
Journal of Internet Technology Vol. 26 No. 3, May 2025 379

*Corresponding Author: Long Li; E-mail: lilong@guet.edu.cn
DOI: https://doi.org/10.70003/160792642025052603010

A Survey of Self-Admitted Technical Debt Detection

Xianzhen Dou1,2, Long Li1*, Yubin Qu1,2

1 Guangxi Key Laboratory of Trusted Software, Guilin University of Electronic Technical, China
2 School of Information Engineering, Jiangsu College of Engineering and Technical, China

douxianzhen@163.com, lilong@guet.edu.cn, quyubin@hotmail.com

Abstract

Self-Admitted Technical Debt is a key research area in
the current software engineering field. By detecting Self-
Admitted Technical Debt, potential bugs in software code
can be detected early, thus improving software quality.
We have systematically organized and analyzed SATD
detection in recent years and proposed several future
research directions.

Keywords: Survey, Self-admitted technical debt detection,
Deep learning

1 Introduction

Technical debt in software development is a kind
of specific debt that refers to the errors introduced by
programmers consciously or unconsciously in the process
of software coding or unfinished code [1]. The purpose of
software development is to develop high-quality, defect-
free, and structurally complete code. However, in the actual
software development process, due to limited resources,
such as the limitation of development cost, the requirement
of developing time, and the shortage of human resources,
the original software development plan will be disrupted
[2-3]. In order to deliver software products according to the
original plan, programmers may adopt suboptimal schemes
to complete software code, including hard coding, function
simplification, etc. These suboptimal solutions will affect
the robustness of software products in the long run,
requiring timely code refactoring [4]. In particular, there
is a specific type of technical debt known as self-admitted
technical debt (SATD). This technical debt is actively
introduced by programmers, such as hard coding function
parameters, and is recorded in code comments. Many
previous studies have shown that code annotation plays a
key role in ensuring the quality of software products [5-6].
Therefore, Potdar et al. investigated this kind of technical
debt in code comments and called it self-admitted technical
debt [7]. Their research shows that SATD is widespread
and may have a negative impact on software maintenance.
Subsequently, Wehaibi et al. conducted an empirical study
[8], indicating a correlation between SATD and software
quality. SATD may not only lead to software defects but
also to the failure of software system reconstruction in

future iterations. Therefore, it is necessary to identify
SATD in time in the process of software development and
repay the existing technical debt. This problem is called
self-admitted technical debt in academia.

To systematically analyze, summarize and compare
this issue, important academic search engines at home and
abroad (such as Google Scholar, DBLP, CNKI, etc.) are
selected to search for papers related to this review topic.
Select the English keyword “self-admitted technical debt
detection” and search in DBLP. Seven papers directly
related to SATD detection were reviewed, including one
paper on empirical research for self-adaptive technical
debt detection in blockchain software projects, which is
the latest achievement of the research group in 2022.

Select the English keyword “self-admitted technical
debt” and search in DBLP.

There have been 75 relevant SATD research papers
since 2014. In recent years, it has shown an increasing
trend year by year. In 2022, 23 related papers were
published, and Emad Shihab and others were the main
researchers in this field. To understand the research on
SATD in China, the keyword “self-admitted technical”
is selected for subject retrieval in CNKI. There are seven
relevant papers; among them, four papers are related to
the detection of self-admitted technical debt, which shows
that this problem has been paid attention to by domestic
researchers. In 2022, the research team of Nanjing
University published a review article [9] in the Journal of
Software, which deeply combed the self-admitted technical
debt. Through quantitative analysis of published papers,
they found that the number of papers published in this field
showed an overall upward trend year by year. Especially
in 2019-2020, this shows that the research field of SATD is
getting more and more attention from researchers.

Then, we analyzed the title, publication source,
abstract, and keywords of the paper, filtering out the papers
unrelated to the review topic. The relevant cited papers
were analyzed to add the missing papers, and the relevant
authors were analyzed to add the latest research results.
Finally, 27 papers related to the topic were determined.
Compared with the review article research on self-admitted
technical debt [9], the course group pays more attention
to the breadth of research in the subfield of self-admitted
technical debt detection, and the research goal focuses on
the detection of self-admitted technical debt.

SATD detection techniques could be strengthened by
including a discussion on the broader implications and
applications of SATD detection in software engineering

380 Journal of Internet Technology Vol. 26 No. 3, May 2025

pract ices. This includes the impact on software
quality, maintenance, and technical debt management.
Understanding the broader implications can provide
insights into how SATD detection can be integrated into
software development processes and what benefits and
challenges it may bring. For example, the early detection
of SATD can help improve software quality by identifying
potential issues early in the development process. It can
also facilitate technical debt management by providing
a clear understanding of the technical debt landscape
within a codebase. Additionally, SATD detection can aid
in software maintenance by highlighting areas of the code
that may require refactoring or further attention. Overall,
the inclusion of a discussion on the broader implications
and applications of SATD detection would enhance the
paper’s contribution to the field of software engineering.

