, the keyword “self-admitted technical” 
is selected for subject retrieval in CNKI. There are seven 
relevant papers; among them, four papers are related to 
the detection of self-admitted technical debt, which shows 
that this problem has been paid attention to by domestic 
researchers. In 2022, the research team of Nanjing 
University published a review article [9] in the Journal of 
Software, which deeply combed the self-admitted technical 
debt. Through quantitative analysis of published papers, 
they found that the number of papers published in this field 
showed an overall upward trend year by year. Especially 
in 2019-2020, this shows that the research field of SATD is 
getting more and more attention from researchers.

Then, we analyzed the title, publication source, 
abstract, and keywords of the paper, filtering out the papers 
unrelated to the review topic. The relevant cited papers 
were analyzed to add the missing papers, and the relevant 
authors were analyzed to add the latest research results. 
Finally, 27 papers related to the topic were determined. 
Compared with the review article research on self-admitted 
technical debt [9], the course group pays more attention 
to the breadth of research in the subfield of self-admitted 
technical debt detection, and the research goal focuses on 
the detection of self-admitted technical debt.

SATD detection techniques could be strengthened by 
including a discussion on the broader implications and 
applications of SATD detection in software engineering 
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pract ices.  This  includes the impact  on software 
quality, maintenance, and technical debt management. 
Understanding the broader implications can provide 
insights into how SATD detection can be integrated into 
software development processes and what benefits and 
challenges it may bring. For example, the early detection 
of SATD can help improve software quality by identifying 
potential issues early in the development process. It can 
also facilitate technical debt management by providing 
a clear understanding of the technical debt landscape 
within a codebase. Additionally, SATD detection can aid 
in software maintenance by highlighting areas of the code 
that may require refactoring or further attention. Overall, 
the inclusion of a discussion on the broader implications 
and applications of SATD detection would enhance the 
paper’s contribution to the field of software engineering.

2  Research Framework of Self-
Admitted Technical Debt Detection 

By analyzing the existing research results on self-
admitted technical debt detection, the following two 
scenarios can be summarized:

Figure 1. Research framework

(1) Scenario 1: the new item T needs to be identified, 
labeled SATD data set S exists, s = {s1, s2, ..., sn} , and the 
data set corresponding to the new item T is t.

(2) Scenario 2: the new item to be identified is T, with 
no labeled SATD dataset. The data set corresponding to the 
new item is t, and each data set belongs to an item with a 
specific pattern.

For the above two different scenarios, the current self-
admitted technical debt Detection can be divided into two 
categories:

(1) Based on the supervised learning method. This kind 
of method is mainly for scenario 1, training the detection 
model based on the labeled SATD data set and identifying 
and predicting the new items to be identified.

(2) Method based on unsupervised learning. This kind 
of method is mainly for scenario 2. There is no labeled 
SATD data set, and the prediction is based on the potential 
pattern detection in the new project to be identified.

The above method can be used to classify the self-

admitted technical debt Detection of the target project. The 
research framework is shown in Figure 1.

3  Methods Based on Supervised 
Learning

In the past decade, various supervised learning methods 
have been used to identify self-admitted technical debt. 
Potdar et al. [7] identified 62 common SATDs by manually 
analyzing the annotation patterns in code annotations, 
including keywords, phrases, etc. The research of Bavota 
et al. [10] shows that the 62 SATD modes proposed above 
can identify SATD with high accuracy in other projects. 
However, this pattern detection method heavily relies on 
manual detection, which may bring a low detection recall 
rate because there may be many other different SATD 
patterns in other projects.

To solve the problem of the insufficient generalization 
ability of pattern detection methods and SATD detection, 
many other machine learning methods have been 
introduced. Maldonado et al. proposed a natural language 
processing method [11], Huang et al. proposed a text 
mining method [12], and Ren et al. proposed a method 
based on the convolutional neural network [13-15]. 
These methods show that machine learning techniques 
can effectively improve the performance index of SATD 
detection.

