
Journal of Internet Technology Vol. 26 No. 3, May 2025 367

*Corresponding Author: Lei Xiao; E-mail: lxiao@xmut.edu.cn
DOI: https://doi.org/10.70003/160792642025052603009

Research and Application of Automatic Test Case Generation Method
Based on User Interface and Business Flow Chart

Lei Xiao*, Ru-Xue Bai, Ke-Shou Wu, Rong-Shang Chen

Department of Computer and Information Engineering, Xiamen University of Technology, China
lxiao@xmut.edu.cn, 2222031181@xmut.edu.cn, kswu@xmut.edu.cn, rschen@xmut.edu.cn

Abstract

Test case design is a critical task in software testing.
Manual test case generation is time-consuming and
challenging to maintain. To address these issues, this
paper proposes a method for automatically generating
test cases based on user interface and flowchart analysis.
Firstly, YOLOv8 object detection and EasyOCR text
recognition are used to identify control information within
the interface. Secondly, the Faker library is utilized to
generate corresponding test data. Finally, a text generation
program is employed to transform control information
and test data into a set of interface test cases. Additionally,
a circular traversal algorithm is applied to traverse the
flowchart, generating test paths that are combined with
interface test cases to form a complete set of test cases. To
validate the effectiveness of the method, corresponding
tools were developed, and 209 test cases were generated
for three systems using this approach. Experimental results
demonstrate that our proposed method performs well in
terms of test case generation efficiency, defect discovery,
and maintainability.

Keywords: Test case automatic generation, YOLOv8,
Loop traversal algorithm

1 Introduction

Software testing is the process of running software and
checking whether it conforms to the expected behavior,
aiming to find and correct the defects and errors in
software, and is an important means to ensure the quality
of software [1]. Test case design is an important and
tedious work in software testing, accounting for 40%-
70% of the total test workload. Therefore, the automatic
generation of test cases has become a research hot spot
in the industry. At present, the technology of automatic
generation of use cases is mainly through code, model and
recording user behavior [2].

Code-based test case generation refers to the use of
specific algorithms or tools to automatically generate test
cases based on existing code [3]. For example, Liu et
al. proposed using code similarity to reuse and generate
test cases. This method has a high reuse recall rate and
reuse accuracy, and the generated test cases have a higher

coverage rate at the same time cost [4]. But it needs to
acquire and traverse the code, which has high maintenance
costs and is not good for software security. Model-based
test case generation refers to the derivation of test cases
from the model by building an abstract description of
the expected behavior of the software under test. Li and
Wong conducted a study to automatically generate test
cases from communication extended finite state machine
(CEFSM)-based models [5]. Test cases generated address
branching coverage not only for data-related decision
coverage but also behavioral transition coverage. Belli
et al. proposed a model-based mutation testing [6].
Studies show that test cases generated using this approach
could detect faults in the systems that were tested by
manufacturers and independent testing organizations
before they were released. Philip Samue et al. put forward
the concept of a sequence dependency graph, which first
transforms the sequence graph into a dependency graph,
and then generates test cases by traversing the sequence
dependency graph [7]. The method of model-based test
case generation can produce high coverage according
to the system behavior and path specified by the model
because the existing model-based generation technology is
not flexible enough, the corresponding test cases cannot be
modified quickly when the software changes. The method
of generating test cases based on recording and playback is
an automated testing approach. It involves recording user
interactions or test script executions (recording) and then
replaying these interactions (playback) to generate and
execute test cases [8-10]. This approach is often used for
graphical user interface testing. The main tools available
for recording and playing back test cases are Selenium,
an automated test tool for Web applications; Appium,
an automated test tool for mobile applications; AI-Test
Ops, an automated test tool for Web, desktop, and mobile
applications developed by Dragon-testing Technology.
Ltd. Each of these tools provides an easy way to record
user interactions and generate corresponding test scripts.
However, relying entirely on user actions is not conducive
to finding potential errors with low usage, which is mainly
used for regression testing.

Test data and test cases play a crucial role in software
testing [11-12]. Test data is the input data that validates the
function of the system, and test cases are the text used to
describe the test steps. However, most of the current test
case generation technology mainly focuses on the content
and steps of the test case, ignoring the test data, which can

368 Journal of Internet Technology Vol. 26 No. 3, May 2025

help to find errors, logical problems, or boundary situations
in the code.