2 Research Framework of Self-
Admitted Technical Debt Detection

By analyzing the existing research results on self-
admitted technical debt detection, the following two
scenarios can be summarized:

Figure 1. Research framework

(1) Scenario 1: the new item T needs to be identified,
labeled SATD data set S exists, s = {s1, s2, ..., sn} , and the
data set corresponding to the new item T is t.

(2) Scenario 2: the new item to be identified is T, with
no labeled SATD dataset. The data set corresponding to the
new item is t, and each data set belongs to an item with a
specific pattern.

For the above two different scenarios, the current self-
admitted technical debt Detection can be divided into two
categories:

(1) Based on the supervised learning method. This kind
of method is mainly for scenario 1, training the detection
model based on the labeled SATD data set and identifying
and predicting the new items to be identified.

(2) Method based on unsupervised learning. This kind
of method is mainly for scenario 2. There is no labeled
SATD data set, and the prediction is based on the potential
pattern detection in the new project to be identified.

The above method can be used to classify the self-

admitted technical debt Detection of the target project. The
research framework is shown in Figure 1.

3 Methods Based on Supervised
Learning

In the past decade, various supervised learning methods
have been used to identify self-admitted technical debt.
Potdar et al. [7] identified 62 common SATDs by manually
analyzing the annotation patterns in code annotations,
including keywords, phrases, etc. The research of Bavota
et al. [10] shows that the 62 SATD modes proposed above
can identify SATD with high accuracy in other projects.
However, this pattern detection method heavily relies on
manual detection, which may bring a low detection recall
rate because there may be many other different SATD
patterns in other projects.

To solve the problem of the insufficient generalization
ability of pattern detection methods and SATD detection,
many other machine learning methods have been
introduced. Maldonado et al. proposed a natural language
processing method [11], Huang et al. proposed a text
mining method [12], and Ren et al. proposed a method
based on the convolutional neural network [13-15].
These methods show that machine learning techniques
can effectively improve the performance index of SATD
detection.

Based on the method of supervised learning, we should
first solve the problem of data collection. At present,
Maldonado et al. put forward the most widely used dataset
in this research [11], which comes from 10 open source
projects, including Apache antargouml, Columbia, EMF,
hibernate, jedit, JfreeChart, JMeter, jruby, and squirre.
These ten projects belong to different application fields
with different project scales. Most of them are Java
projects with obvious class imbalance. The data collection
process is shown in Figure 2.

The first step is to use the eclipse plug-in tool
jdeodorant to parse the source code and extract the
comments. Collect the specific information of each line of
code, including the start position and end position of each
comment, as well as the different categories of comments.
A total of 259229 open source projects were selected from
these 10 open source projects, with an average of 25923
code comments per source project. Since only a small part
of the code contains SATD, labeling these source codes is
time-consuming and laborious.

The second step uses five heuristic filtering strategies to
identify SATD and eliminate non-SATD code comments.
After cleaning, irrelevant SATD comments generated by
the machine are cleared, and the remaining SATD code
comments to be marked are 62566 lines. Heuristic strategy
can not only effectively reduce the workload of manual
annotation but also improve the classification accuracy of
machine learning methods. Code comments using heuristic
filtering strategies include [9]:

(1) License comments. Such comments are usually
added before the class declaration and describe the code’s
license information. Generally, SATD is not included in

A Survey of Self-Admitted Technical Debt Detection 381

such notes. Note that if such comments contain task tags
(such as “todo”, “fixme” or “XXX”), these comments
will not be filtered because these tags usually appear with
SATD.

(2) Automatically generated comments. Such
comments are automatically generated by the development
environment and do not describe meaningful content, so
they cannot indicate SATD. For example, “auto-generated
constructor stub”.

(3) Javadoc comments. This annotation explains the
definition and function description of entities in Java code.
SATD will not normally be included unless it contains a
task tag.

(4) Commented source code. This type of comment
refers to some temporarily unused and commented-out
content in the code. Generally, the text description related
to SATD cannot be obtained intuitively, so it needs to be
filtered out.

(5) Long comments. Some long notes in a project
are composed of multiple single-line notes adjacent to
each other. These single-line notes are separated in form
but describe an overall event in content. For this type of
annotation, these adjacent single-line annotations need to
be combined into a complete annotation instance instead of
filtering.

In step 3, after cleaning up the original data set,
Maldonado and others instructed programmers to mark the
data manually. Manually annotated datasets may contain
personal biases, which may affect the performance of the
detection model. Therefore, hierarchical sampling of data
is used to reduce the impact of different programmers’
annotations. To further verify the validity of the data,
independent individuals of a third party are used to mark
the data separately. The statistical results show that
the data marked by different users have high statistical
consistency. Cohen’s kappa coefficient can reach 0.81,
with a coefficient greater than 0.75 indicating that the error
in the two people’s marking is within the acceptable range.