Based on the method of supervised learning, we should 
first solve the problem of data collection. At present, 
Maldonado et al. put forward the most widely used dataset 
in this research [11], which comes from 10 open source 
projects, including Apache antargouml, Columbia, EMF, 
hibernate, jedit, JfreeChart, JMeter, jruby, and squirre. 
These ten projects belong to different application fields 
with different project scales. Most of them are Java 
projects with obvious class imbalance. The data collection 
process is shown in Figure 2.

The first step is to use the eclipse plug-in tool 
jdeodorant to parse the source code and extract the 
comments. Collect the specific information of each line of 
code, including the start position and end position of each 
comment, as well as the different categories of comments. 
A total of 259229 open source projects were selected from 
these 10 open source projects, with an average of 25923 
code comments per source project. Since only a small part 
of the code contains SATD, labeling these source codes is 
time-consuming and laborious.

The second step uses five heuristic filtering strategies to 
identify SATD and eliminate non-SATD code comments. 
After cleaning, irrelevant SATD comments generated by 
the machine are cleared, and the remaining SATD code 
comments to be marked are 62566 lines. Heuristic strategy 
can not only effectively reduce the workload of manual 
annotation but also improve the classification accuracy of 
machine learning methods. Code comments using heuristic 
filtering strategies include [9]:

(1) License comments. Such comments are usually 
added before the class declaration and describe the code’s 
license information. Generally, SATD is not included in 
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such notes. Note that if such comments contain task tags 
(such as “todo”, “fixme” or “XXX”), these comments 
will not be filtered because these tags usually appear with 
SATD.

(2) Automatically generated comments.  Such 
comments are automatically generated by the development 
environment and do not describe meaningful content, so 
they cannot indicate SATD. For example, “auto-generated 
constructor stub”.

(3) Javadoc comments. This annotation explains the 
definition and function description of entities in Java code. 
SATD will not normally be included unless it contains a 
task tag.

(4) Commented source code. This type of comment 
refers to some temporarily unused and commented-out 
content in the code. Generally, the text description related 
to SATD cannot be obtained intuitively, so it needs to be 
filtered out.

(5) Long comments. Some long notes in a project 
are composed of multiple single-line notes adjacent to 
each other. These single-line notes are separated in form 
but describe an overall event in content. For this type of 
annotation, these adjacent single-line annotations need to 
be combined into a complete annotation instance instead of 
filtering.

In step 3, after cleaning up the original data set, 
Maldonado and others instructed programmers to mark the 
data manually. Manually annotated datasets may contain 
personal biases, which may affect the performance of the 
detection model. Therefore, hierarchical sampling of data 
is used to reduce the impact of different programmers’ 
annotations. To further verify the validity of the data, 
independent individuals of a third party are used to mark 
the data separately. The statistical results show that 
the data marked by different users have high statistical 
consistency. Cohen’s kappa coefficient can reach 0.81, 
with a coefficient greater than 0.75 indicating that the error 
in the two people’s marking is within the acceptable range.

Apache Ant ArgoUML Columba EMF Hibernate

JEdit JFreeChart JMeter JRuby SQulrrel

Open-source projects

Parsing codes by Jdeodorant

Eliminating and labelling comments

Using stratified sampling

Unrelated machine-generated comments Related comments

Cohen’s kappa coefficient of 0.81

SATD Non-SATD

Figure 2. Data collection

Class imbalance exists in various fields. Though the 
ratio of the minority class is low, the minority class has 
greater influence. For example, when checking for lung 
cancer, most people tend to be healthy, but few people with 
potential lung cancer should be considered more. There is 
also the class imbalance for the SATD data set in software 
engineering.

There are several traditional approaches for class 
imbalance. (1) Oversampling methods use random 
sampling repeatedly for the minority class. For DL, this 
oversampling method may slow down the training speed 
and cause an overfitting problem. (2) Undersampling 
methods may exacerbate the problem of insufficient data 
and drop valuable instances. (3) Cost-sensitive methods 
involve reforming classification models, such as cost-
sensitive learning framework, cost-sensitive dataspace 
weighting with Adaptive Boosting, and cost-sensitive 
neural network. The idea that the loss function can be 
adapted to account for expected costs was introduced into 
our proposed loss function.