Therefore, this paper presents an automatic test case
generation method based on interface and flow chart.
This method can automatically identify the control type
and extract the text information on the control and match
the test data according to the text information, so as to
automatically generate the interface test case set. At the
same time, to ensure the completeness of the automatically
generated test case set, a method based on the functional
flowchart is designed to automatically generate test cases.
The method traverses the flowchart to obtain basic test
paths and matches the node information in the basic paths
with their corresponding interface test cases, thereby
obtaining a complete set of test cases combining interface
(static) and functionality (dynamic). The method divides
the process of test case generation into interface generation
process and flow chart generation process and solves the
problem of high frequency of interface change and difficult
maintenance in the process of test automation. When the
interface changes, simply rescanning the interface will
automatically update the corresponding interface and
process test cases, effectively adapting to the characteristic
of frequent interface changes in agile development mode
and enhancing the maintainability and scalability of the
test case suite. At the same time, with the help of the Faker
library for secondary development, automatically generated
test data includes both positive and negative data, ensuring
that the automatically generated test case suite can
comprehensively uncover potential defects in the software,
thereby enhancing test security and completeness.

2 Related Work

Automatic generation of model-based test cases is
an important method, including traditional model-based
methods and new model-based methods [13]. UML model
diagram is one of the main models of application test case
generation. In 2018, based on UML sequence diagrams, Li
et al. transformed the sequence diagram into a sequential
directed graph, utilized a genetic ant colony algorithm for
optimization calculation, and generated test cases [14].
Wang et al. proposed a test path generation method based
on UML state diagrams, primarily targeting the testing of
train control centers [15]. The method involved utilizing a
depth-first search algorithm to traverse the directed graph
and obtain a set of test paths. Model-based generation
technology can generate high coverage according to the
system behavior and path specified by the model [16-
17]. In 2020, Zhang et al. proposed a software system test
method based on a formal model by combining an example
of a measurement and control information application
software system, which can automatically generate test
case sets according to the system’s operation flow chart,
stage analysis diagram, establishment of scene tree model
and scene tree diagram [18]. However, when there is an
inconsistency between the model and the actual system, the
generated test cases cannot accurately reflect the behavior
of the actual system.

Page-based test case generation is an automated test
method that generates test cases by analyzing the user
interface (page) of an application. Wang et al. proposed
a Web application test case generation method based on
Selenium page object design pattern and graph traversal
algorithm. This method starts from the page and improves
the coverage of the page and the maintainability of the test
cases [19]. This method can quickly generate test cases
and reduce labor costs, but the generated test cases may
only cover the visible functions and elements on the page
and cannot cover some hidden or complex logic.

The generation of test cases based on recording and
playback refers to the generation of corresponding test
cases through the acquisition of user operation data [20].
In 2018, Hou et al. proposed a cross-device UI automatic
testing method based on control paths, which solved the
issue of finding controls across devices [21]. In 2020,
Zhang et al. used deep learning object detection to
improve the accuracy of control identification [22]. The
test case generation technology of recording and playback
can quickly create test cases, but it comes with high
maintenance costs for recorded scripts and the inability to
cover some special cases or boundary conditions [23].

Test case generation technology based on deep learning
uses deep learning techniques such as neural networks
to learn patterns from existing software code or test data
and then generate new test cases [24-30]. In 2022, Zubair
Khaliq et al. used EfficientDet along with GPT-5 and
T5 algorithms to automatically generate test cases by
combining text and image information [28]. In a study of
30 e-commerce applications, this method achieved a high
correctness rate of 93.82% for generated test cases, while
eliminating 96.05% of the brittleness, showing significant
effectiveness.

To sum up, most of the existing test case generation
technologies focus on the generation of test steps, ignoring
the automatic generation of test data. Forward test data
can help verify functional correctness, and reverse test
data can help find defects and problems [31]. At the same
time, there is a lack of research on the maintainability
of test cases. In this paper, a method of automatically
generating test cases based on interface and flow chart and
using Faker library to generate test data is proposed. It is
expected to improve the efficiency and maintainability of
the test.