Apache Ant ArgoUML Columba EMF Hibernate

JEdit JFreeChart JMeter JRuby SQulrrel

Open-source projects

Parsing codes by Jdeodorant

Eliminating and labelling comments

Using stratified sampling

Unrelated machine-generated comments Related comments

Cohen’s kappa coefficient of 0.81

SATD Non-SATD

Figure 2. Data collection

Class imbalance exists in various fields. Though the
ratio of the minority class is low, the minority class has
greater influence. For example, when checking for lung
cancer, most people tend to be healthy, but few people with
potential lung cancer should be considered more. There is
also the class imbalance for the SATD data set in software
engineering.

There are several traditional approaches for class
imbalance. (1) Oversampling methods use random
sampling repeatedly for the minority class. For DL, this
oversampling method may slow down the training speed
and cause an overfitting problem. (2) Undersampling
methods may exacerbate the problem of insufficient data
and drop valuable instances. (3) Cost-sensitive methods
involve reforming classification models, such as cost-
sensitive learning framework, cost-sensitive dataspace
weighting with Adaptive Boosting, and cost-sensitive
neural network. The idea that the loss function can be
adapted to account for expected costs was introduced into
our proposed loss function.

Cunningham first introduced technical debt to describe
where long-term code quality was traded for short-term
goals [1, 8]. Previous studies showed that technical debt
was inevitable, and if it could not be dealt with in time,
it would reduce product quality and increase system
risk [3, 6]. However, technical debt is only sometimes
visible. Parts of the previous research focused on detecting
technical debt by analyzing static code. Recently, Self-
Admitted Technical Debt was proposed [5]. This type of
technical debt is intentionally introduced by developers.
Its purpose is to provide sub-optimal technical solutions
for the current software code, etc., and these codes may be
optimized through software refactoring. Although the ratio
of SATD in the entire software project is not very high,
its impact should not be underestimated. Because rule-
based detection could not be used for code comments due
to its natural non-structural characteristics, source Code
comments with SATD cannot be automatically detected by
computers.

Based on the recent survey, six different approaches
at the file level were introduced to identify SATD. These
approaches can be divided into two groups: (1) pattern-
based approaches for textual patterns in comments; and (2)
machine learning-based approaches. In previous studies,
SATD detection mostly used text-mining methods [2, 8].
Deep learning has been applied to many fields in software
engineering.

3.1 Model Based on Natural Language Processing
Technical
In 2017, Maldonado and others first proposed using

natural language processing techniques to identify SATD.
The types of SATD detection include design SATD and
demand SATD. The maximum entropy Stanford classifier
automatically learns features from the training data
set, calculates the corresponding weights, and finally
judges the probabilities of different types of SATDs
according to the maximum likelihood probability. In 2018,
Wattanakriengkrai et al. [16] proposed combining n-gram
IDF and the automatic learning algorithm auto sklearn to

382 Journal of Internet Technology Vol. 26 No. 3, May 2025

find the optimal classifier. The model focuses on designing
SATD and the demand for SATD. To generate a three-
classification model, a random forest is introduced to
transform the classification results into designing SATD,
demand SATD, and no SATD. The model can reduce the
cost of model training and maintenance. In 2019, a special
type of SATD was discovered and defined by Maipradit
et al. [17]. For this SATD, programmers must wait for
additional trigger conditions to activate the code. When the
external conditions are met, this SATD should be actively
prompted to delete. Maipradit et al. designed a classifier
based on natural language processing to recognize this
kind of SATD.

3.2 Text Mining-based Detection Model
In 2018, Huang et al. [12] proposed a detection model

for text mining. In this model, all code comments are
preprocessed as text, all code comments are converted
to the stem form of words, and irrelevant words are
eliminated. The preprocessed text is used as input, the
effective features of classification are obtained by feature
selection, and the final SATD type is obtained by voting on
the sub-classifiers.

3.3 Deep Learning Based Detection Model
Unlike the 62 intuitive patterns summarized by Potdar

et al., Huang et al.’s text mining method can’t interpret
the detection results. In addition, the experiments of
Huang et al. show that the text mining method has limited
versatility and adaptability for detection in cross-project
environments. Ren et al. proposed to adopt the detection
model based on the convolutional neural network [13] and
first determined the characteristics of five SATD reviews
that affect the performance, universality, and adaptability
of the SATD detection model. Their aim was to improve
the accuracy of SATD prediction and the interpretability of
prediction results based on deep learning. A method based
on a convolutional neural network (CNN) is proposed to
identify SATD in source code annotation. This method is
to learn to extract the information text feature of the SATD
detection task from the code annotation. This learning
ability is not only important for SATD detection but also
can improve the universality and adaptability of the model.
A backtracking method is developed to visualize the text
features learned by CNN, focusing on the influential key
phrases in the input comment. These keywords contribute
the most to determining whether the comment is SATD.
These key phrases provide an intuitive explanation for
CNN’s prediction and also reveal many less obvious and
less frequent SATD patterns, which are difficult to identify
only through human observation. The framework is shown
in Figure 3.