Cunningham first introduced technical debt to describe 
where long-term code quality was traded for short-term 
goals [1, 8]. Previous studies showed that technical debt 
was inevitable, and if it could not be dealt with in time, 
it would reduce product quality and increase system 
risk [3, 6]. However, technical debt is only sometimes 
visible. Parts of the previous research focused on detecting 
technical debt by analyzing static code. Recently, Self-
Admitted Technical Debt was proposed [5]. This type of 
technical debt is intentionally introduced by developers. 
Its purpose is to provide sub-optimal technical solutions 
for the current software code, etc., and these codes may be 
optimized through software refactoring. Although the ratio 
of SATD in the entire software project is not very high, 
its impact should not be underestimated. Because rule-
based detection could not be used for code comments due 
to its natural non-structural characteristics, source Code 
comments with SATD cannot be automatically detected by 
computers.

Based on the recent survey, six different approaches 
at the file level were introduced to identify SATD. These 
approaches can be divided into two groups: (1) pattern-
based approaches for textual patterns in comments; and (2) 
machine learning-based approaches. In previous studies, 
SATD detection mostly used text-mining methods [2, 8]. 
Deep learning has been applied to many fields in software 
engineering. 

3.1 Model Based on Natural Language Processing 
Technical
In 2017, Maldonado and others first proposed using 

natural language processing techniques to identify SATD. 
The types of SATD detection include design SATD and 
demand SATD. The maximum entropy Stanford classifier 
automatically learns features from the training data 
set, calculates the corresponding weights, and finally 
judges the probabilities of different types of SATDs 
according to the maximum likelihood probability. In 2018, 
Wattanakriengkrai et al. [16] proposed combining n-gram 
IDF and the automatic learning algorithm auto sklearn to 
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find the optimal classifier. The model focuses on designing 
SATD and the demand for SATD. To generate a three-
classification model, a random forest is introduced to 
transform the classification results into designing SATD, 
demand SATD, and no SATD. The model can reduce the 
cost of model training and maintenance. In 2019, a special 
type of SATD was discovered and defined by Maipradit 
et al. [17]. For this SATD, programmers must wait for 
additional trigger conditions to activate the code. When the 
external conditions are met, this SATD should be actively 
prompted to delete. Maipradit et al. designed a classifier 
based on natural language processing to recognize this 
kind of SATD.

3.2 Text Mining-based Detection Model 
In 2018, Huang et al. [12] proposed a detection model 

for text mining. In this model, all code comments are 
preprocessed as text, all code comments are converted 
to the stem form of words, and irrelevant words are 
eliminated. The preprocessed text is used as input, the 
effective features of classification are obtained by feature 
selection, and the final SATD type is obtained by voting on 
the sub-classifiers.

3.3 Deep Learning Based Detection Model 
Unlike the 62 intuitive patterns summarized by Potdar 

et al., Huang et al.’s text mining method can’t interpret 
the detection results. In addition, the experiments of 
Huang et al. show that the text mining method has limited 
versatility and adaptability for detection in cross-project 
environments. Ren et al. proposed to adopt the detection 
model based on the convolutional neural network [13] and 
first determined the characteristics of five SATD reviews 
that affect the performance, universality, and adaptability 
of the SATD detection model. Their aim was to improve 
the accuracy of SATD prediction and the interpretability of 
prediction results based on deep learning. A method based 
on a convolutional neural network (CNN) is proposed to 
identify SATD in source code annotation. This method is 
to learn to extract the information text feature of the SATD 
detection task from the code annotation. This learning 
ability is not only important for SATD detection but also 
can improve the universality and adaptability of the model. 
A backtracking method is developed to visualize the text 
features learned by CNN, focusing on the influential key 
phrases in the input comment. These keywords contribute 
the most to determining whether the comment is SATD. 
These key phrases provide an intuitive explanation for 
CNN’s prediction and also reveal many less obvious and 
less frequent SATD patterns, which are difficult to identify 
only through human observation. The framework is shown 
in Figure 3.