3 Test Case Generation

This section describes the method proposed in this
paper. Figure 1 illustrates the framework for automatically
generating test cases. The framework divides the process
of generating test cases into two main stages: interface test
case generation process and test path generation process.

The process of automatic generation of test cases
can be divided into seven stages. First, the control on the
interface is identified using object detection technology
YOLOv8 [32]. Second, text recognition technology
EasyOCR is used to identify the text on the control.
Third, use Faker library to generate test data; fourth, use

Research and Application of Automatic Test Case Generation Method Based on User Interface and Business Flow Chart 369

a text generator to generate interface test cases. Fifth, the
process traversal algorithm is used to traverse the flow
chart to generate the process test path. Sixth, according to
the process node information, find the interface test case
generated in step 4 and combine the interface test case and
test path into a complete test case. See Figure 1 for details.

Figure 1. Technical framework

3.1 Interface Test Case Generation
Interface test case generation mainly includes

identifying controls, matching test data and generating text
test cases. This paper automatically generates test cases
from the perspective of interface and strives to achieve a
higher coverage of interface functions and reduce the labor
cost in designing test cases.
3.1.1 Identification Control

YOLOv8 is the latest series of YOLO based on the
object detection model launched by Ultralytics company
in January 2023, which not only has the characteristics
of high precision and high speed but also supports image
classification, object detection and instance segmentation
tasks. As a popular object detection technology, YOLO
is mainly applied in dynamic object detection, such as
mask recognition, license plate recognition, and so on.
There are few trained, open source YOLOv8 models
available for Web control recognition. Our innovation lies
in the collection of a Web control library, training control
detection model and the second development of YOLOv8
source code, and text recognition engine EasyOCR
weaving into the YOLOv8 output function. At the same
time, within the output function, using the Euclidean
distance formula to calculate the distance of the control, in
order to find the adjacent control of the current control.

We select 8 kinds of controls frequently used in the
Web system for identification, which are text box, drop-
down box, radio box, check box, button, label, file upload
and switch button. The types of controls can be seen in
Table 1. The dataset consists of 1267 clear interface images
collected from commercial and open-source systems,
annotated with 8 types of frequently used component
types, with a total annotation count of tens of thousands.
The training set and validation set were randomly sampled

in a ratio of 4: 1. By evaluating accuracy and recognition
speed, YOLOv8n. pt was selected as the pre-trained weight
with an initial learning rate of 0. 000455, a maximum of
100 iterations, and a batch size of 8. The model achieves a
component recognition accuracy of 92. 4% on the test set
after training.

Table 1. Control class list

Control name Implication Action
Text box Used to receive user input text

information.
Input

Drop-down box Used to provide a set of
options for customers to
choose from.

Select

Radio box Used to provide multiple
options for the user to choose
from, but only one can be
selected.

Select

Check box Used to provide multiple
options for the user to choose
from, but multiple options can
be selected.

Select

Button Used to trigger an operation. Click

Label Used to identify the names or
descriptions of other controls.

File upload Used to select and upload
files.

Upload

Switch button Used to switch between
different options or states.

Select

After the interface is tested by the trained and modified
YOLOv8 model, the following information can be output:

 ● Current Control
 ● Control Text
 ● X-axis Coordinates
 ● Y-axis Coordinates
 ● Adjacent Control

Based on this information, test data will be matched
and test cases will be generated.
3.1.2 Match Test Data

Test data is input values used in the software
testing process to verify whether the functionality and
performance of the software system meet expectations. By
designing and preparing different types and combinations
of test data, it is possible to help discover potential defects
or issues [33-34]. Test data should cover various scenarios,
including normal cases, boundary cases, exceptional cases,
and so on. This section elaborates on the methods of test
data generation.