Figure 3. Deep learning-based detection model

In this model, by using multiple convolution kernels
in the convolution layer, it can effectively address issues
prevalent in code annotation, such as variable phrase
frequency, item uniqueness, variable code annotation
length, semantic diversity, class imbalance, and more.
The implementation method employs convolution kernels
of varying sizes to learn the semantic representation of
different texts. The output results of different convolution
kernels are concatenated into a vector, and a linear
classifier is used for vector classification. The classification
results are SATD and non-SATD, representing a binary
classification problem.

In 2022, in view of the effectiveness of the deep
learning detection model, Qu et al. conducted empirical
research on common deep learning models on the open-
source blockchain project. Its basic framework is shown in
Figure 4.

By fine-tuning the training process on the pre-training
model Bert, the weighted loss function is introduced to
solve the class imbalance problem. The research results
on the open-source blockchain project show that the
performance of this method is better than the convolutional
neural network model proposed by Ren et al.

In 2022, Qu et al. [18] further verified the effectiveness

A Survey of Self-Admitted Technical Debt Detection 383

of the deep learning method using the interpretability
technical based on gradients to carry out empirical research
on convolutional neural networks proposed by Ren et al.
The used technologies include saliency maps, integrated
gradients, etc. The research results showed that the
classification method based on deep learning could cover
the manual annotation mode. The interpretability analysis
process is shown in Figure 5.

The interpretability of deep learning models is of
paramount importance as it enables researchers and prac-
titioners to understand and trust the model’s predictions.
It provides insights into how the model arrives at its de-
cisions, which is crucial for debugging, improving model
performance, and ensuring transparency and accountability

in applications. Techniques such as saliency maps, inte-
grated gradients, and others help to visualize the influence
of input features on the model’s predictions, thereby en-
hancing interpretability. By gaining a deeper understanding
of the model’s behavior, developers can make informed
decisions regarding model selection, feature engineering,
and other aspects of model development and deployment.

In the weighted convolutional neural network, the gra-
dient of each input neuron is inversely calculated for the
classification result. The gradient with large change is the
gradient with great influence on the classification result.
Comparison of different SATD detection methods is shown
in Table 1.

Figure 4. The framework of SATD detection in blockchain projects

Figure 5. The interpretability analysis process

Table 1. Comparison of different SATD detection methods

Method Advantages Disadvantages
Pattern Detection Simple and intuitive Low recall rate, heavily dependent on

manual analysis

Natural Language
Processing (NLP)

High accuracy, automated feature
extraction

Requires large amount of labeled data,
complex model training

Text Mining Efficient feature extraction, good
generalization ability

Limited by feature engineering, low
interpretability

Deep Learning High accuracy, strong generalization
ability

Requires large amount of data, black box
problem

384 Journal of Internet Technology Vol. 26 No. 3, May 2025

4 Method Based on Unsupervised
Learning

The unsupervised model is very convenient to build
and use compared with the supervised model. The
unsupervised model mainly identifies the existence of
SATD by summarizing different technical debt patterns. In
2014, Potdar et al. proposed 62 modes by manually reading
code comments, laying the foundation for unsupervised
learning. They determined whether the code comment has
SATD according to whether the mode in the target data set
appears. However, this model needs to be more specific,
resulting in a low recall rate in the actual project.

The unsupervised learning approaches can leverage
various patterns and heuristics to identify SATD. For
instance, patterns might include specific comment tags like
“todo: needs documentation” and “todo: not complete,” or
particular keywords present in the code. Heuristics may
involve predefined rules for common technical debt types,
such as documentation debt and requirement debt.

In 2018, Passos et al. [19] proposed that the notes
containing the modes “todo: needs documentation,” “todo:
not documented,” and “please document” usually include
document debt, while the notes containing the modes
“not implemented”, “todo: not complete” and “not yet
supported” usually include demand debt.

In 2019, Guo et al. [20] found that there is a strong
connection between task tags and SATD according to
the situation of task tags in Java projects. Typical task
tags include “todo”, “fixme”, “hack” and “XXX”. These
task tags are closely related to the Java project and the
corresponding integrated development environment. Guo
et al. conducted empirical research in common open-
source projects and collected other Java projects for
research. The research results show that the method mat
based on fuzzy matching can achieve, or even very close
to, the detection performance of the convolutional neural
network. However, this method has obvious defects. For

example, these task tags may exist in Java projects, while
typical task tags may not exist in some projects. The
programming languages of related projects are shown in
Table 2.