Figure 3. Deep learning-based detection model

In this model, by using multiple convolution kernels 
in the convolution layer, it can effectively address issues 
prevalent in code annotation, such as variable phrase 
frequency, item uniqueness, variable code annotation 
length, semantic diversity, class imbalance, and more. 
The implementation method employs convolution kernels 
of varying sizes to learn the semantic representation of 
different texts. The output results of different convolution 
kernels are concatenated into a vector, and a linear 
classifier is used for vector classification. The classification 
results are SATD and non-SATD, representing a binary 
classification problem.

In 2022, in view of the effectiveness of the deep 
learning detection model, Qu et al. conducted empirical 
research on common deep learning models on the open-
source blockchain project. Its basic framework is shown in 
Figure 4.

By fine-tuning the training process on the pre-training 
model Bert, the weighted loss function is introduced to 
solve the class imbalance problem. The research results 
on the open-source blockchain project show that the 
performance of this method is better than the convolutional 
neural network model proposed by Ren et al.

In 2022, Qu et al. [18] further verified the effectiveness 
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of the deep learning method using the interpretability 
technical based on gradients to carry out empirical research 
on convolutional neural networks proposed by Ren et al. 
The used technologies include saliency maps, integrated 
gradients, etc. The research results showed that the 
classification method based on deep learning could cover 
the manual annotation mode. The interpretability analysis 
process is shown in Figure 5.

The interpretability of deep learning models is of 
paramount importance as it enables researchers and prac-
titioners to understand and trust the model’s predictions. 
It provides insights into how the model arrives at its de-
cisions, which is crucial for debugging, improving model 
performance, and ensuring transparency and accountability 

in applications. Techniques such as saliency maps, inte-
grated gradients, and others help to visualize the influence 
of input features on the model’s predictions, thereby en-
hancing interpretability. By gaining a deeper understanding 
of the model’s behavior, developers can make informed 
decisions regarding model selection, feature engineering, 
and other aspects of model development and deployment.

In the weighted convolutional neural network, the gra-
dient of each input neuron is inversely calculated for the 
classification result. The gradient with large change is the 
gradient with great influence on the classification result. 
Comparison of different SATD detection methods is shown 
in Table 1.

Figure 4. The framework of SATD detection in blockchain projects

 

Figure 5. The interpretability analysis process

Table 1. Comparison of different SATD detection methods

Method Advantages Disadvantages
Pattern Detection Simple and intuitive Low recall rate, heavily dependent on 

manual analysis

Natural Language 
Processing (NLP)

High accuracy, automated feature 
extraction

Requires large amount of labeled data, 
complex model training

Text Mining Efficient feature extraction, good 
generalization ability

Limited by feature engineering, low 
interpretability

Deep Learning High accuracy, strong generalization 
ability

Requires large amount of data, black box 
problem
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4  Method Based on Unsupervised 
Learning

The unsupervised model is very convenient to build 
and use compared with the supervised model. The 
unsupervised model mainly identifies the existence of 
SATD by summarizing different technical debt patterns. In 
2014, Potdar et al. proposed 62 modes by manually reading 
code comments, laying the foundation for unsupervised 
learning. They determined whether the code comment has 
SATD according to whether the mode in the target data set 
appears. However, this model needs to be more specific, 
resulting in a low recall rate in the actual project.

The unsupervised learning approaches can leverage 
various patterns and heuristics to identify SATD. For 
instance, patterns might include specific comment tags like 
“todo: needs documentation” and “todo: not complete,” or 
particular keywords present in the code. Heuristics may 
involve predefined rules for common technical debt types, 
such as documentation debt and requirement debt.