The test data generation method utilizes the Faker
library, NLTK library, and the Chinese WordNet corpus.
The Faker library is a Python library used to generate fake

370 Journal of Internet Technology Vol. 26 No. 3, May 2025

data, which can assist developers in quickly generating
random data of various types such as names, addresses,
emails, text, numbers, etc., during development and
testing processes. NLTK is a Python library for natural
language processing and is used for tasks such as text data
handling, tokenization, part-of-speech tagging, named
entity recognition, syntactic analysis, and other natural
language processing tasks. The Chinese WordNet corpus
is a database for semantic relations and lexical networks of
Chinese vocabulary, similar to WordNet in English. It aims
to establish a database of semantic relations, including
synonyms, antonyms, hypernyms, and other semantic
relationships for Chinese vocabulary. The function of
viewing synonyms for Chinese words can be realized by
combining NLTK and Chinese WordNet library.

The equivalence partitioning method is a common
black-box testing technique that advocates dividing
input data into different equivalence classes to reduce the
number of test cases while still effectively covering the
scenarios of each equivalence class. Equivalence classes
can be divided into valid equivalence classes and invalid
equivalence classes. Valid equivalence classes consist of
input data that meets the program requirements and is both
reasonable and meaningful. Invalid equivalence classes
consist of input data that does not meet the program
requirements, is unreasonable, or lacks meaningfulness.
The existing Faker library only provides test data for valid
equivalence classes. In order to improve the coverage
of equivalence classes, we are conducting secondary
development on Faker to add a method for generating test
data for invalid equivalence classes. In addition, to match
test data for more fields, we examine management systems
from seven different domains and obtain common fields
including username, phone number, email, password,
etc. We use NLTK and the Chinese WordNet library to
find synonyms for these common fields, in order to build
a general-purpose lexicon. We provide a set of methods
to obtain test data for both valid and invalid equivalence
classes for the words in the general-purpose lexicon. When
the control text contains words from the general-purpose
lexicon, it will automatically match corresponding positive
and negative test data (where valid equivalence classes
correspond to positive test data and invalid equivalence
classes correspond to negative test data).

The matching steps for test data consist of a total of
4 steps. First, obtain the control text. Next, determine if
the control text contains fields from the general-purpose
lexicon. If it does, proceed to the next step; if not, end
the process. Furthermore, query the corresponding
test data method based on the control text. Finally, the
corresponding method is called to obtain the forward and
reverse test data. The process for generating test data is
shown in Figure 2.

In addition, through the investigation of multiple
management systems, we found that the Web system
frequently used controls mainly include text box, drop-
down box, button and other 8 big controls; each control

has a fixed action, as shown in Table 1.

Figure 2. Match test data

3.1.3 Generate Text Test Cases
The main task of generating text test cases is to convert

the interface description table processed by YOLOv8,
EasyOCR, and Faker libraries into text test cases. When we
write test case generation code, we consider the interface
coverage, that is, the generated test cases need to cover
not only all controls on the interface but also different
combinations of control operations [35]. For example, the
supplier information in Figure 3 is not a visible mandatory
field; it requires clicking the Add Supplier button to
display. At the same time, the buttons at the bottom of the
interface are usually buttons for completing the current
page operation, such as the submit and cancel buttons at
the bottom of the interface. Based on this characteristic,
considering the interface coverage, this paper decides to
use a two-dimensional array structure to store the control
element information of the interface. According to the
interface, store the control elements from top to bottom
and left to right; the storage structure is shown in Figure
4. Each set of elements in the storage structure will store
the current control, control text, X-axis coordinate, Y-axis
coordinate, and information of adjacent controls, as
detailed in Figure 5.

As mentioned above, the type of control determines
the corresponding operation. The label control is used to
indicate information about the field that is currently being
maintained, depending on the type of control that follows
the label control. The buttons at the bottom of the interface
are usually used as navigation buttons to end the current
page action, while the top and middle buttons are usually
used as buttons to maintain optional information on this
interface. Therefore, when a test case is generated, the
bottom button can be used as a termination condition for
generating a test case. Based on these two features, we
write code for generating test cases.

Research and Application of Automatic Test Case Generation Method Based on User Interface and Business Flow Chart 371

Figure 3. Interface prototype

Figure 4. Control element structure

Figure 5. Element list structure

3.2 Process Test Path Generation
A flowchart is a graphical tool used to illustrate the

flow, process, or system, enabling a clear depiction of
the business steps within a system. It is widely utilized
for business process modeling in software systems. The
method of generating test cases based on flowcharts is a
common software testing technique aimed at designing test
cases by analyzing the control flow graph of a program.
Path coverage is a software testing method designed to

ensure that every possible execution path of a program
or process is executed at least once. Path coverage is also
an important indicator to measure the effectiveness of
flowchart-based test case generation methods.