Table 2. The programming languages of related projects

Dataset Project Language
Maldonado et al. Ant JAVA

ArgoUml JAVA
Columba JAVA
EMF JAVA
Hibernate JAVA
Jedit JAVA
JFreeChart JAVA
Jmeter JAVA
JRuby JAVA
Squirrel JAVA

Guo et al. Dubbo JAVA
Gradle JAVA
Groovy JAVA
Hive JAVA
Maven JAVA
Poi JAVA
SpringFramework JAVA
Storm JAVA
Tomcat JAVA
Zookeeper JAVA

In 2022, Qu et al. [21] conducted empirical research
on open-source blockchain projects, including Bitcoin,
Ethereum, solidity, fabric, and Chia. Through manual
annotation of code comments, it is finally found that in
these projects, typical task tags do not always exist in
each comment, and the fuzzy matching algorithm cannot
effectively identify SATD in these projects. The specific
empirical research results are shown in Table 3.

Table 3. Empirical research results

Project SATD Types #Count todo fixme xxx hack #All Tags #Percent
bitcoin SATD 1201 143 0 0 5 148 12.32%

WITHOUT_SATD 28205 1 2 7 7 17 0.06%
Ethereum SATD 708 120 2 6 4 132 18.64%

WITHOUT_SATD 40780 72 0 0 18 90 0.22%
Diem SATD 446 212 1 8 6 227 50.9%

WITHOUT_SATD 12411 112 2 9 10 133 1.07%
solidity SATD 503 3 0 0 0 3 0.6%

WITHOUT_SATD 1267 1 0 0 0 1 0.08%
fabric SATD 806 386 7 12 4 409 50.74%

WITHOUT_SATD 36392 170 1 72 16 259 0.71%
chia SATD 207 71 0 0 3 74 35.75%

WITHOUT_SATD 2504 7 0 0 2 9 0.36%

A Survey of Self-Admitted Technical Debt Detection 385

5 Performance Evaluation Index
Analysis

The problem of self-admitted technical debt detection
is often transformed into a binary classification problem.
The classification results of code annotation include
SATD and non-SATD. From the perspective of binary
classification, the classification results of annotation
detection can be divided into the following four cases.

A. For an annotation identified as containing SATD,
it does contain SATD. This result belongs to TP (true
positive);

B. For an annotation identified as containing SATD,
it does not contain SATD. This result belongs to FP (false
positive);

C. For an annotation identified as not having SATD,
it does contain SATD, and this result belongs to FN (false
negative);

D. For an annotation identified as not having SATD,
it does not contain SATD. This result belongs to TN (true
negative)

Based on the above four situations, the relevant
confusion matrix is designed, as shown in Table 4 below.

Table 4. Confusion matrix

Actual value
 Predicted value

SATD NON-SATD

SATD True SATD False NON-SATD
NON-SATD False SATD True NON-SATD

For the calculation results of all data samples on the
test data set, calculate the index values according to the
following formula.

(1) precision, the proportion of all instances with
SATD prediction results, including real SATD samples

True SATDprecision
True SATD False SATD

=
+

(2) recall, the proportion of all real SATD samples
correctly predicted as SATD samples

True SATDrecall
True SATD False NON SATD

=
+ −

(3) F1 − measure, this index is the harmonic average
of precision and recall, which can objectively reflect the
comprehensive performance of the Detection model

)
21
(

precision recallF measure
p crecision re all
∗ ∗

− =
+

The above three indicators are most used in the
performance comparison of detection methods. Values
of these indicators range from 0 to 1; the larger the value
range of these indicators, the better the performance of
detection methods. Due to the class imbalance problem in

SATD dataset, F1 − measure is widely used to evaluate the
performance of Detection methods.

(4) Accuracy: the proportion of samples correctly
classified as SATD and non-SATD in all classification
results.

6 Evaluation Data Set Analysis

To accurately evaluate the effect of SATD detection
model, performance evaluation needs to be carried out
on the benchmark data set. However, it is essential to
acknowledge the challenges and limitations of the existing
benchmark datasets, such as the potential biases introduced
by manual labeling and the lack of diversity in project
domains and programming languages. Currently, the
most commonly used dataset is extracted from the open-
source Java project by Maldonado and others using the
tool jdeodorant. The basic information of the dataset-m is
shown in Table 5 [4].

The first table in the figure shows the data set name,
and the second column represents the project name; the
third column represents the number of lines of extracted
code comments; the fourth column represents the number
of remaining effective code comment lines after filtering;
the fifth column represents the number of SATD code
comments; the sixth column represents the proportion
of SATD in all code comments; the seventh column
represents the number of contributors; the eighth column
represents the number of class entities. The ninth column
represents the number of code lines.