In 2018, Passos et al. [19] proposed that the notes 
containing the modes “todo: needs documentation,” “todo: 
not documented,” and “please document” usually include 
document debt, while the notes containing the modes 
“not implemented”, “todo: not complete” and “not yet 
supported” usually include demand debt.

In 2019, Guo et al. [20] found that there is a strong 
connection between task tags and SATD according to 
the situation of task tags in Java projects. Typical task 
tags include “todo”, “fixme”, “hack” and “XXX”. These 
task tags are closely related to the Java project and the 
corresponding integrated development environment. Guo 
et al. conducted empirical research in common open-
source projects and collected other Java projects for 
research. The research results show that the method mat 
based on fuzzy matching can achieve, or even very close 
to, the detection performance of the convolutional neural 
network. However, this method has obvious defects. For 

example, these task tags may exist in Java projects, while 
typical task tags may not exist in some projects. The 
programming languages of related projects are shown in 
Table 2.

Table 2. The programming languages of related projects

Dataset Project Language
Maldonado et al. Ant JAVA

ArgoUml JAVA
Columba JAVA
EMF JAVA
Hibernate JAVA
Jedit JAVA
JFreeChart JAVA
Jmeter JAVA
JRuby JAVA
Squirrel JAVA

Guo et al. Dubbo JAVA
Gradle JAVA
Groovy JAVA
Hive JAVA
Maven JAVA
Poi JAVA
SpringFramework JAVA
Storm JAVA
Tomcat JAVA
Zookeeper JAVA

In 2022, Qu et al. [21] conducted empirical research 
on open-source blockchain projects, including Bitcoin, 
Ethereum, solidity, fabric, and Chia. Through manual 
annotation of code comments, it is finally found that in 
these projects, typical task tags do not always exist in 
each comment, and the fuzzy matching algorithm cannot 
effectively identify SATD in these projects. The specific 
empirical research results are shown in Table 3.

Table 3. Empirical research results

Project SATD Types #Count todo fixme xxx hack #All Tags #Percent
bitcoin SATD 1201 143 0 0 5 148 12.32%

WITHOUT_SATD 28205 1 2 7 7 17 0.06%
Ethereum SATD 708 120 2 6 4 132 18.64%

WITHOUT_SATD 40780 72 0 0 18 90 0.22%
Diem SATD 446 212 1 8 6 227 50.9%

WITHOUT_SATD 12411 112 2 9 10 133 1.07%
solidity SATD 503 3 0 0 0 3 0.6%

WITHOUT_SATD 1267 1 0 0 0 1 0.08%
fabric SATD 806 386 7 12 4 409 50.74%

WITHOUT_SATD 36392 170 1 72 16 259 0.71%
chia SATD 207 71 0 0 3 74 35.75%

WITHOUT_SATD 2504 7 0 0 2 9 0.36%
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5  Performance Evaluation Index 
Analysis 

The problem of self-admitted technical debt detection 
is often transformed into a binary classification problem. 
The classification results of code annotation include 
SATD and non-SATD. From the perspective of binary 
classification, the classification results of annotation 
detection can be divided into the following four cases.

A. For an annotation identified as containing SATD, 
it does contain SATD. This result belongs to TP (true 
positive);

B. For an annotation identified as containing SATD, 
it does not contain SATD. This result belongs to FP (false 
positive);

C. For an annotation identified as not having SATD, 
it does contain SATD, and this result belongs to FN (false 
negative);

D. For an annotation identified as not having SATD, 
it does not contain SATD. This result belongs to TN (true 
negative)

Based on the above four situations, the relevant 
confusion matrix is designed, as shown in Table 4 below.

Table 4. Confusion matrix

Actual value
 Predicted value

SATD NON-SATD

SATD True SATD False NON-SATD
NON-SATD False SATD True NON-SATD 

For the calculation results of all data samples on the 
test data set, calculate the index values according to the 
following formula.