Depth First Search (DFS) is a traversal algorithm used
for graphs or tree structures. Its traversal starts from a
starting vertex and explores the graph’s nodes as deeply
as possible along a single path until reaching a leaf node.
It then backtracks and continues to explore the next path.
Breadth First Search (BFS) is also a traversal algorithm
used for graphs or tree structures. The idea is to start from
the initial vertex, visit all neighboring nodes of the initial
vertex first, then visit the neighbors of these neighbors one
by one, and so on, until the entire graph or tree is traversed.
We find that using DFS and BFS algorithms to traverse
the Figure 6 flowchart does not fully cover all paths in
the flowchart. Therefore, we propose a cyclic traversal
algorithm that combines the breadth-first search algorithm
with the double-ended queue deque. By using the cyclic
traversal algorithm to traverse the flowchart, path coverage
in the flowchart can be achieved. Table 2 lists the traversal
results of the three algorithms for Figure 6.

Figure 6. Flow chart

Table 2. Flow chart traverses

Method Ergodic result
DFS [S, A, P, M, F]
BFS [S, A, P, M, F]
Loop
Traversal
algorithm

[S, A, P, F]
[S, A, P, M, A, P, F]

3.2.1 Ergodic Flow Chart
Double-ended queue (deque) is a data structure

provided in Python by the collections module. It is a
special type of queue that allows insertion and deletion
operations at both ends simultaneously, as shown in
Figure 7. Based on this characteristic, the cyclic traversal
algorithm chooses deque as the storage structure. Each
item in the deque stores two pieces of information: the
value of the current node and the current traversal path, as
shown in Figure 8.

372 Journal of Internet Technology Vol. 26 No. 3, May 2025

Figure 7. Deque structure Figure 8. Item structure

The idea of the loop traversal algorithm is as follows.
First, obtain the information of the start node, the end
node, the other nodes and the adjacent nodes of each node
in the flow chart. Second, initialize the starting node and
the initial path; place the initial node and initial path into
the deque. Third, take out the first node from the top of
the deque as the new node, find the adjacent nodes of the
new node based on its value, construct a new path from the
starting point to the adjacent node, and then insert the new
node and the new path at the bottom of the deque. Fourth,
repeat step three. When the first node of the constructed
path is the starting node and the last node is the end node,
output the path; when the deque is empty, end the loop. It
is important to note that the flowchart may have branches,
meaning a node may have multiple adjacent nodes.
Therefore, in step 3, when finding the adjacent nodes of
the current node, a loop should be used. Additionally, keep
track of the number of occurrences of each node in the
current path. If a node appears more than twice, it indicates
that the current path has been taken before, so skip it and
look for the next path. For more details, refer to Algorithm
1.

Algorithm 1. Loop traversal algorithm
Input: Flowchart information, start node, end node
Output: Flow path
1. def circularTraversal(graph, start, end):
2. queue = deque([(start, [start])]
3. while queue:
 #Retrieves nodes and paths from queue
4. current_node, path = queue. popleft())
5. for neighbor in graph[current_node]:
6. npath = path + [neighbor]
 #Count the number of traversed nodes
7. counter = Counter(npath)
8. flag = True
9. for cout in counter:
10. if counter[cout] > 2:
11. flag = False
12. if flag:
13. if npath[0] == start and npath[-1]==end:

 #Output the full test path
14. yield npath
 #Put a new node and path into deque
15. queue. append((neighbor, npath))

In line 2, place the start node and start path into the
deque. In line 4, take the node and path from the top (left)
of the deque. On line 3, determine if the deque is empty
and terminate the loop if it is. Lines 5-6 construct a new
path by finding the next node based on the node. Lines
7-11 count the number of nodes passed by the new path.
If the number is more than 2 times, skip it; otherwise,
continue the following steps. Lines 13-14 determine
whether the first node and the last node of the new path
are the start node and end node, and output the new path if
so. In line 15, insert a new node and path at the end of the
deque (to the right).
3.2.2 Test Case Consolidation and Updating