In 2019, Guo et al . [4, 20], in order to more
comprehensively evaluate their unsupervised fuzzy
matching algorithm mat, collected and sorted another
dataset dataset-g. The data collection method of this
dataset is consistent with that of dataset-m, which
comes from another 10 open-source Java projects. The
generalization ability of the mat method in the actual
project is analyzed from the new data set, and the larger
data set can better reflect the statistical results. The ten
datasets are dubbo-2.7.4, gradle-5.6.3, groovy-2.5.8, hive-
3.1.2, maven-3.6.2, poi-4.1.1, springframework-5.2.0,
storm-2.1.0, tomcat-9.0.27, and zookeeper-3.5.6. There
are 266,980 samples in the original data set. After filtering,
81,260 samples are obtained. The proportion of SATD is
1.12%.

Qu et al. [21] conducted an empirical study on SATD
in blockchain projects in 2022 and collected data sets
of common open-source blockchain projects. The data
set collection method is consistent with the dataset-m
collection method. The brief information on each project is
shown in Table 6. In the figure, the first column represents
the project name, the second column represents the
version number adopted, the third column represents the
number of code lines, and the fourth column represents
the programming language adopted. The fifth column
represents the number of GitHub projects plus stars.
These blockchain projects do not use Java programming
language, and this data set can provide research objects
that are more suitable for the needs of practical blockchain
projects.

386 Journal of Internet Technology Vol. 26 No. 3, May 2025

Table 5. The basic information of the dataset-m

Dataset Project #Comments After
filtering

#SATD % of
SATD

Cont. # of
classes

KLOC

Maldonado et al.
collected
(Dataset-M)

Ant 21,587 3,052 102 0.47% 74 1,475 115
ArgoUML 67,716 5,426 969 1.43% 87 2,609 926
Columba 33,895 4,090 128 0.38% 10 1,711 155
EMF 25,229 2,585 74 0.29% 30 1,458 228
Hibernate 11,630 2,492 377 3.24% 314 1,356 703
JEdit 16,991 4,644 195 1.15% 57 800 310
JFreeChart 23,474 2,494 101 0.43% 19 1,065 317
JMeter 20,084 4,148 282 1.40% 41 1,181 354
JRuby 11,149 3,652 383 3.44% 374 1,486 841
SQuirrel 27,474 4,473 201 0.73% 40 3,108 708
Total 259,229 37,056 2,812 1.08% 1,046 16,249 4,657

We collected
(Dataset-G)

Dubbo 5,875 1,649 85 1.45% 255 2,532 141
Gradle 15,901 3,324 321 2.02% 409 13,541 406
Groovy 14,199 4,435 249 1.75% 284 2,729 181
Hive 81,127 29,340 1,046 1.29% 192 15,463 1,257
Maven 5,448 1,219 136 2.50% 87 1,158 84
Poi 45,666 15,033 618 1.35% 12 4,793 406
SpringFramework 42,574 7,712 98 0.23% 401 14,686 654
Storm 12,258 3,639 92 0.75% 304 4,787 282
Tomcat 37,038 12,218 287 0.77% 31 4,120 335
Zookeeper 6,894 2,691 63 0.91% 93 1,322 87
Total 266,980 81,260 2,995 1.12% 2,068 65,131 3,833

Total - 526,209 118,316 5,807 1.10% 3,114 81,380 8,490
Average - 26,310 5,915.8 290 1.10% 156 4,096 425

Table 6. The brief information on each project

Project Release #Line of code Languages Stars
bitcoin 22 221,466 C++, Python 58.9K
Ethereum 1.10.12 394,246 go 33.3K
diem 1.0.2 227,505 Rust 16.2K
solidity 0.8.10 224,404 C++, Solidity, Python 13K
fabric 2.3.3 1,109,729 go 12.8K
chia 1.2.7 62,232 Python 9.5K

7 Future Research Directions

There are many challenges in the current SATD
detection research [9]. When building SATD detection,
some models treat it as a binary classification problem.
However, in actual projects, different types of SATD may
have different concerns. Some models did not consider class
imbalance when designing the SATD detection model.
Although some detection models can achieve relatively
high F1 values on the experimental data set, considering
the complexity of the industry, it is still unable to be
effectively migrated to the project. The model based on
machine learning also has the problem of super parameter

optimization, especially the detection model based on
deep learning. In the actual project, the model must be
optimized according to the characteristics of different
projects. In addition, the reliability of the data set also has
some problems. Yu et al. [22] found the real category of
about 426 annotation instances in the data set provided by
Maldonado et al. It was wrongly marked. According to the
review of SATD detection and the existing challenges, the
research group believes that the following aspects need
more research attention.