(1) precision, the proportion of all instances with 
SATD prediction results, including real SATD samples

 
  

True SATDprecision
True SATD False SATD

=
+

(2) recall, the proportion of all real SATD samples 
correctly predicted as SATD samples

 
  

True SATDrecall
True SATD False NON SATD

=
+ −

(3) F1 − measure, this index is the harmonic average 
of precision and recall, which can objectively reflect the 
comprehensive performance of the Detection model

)
21
(

precision recallF measure
p crecision re all
∗ ∗

− =
+

The above three indicators are most used in the 
performance comparison of detection methods. Values 
of these indicators range from 0 to 1; the larger the value 
range of these indicators, the better the performance of 
detection methods. Due to the class imbalance problem in 

SATD dataset, F1 − measure is widely used to evaluate the 
performance of Detection methods.

(4) Accuracy: the proportion of samples correctly 
classified as SATD and non-SATD in all classification 
results.

6  Evaluation Data Set Analysis 

To accurately evaluate the effect of SATD detection 
model, performance evaluation needs to be carried out 
on the benchmark data set. However, it is essential to 
acknowledge the challenges and limitations of the existing 
benchmark datasets, such as the potential biases introduced 
by manual labeling and the lack of diversity in project 
domains and programming languages. Currently, the 
most commonly used dataset is extracted from the open-
source Java project by Maldonado and others using the 
tool jdeodorant. The basic information of the dataset-m is 
shown in Table 5 [4]. 

The first table in the figure shows the data set name, 
and the second column represents the project name; the 
third column represents the number of lines of extracted 
code comments; the fourth column represents the number 
of remaining effective code comment lines after filtering; 
the fifth column represents the number of SATD code 
comments; the sixth column represents the proportion 
of SATD in all code comments; the seventh column 
represents the number of contributors; the eighth column 
represents the number of class entities. The ninth column 
represents the number of code lines.

In 2019, Guo et  al .  [4,  20],  in order to more 
comprehensively evaluate their unsupervised fuzzy 
matching algorithm mat, collected and sorted another 
dataset dataset-g. The data collection method of this 
dataset is consistent with that of dataset-m, which 
comes from another 10 open-source Java projects. The 
generalization ability of the mat method in the actual 
project is analyzed from the new data set, and the larger 
data set can better reflect the statistical results. The ten 
datasets are dubbo-2.7.4, gradle-5.6.3, groovy-2.5.8, hive-
3.1.2, maven-3.6.2, poi-4.1.1, springframework-5.2.0, 
storm-2.1.0, tomcat-9.0.27, and zookeeper-3.5.6. There 
are 266,980 samples in the original data set. After filtering, 
81,260 samples are obtained. The proportion of SATD is 
1.12%.

Qu et al. [21] conducted an empirical study on SATD 
in blockchain projects in 2022 and collected data sets 
of common open-source blockchain projects. The data 
set collection method is consistent with the dataset-m 
collection method. The brief information on each project is 
shown in Table 6. In the figure, the first column represents 
the project name, the second column represents the 
version number adopted, the third column represents the 
number of code lines, and the fourth column represents 
the programming language adopted. The fifth column 
represents the number of GitHub projects plus stars. 
These blockchain projects do not use Java programming 
language, and this data set can provide research objects 
that are more suitable for the needs of practical blockchain 
projects.
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Table 5. The basic information of the dataset-m

Dataset Project #Comments After 
filtering

#SATD % of 
SATD

Cont. # of 
classes

KLOC

Maldonado et al.
collected
(Dataset-M)

Ant 21,587 3,052 102 0.47% 74 1,475 115
ArgoUML 67,716 5,426 969 1.43% 87 2,609 926
Columba 33,895 4,090 128 0.38% 10 1,711 155
EMF 25,229 2,585 74 0.29% 30 1,458 228
Hibernate 11,630 2,492 377 3.24% 314 1,356 703
JEdit 16,991 4,644 195 1.15% 57 800 310
JFreeChart 23,474 2,494 101 0.43% 19 1,065 317
JMeter 20,084 4,148 282 1.40% 41 1,181 354
JRuby 11,149 3,652 383 3.44% 374 1,486 841
SQuirrel 27,474 4,473 201 0.73% 40 3,108 708
Total 259,229 37,056 2,812 1.08% 1,046 16,249 4,657