Test case maintainability refers to the degree to which
test cases are easy to understand, modify, and update. A
well-maintainable test case can be quickly adjusted when
the system changes without causing additional trouble
or errors. Nowadays, most software companies adopt
the agile development model in order to respond quickly
to market demands, reduce project risks, and enhance
the market competitiveness of software products. In the
agile development model, software systems may undergo
frequent changes. Therefore, test cases need to be highly
maintainable in order to adapt to these changes and remain
effective.

To improve the maintainability of test cases, we divide
the test case generation process into interface test case
generation and flow test path generation. The flow consists
of functionalities that can be demonstrated by the interface.
Separating the interface and the flow in this way not only
increases the independence of the interface and the flow
but also enhances the maintainability of test cases.

Figure 9. Test case integration

Figure 9 illustrates the integration process of test
cases. Firstly, obtain the test path and search for the
corresponding interface test case in the interface case
library based on the information of the path nodes.
Secondly, after finding the corresponding interface test
case, integrate it into the test path to form a complete test
case.

Figure 10. Test case linkage update

Figure 10 illustrates the state transition diagram for test
case linkage updates. Firstly, when the interface undergoes
changes, but the business process remains unchanged,

Research and Application of Automatic Test Case Generation Method Based on User Interface and Business Flow Chart 373

users can update the interface test cases by uploading a
new process diagram. At this point, the interface test cases
are in a state of modification. Once the interface test cases
have been updated, the system will automatically complete
the test case modification by combining the original test
path with the updated interface test cases. Secondly, when
the business process changes but the interface remains
unchanged, users can update the process path by entering
new process information. The test path is in a state of
modification. Once the test path modification is complete,
the system will automatically complete the test case
modification by combining the new test path with the
original interface test cases.

4 Experimental Design

4.1 Research Questions
In our experiment, we propose the following three

research questions:
RQ1: How effective is the method we propose for

automatically generating test cases based on interface and
flowchart?

While the method for automatically generating test
cases has been described earlier, it is also crucial to
validate the feasibility and effectiveness of this approach
through experiments.

RQ2: Can the method we propose improve the
maintainability of test cases?

Researchers propose many methods for generating
test cases, but most of them lack discussions on the
maintainability of test cases. With software requirements
changing rapidly, corresponding test cases need to be
able to respond to changes quickly. Therefore, we hope to
investigate how well the proposed method performs in test
case maintainability.

RQ3: How does our proposed approach perform in
defect discovery rates?

Effective test cases should help improve defect
detection rates; therefore, validating the performance of
the proposed method in defect detection rates is also one of
our tasks.

4.2 Experimental Object
In 2023, we collaborated with an evaluation company

and undertook the testing work for a Kexin document
management system. We collected system interface
diagrams, business process diagrams, and test cases
for the experiment. The Kexin document management
system is a system used for managing and storing files,
including modules for file cataloging and file form
management. At the same time, to validate the universality
of the method, we also selected the open-source Ruoyi
management system and a student-developed Suixing
management system. The Ruoyi management system is
a basic management system. management system. The
Suixing management system is a backend system used
to manage online car-hailing services. We selected the
core modules of these three systems for experimentation.
Table 3 presents the specific object information for this
experiment.

Table 3. Experimental object

System
name

System
source

Function module

Ruoyi Open
source

User management
Parameter management
Announcement management
Dictionary management
Role management
Menu management
Position management
Department management

Kexin Industry Document-
acquisition management
File type management
File directory management
File category management
Document-
destruction management

Suixing Science User management
Fine management
Order receiving management
Voucher management

4.3 Experimental Tool
For this experiment, we make an automatic test case

generation tool according to the method proposed in this
paper and use this tool to generate 209 test cases for the
three systems. This section shows how the tool generates
test cases.

The process of generating interface test cases based
on the interface is as follows. Firstly, input the project
name and functional module; secondly, upload the
interface prototype diagram, and the system automatically
recognizes the interface and outputs interface element
information. Finally, click “Generate”, and the system can
automatically generate corresponding interface test cases.
Figure 11 shows the operation interface of the interface
diagram to the test case. Figure 12 shows the detailed
interface of the system-generated interface test cases.