(1) Provide a unified definition of SATD and build
a standardized SATD data set. The division of SATD
is based on the programmer’s understanding of code

A Survey of Self-Admitted Technical Debt Detection 387

comments, and it is manually classified. This classification
has strong subjectivity and bias. Different programmers
may have different perceptions of different SATD types.
For example, there may be some fuzziness in the manual
classification of design debt and demand debt. Therefore,
it is necessary to establish a unified classification standard,
which can effectively reduce the difficulty of manual
annotation and improve the quality of data sets. At the
same time, in the process of data set construction, it
should contain as much information as possible, such as
the introducer, survival time, remover, SATD association
code, etc., which will help to provide important support for
subsequent SATD research.

(2) Study the recommended model of SATD removal.
At present, the Detection model only provides the category
prediction of SATD. However, more SATD removal
suggestions need to be provided in the project. At present,
there are few studies in this field.

(3) Development of SATD management tools.
Although SATD widely exists in various projects, there is
currently a lack of complete and systematic management
SATD tools, including Detection, classification, importance
suggestions, etc. It can only scan whether there is SATD of
outstanding debts before software development.

(4) Research on SATD detection method. From pattern
detection to deep learning, the accuracy of SATD detection
is constantly improving, and the current pre-training model
has also made greater progress in text processing. How
to integrate domain knowledge and pre-training model
to improve the accuracy of SATD detection is also a new
application research direction.

8 Acknowledgments

This work was supported by Guangxi Key Laboratory
of Trusted Software (No. kx202046), 2023 Higher
Education Scientific Research Planning Project of China
Society of Higher Education (23PG0408), 2023 Philosophy
and Social Science Research Programs in Jiangsu Province
(2023SJSZ0993), Nantong Science and Technology
Project (No. JC2023070). This work is sponsored by the
Cultivation of Young and Middle-aged Academic Leaders
in “Qing Lan Project” of Jiangsu Province.

References

[1] W. Cunningham, The WyCash portfolio management
system, Acm Sigplan Oops Messenger, Vol. 4, No. 2, pp.
29-30, April, 1993.
https://doi.org/10.1145/157710.157715

[2] Y. Qu, S. Huang, Y. Yao, A survey on robustness attacks for
deep code models, Automated Software Engineering, Vol.
31, No. 2, pp. 1-40, November, 2024.
https://doi.org/10.1007/s10515-024-00464-7

[3] Y. Qu, S. Huang, P. Nie, A review of backdoor attacks and
defenses in code large language models: Implications for
security measures, Information and Software Technology,
Vol. 182, Article No. 107707, June, 2025.
https://doi.org/10.1016/j.infsof.2025.107707

[4] Z. Guo, S. Liu, J. Liu, Y. Li, L. Chen, H. Lu, Y. Zhou,

How far have we progressed in identifying self-admitted
technical debts? A comprehensive empirical study, ACM
Transactions on Software Engineering and Methodology,
Vol. 30, No. 4, pp. 1-56, October, 2021.
https://doi.org/10.1145/3447247

[5] B. Fluri, M. Wursch, H. Gall, Do code and comments co-
evolve? On the relation between source code and comment
changes, 14th Working Conference on Reverse Engineering
(WCRE 2007), Vancouver, BC, Canada, 2007, pp. 70-79.
https://doi.org/10.1109/WCRE.2007.21

[6] H. Malik, I. Chowdhury, H. Tsou, Z. Jiang, A. Hassan,
Understanding the rationale for updating a function’s
comment, 2008 IEEE International Conference on Software
Maintenance (ICSM’08), Beijing, China, 2008, pp. 167-
176.
https://doi.org/10.1109/ICSM.2008.4658065

[7] A. Potdar, E. Shihab, An exploratory study on self-admitted
technical debt, 2014 IEEE International Conference on
Software Maintenance and Evolution (ICSME’14), Victoria,
BC, Canada, 2014, pp. 91-100.
https://doi.org/10.1109/ICSME.2014.31

[8] S. Wehaibi, E. Shihab, L. Guerrouj, Examining the impact
of self-admitted technical debt on software quality, 2016
IEEE 23rd International Conference on Software Analysis,
Evolution, and Reengineering (SANER), Osaka, Japan,
2016, pp. 179-188.
https://doi.org/10.1109/SANER.2016.72

[9] Z. Guo, S. Liu, T. Tan, Y. Li, L. Chen, Y. Zhou, B. Xu, Self-
admitted Technical Debt Research: Problem, Progress, and
Challenges, Journal of Software, Vol. 33, No. 1, pp. 26-54,
January, 2022.
https://doi.org/10.13328/j.cnki.jos.006292

[10] G. Bavota, B. Russo, A large-scale empirical study on self-
admitted technical debt, 2016 IEEE/ACM 13th Working
Conference on Mining Software Repositories (MSR),
Austin, TX, USA, 2016, pp. 315-326.