We collected
(Dataset-G)

Dubbo 5,875 1,649 85 1.45% 255 2,532 141
Gradle 15,901 3,324 321 2.02% 409 13,541 406
Groovy 14,199 4,435 249 1.75% 284 2,729 181
Hive 81,127 29,340 1,046 1.29% 192 15,463 1,257
Maven 5,448 1,219 136 2.50% 87 1,158 84
Poi 45,666 15,033 618 1.35% 12 4,793 406
SpringFramework 42,574 7,712 98 0.23% 401 14,686 654
Storm 12,258 3,639 92 0.75% 304 4,787 282
Tomcat 37,038 12,218 287 0.77% 31 4,120 335
Zookeeper 6,894 2,691 63 0.91% 93 1,322 87
Total 266,980 81,260 2,995 1.12% 2,068 65,131 3,833

Total - 526,209 118,316 5,807 1.10% 3,114 81,380 8,490
Average - 26,310 5,915.8 290 1.10% 156 4,096 425

Table 6. The brief information on each project

Project Release #Line of code Languages Stars
bitcoin 22 221,466 C++, Python 58.9K
Ethereum 1.10.12 394,246 go 33.3K
diem 1.0.2 227,505 Rust 16.2K
solidity 0.8.10 224,404 C++, Solidity, Python 13K
fabric 2.3.3 1,109,729 go 12.8K
chia 1.2.7 62,232 Python 9.5K

7  Future Research Directions

There are many challenges in the current SATD 
detection research [9]. When building SATD detection, 
some models treat it as a binary classification problem. 
However, in actual projects, different types of SATD may 
have different concerns. Some models did not consider class 
imbalance when designing the SATD detection model. 
Although some detection models can achieve relatively 
high F1 values on the experimental data set, considering 
the complexity of the industry, it is still unable to be 
effectively migrated to the project. The model based on 
machine learning also has the problem of super parameter 

optimization, especially the detection model based on 
deep learning. In the actual project, the model must be 
optimized according to the characteristics of different 
projects. In addition, the reliability of the data set also has 
some problems. Yu et al. [22] found the real category of 
about 426 annotation instances in the data set provided by 
Maldonado et al. It was wrongly marked. According to the 
review of SATD detection and the existing challenges, the 
research group believes that the following aspects need 
more research attention.

(1) Provide a unified definition of SATD and build 
a standardized SATD data set. The division of SATD 
is based on the programmer’s understanding of code 
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comments, and it is manually classified. This classification 
has strong subjectivity and bias. Different programmers 
may have different perceptions of different SATD types. 
For example, there may be some fuzziness in the manual 
classification of design debt and demand debt. Therefore, 
it is necessary to establish a unified classification standard, 
which can effectively reduce the difficulty of manual 
annotation and improve the quality of data sets. At the 
same time, in the process of data set construction, it 
should contain as much information as possible, such as 
the introducer, survival time, remover, SATD association 
code, etc., which will help to provide important support for 
subsequent SATD research.

(2) Study the recommended model of SATD removal. 
At present, the Detection model only provides the category 
prediction of SATD. However, more SATD removal 
suggestions need to be provided in the project. At present, 
there are few studies in this field.

(3) Development of SATD management tools. 
Although SATD widely exists in various projects, there is 
currently a lack of complete and systematic management 
SATD tools, including Detection, classification, importance 
suggestions, etc. It can only scan whether there is SATD of 
outstanding debts before software development.

(4) Research on SATD detection method. From pattern 
detection to deep learning, the accuracy of SATD detection 
is constantly improving, and the current pre-training model 
has also made greater progress in text processing. How 
to integrate domain knowledge and pre-training model 
to improve the accuracy of SATD detection is also a new 
application research direction.
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