[11] E. Maldonado, E. Shihab, N. Tsantalis, Using natural
language processing to automatically detect self-admitted
technical debt, IEEE Transactions on Software Engineering,
Vol. 43, No. 11, pp. 1044-1062, November, 2017.
https://doi.org/10.1109/TSE.2017.2654244

[12] Q. Huang, E. Shihab, X. Xia, D. Lo, S. Li, Identifying self-
admitted technical debt in open source projects using text
mining, Empirical Software Engineering, Vol. 23, No. 1,
pp. 418-451, February, 2018.
https://doi.org/10.1007/s10664-017-9522-4

[13] X. Ren, Z. Xing, X. Xia, D. Lo, X. Wang, J. Grundy, Neural
network-based detection of self-admitted technical debt:
From performance to explainability, ACM Transactions on
Software Engineering and Methodology, Vol. 28, No. 3, pp.
1-45, July, 2019.
https://doi.org/10.1145/3324916

[14] A. Rajput, M. Yadav, S. Yadav, M. Chhabra, A. P. Agarwal,
Patch-Based Breast Cancer Histopathological Image
Classification using Deep Learning, International Journal
of Performability Engineering, Vol. 19, No. 9, pp. 607-623,
September, 2023.
https://doi.org/10.23940/ijpe.23.09.p6.607623

[15] S. Singh, A. Sharma, State of the Art Convolutional
Neural Networks, International Journal of Performability
Engineering, Vol. 19, No. 5, pp. 342-349, May, 2023.
https://doi.org/10.23940/ijpe.23.05.p6.342349

[16] S . Wa t t a n a k r i e n g k r a i , N . S r i s e r m p h o a k , S .
Sintoplertchaikul, M. Choetkiertikul, C. Ragkhitwetsagul,
T. Sunetnanta, H. Hata, K. Matsumoto, Automatic
classifying self-admitted technical debt using n-gram idf,

388 Journal of Internet Technology Vol. 26 No. 3, May 2025

2019 26th Asia-Pacific Software Engineering Conference
(APSEC), Putrajaya, Malaysia, 2019, pp. 316-322.
https://doi.org/10.1109/APSEC48747.2019.00050

[17] R. Maipradit, C. Treude, H. Hata, K. Matsumoto, Wait for
it: Identifying “On-Hold” self-admitted technical debt,
Empirical Software Engineering, Vol. 25, No. 5, pp. 3770-
3798, September, 2020.
https://doi.org/10.1007/s10664-020-09854-3

[18] G. Zhuang, Y. Qu, L. Li, X. Dou, M. Li, An Empirical
Study of Gradient-based Explainability Techniques for
Self-admitted Technical Debt Detection, Journal of Internet
Technology, Vol. 23, No. 3, pp. 631-641, May, 2022.
https://doi.org/10.53106/160792642022052303021

[19] A. Passos, M. Farias, M. Neto, R. Spínola, A study
on Identification of documentation and requirement
technical debt through code comment analysis, SBQS ‘18:
Proceedings of the XVII Brazilian Symposium on Software
Quality, Curitiba, Brazil, 2018, pp. 21-30.
https://doi.org/10.1145/3275245.3275248

[20] Z. Guo, S. Liu, J. Liu, Y. Li, L. Chen, H. Lu, Y. Zhou, B.
Xu, MAT: A simple yet strong baseline for identifying self-
admitted technical debt, arXiv preprint arXiv: 1910. 13238,
October, 2019. https://arxiv.org/abs/1910.13238

[21] Y. Qu, T. Bao, X. Chen, L. Li, X. Dou, M. Yuan, H. Wang,
Do we need to pay technical debt in blockchain software
systems? Connection Science, Vol. 34, No. 1, pp. 2026-
2047, June, 2022.
https://doi.org/10.1080/09540091.2022.2067125

[22] Z. Yu, F. M. Fahid, H. Tu, T. Menzies, Identifying self-
admitted technical debts with Jitterbug: A two-step
approach, IEEE Transactions on Software Engineering,
Vol. 48, No. 5, pp. 1676-1691, May, 2022.
https://doi.org/10.1109/TSE.2020.3031401

Biographies

Xianzhen Dou received the M.S. degree
in School of Electronics and Information
from Nantong University in China in
2013. Since 2019, he has been a lecture
with Information Engineering Institute,
Jiangsu College of Engineering and
Technology. His research interests
include software engineering, and

machine learning.

Long Li received his Ph.D. degree
from Guilin University of Electronic
Technology, Guilin, China in 2018. He is
now a lecturer at the School of Computer
Science and Information Security, Guilin
University of Electronic Technology,
Guilin, China. His research interests
include cryptographic protocols, privacy-

preserving technologies in big data and IoT.

Yubin Qu received the M.S. degree
in Computer Science and Technology
from Henan Polytechnic University in
China in 2008. Since 2009, he has been
a lecture with Information Engineering
Institute, Jiangsu College of Engineering
and Technology. His research interests
include software maintenance, software

testing, and machine learning.