Figure 11. Interface case generation interface

374 Journal of Internet Technology Vol. 26 No. 3, May 2025

Figure 12. Interface case display interface

The process of generating test paths based on the flow
is as follows. First, enter the project name and functional
module; next, upload the flowchart and input the flow node
information; finally, click “Generate”, and the system can
output test paths and complete test cases. Figure 13 shows
the interface for generating test paths. Figure 14 presents
the detailed interface of the generated complete test cases.

Figure 13. Test path generation interface

Figure 14. Complete case display interface

4.4 Evaluation Index
In order to evaluate the proposed method of

automatically generating test cases, the following
evaluation criteria are defined in this paper.

Accuracy rate: To evaluate the quality of generated
test cases is used. The calculation formula is shown in
formula 1.

() 100%AR CUCN TUCN= ÷ × (1)

AR represents Accuracy rate, CUCN (Correct Use
Case Number) represents the number of correct use cases,
and TUCN (Total Use Case Number) refers to the total
number of use cases.

Interface coverage rate: To evaluate whether the
generated test cases cover all elements on the interface.
The calculation formula is shown in formula 2.

() 100%ICR OEC TEC= ÷ × (2)

ICR (Interface Coverage Rate) represents the interface
coverage rate, OEC (Overall Element Coverage) stands
for the number of covered elements in test cases, and
TEC (Total Elements Count) refers to the total number of
elements in the interface.

Path coverage rate: To evaluate whether the generated
test paths based on the flow cover all paths in the
flowchart. The calculation formula is shown in formula 3.

() 100%PCR OPN TPN= ÷ × (3)

PCR represents path coverage rate. OPN (Observed
Path Number) represents the number of traversed paths,
and TPN (Total Path Number) refers to the total number of
paths.

Functional coverage rate: To evaluate whether the
test cases cover every functionality point in the software
system. The calculation formula is shown in formula 4.

() 100%FCR OFN TF= ÷ × (4)

FCR represents the functional coverage rate, OFN
(Observed Functional Number) stands for the number of
covered functions, and TF (Total Functions) refers to the
total number of functions.

Defect discovery rate: To evaluate the quality of
testing and the quality of the software. The calculation
formula is shown in formula 5.

() 100%DDR DUCN TUCN= ÷ × (5)

DDR represents the defect discovery rate, DUCN
(defect use cases number) represents the number of use
cases where defects were found, and TUCN (total use
cases number) represents the total number of use cases.

5 Results and Analysis

5.1 Answering Research Question 1
RQ1: How effective is the method we propose for

automatically generating test cases based on interface
and flowchart?

We generate test cases for three systems and
simultaneously calculate the accuracy and coverage of the

Research and Application of Automatic Test Case Generation Method Based on User Interface and Business Flow Chart 375

generated test cases. Accuracy reflects the quality of the
generated test cases, while coverage reflects the extent
to which the generated test cases cover the system. The
higher the accuracy and coverage, the more effective the
generated test cases are. The experimental results are
shown in Table 4.

From Table 4, it can be seen that the test cases
generated using this method perform well in terms of
accuracy and coverage. The accuracy of the Ruoyi system
is higher than that of the other two systems because the
input prototype diagram of the Ruyi system is clearer,
and there is a significant style difference between
different types of controls, making it easier to identify the

model. Meanwhile, the functional coverage of the Ruoyi
management system is higher than that of the other two
systems. This is because the Ruoyi system’s interface
diagram and flowchart cover more functionalities, while
functionalities not covered by the interface and flowchart,
such as background functions like timers, are fewer.
Through experiments, we find that the method proposed
in this paper is influenced by the type, size, and clarity
of the input interface, as well as the pre-training data set
of YOLOv8 for object detection. The more accurate and
diverse the annotated dataset, and the larger and clearer
the input interface image, the better the recognition effect,
resulting in higher accuracy.

Table 4. Validity test result

System
name

Screen
quantity

Interface
test cases
number

ICR (%) Business
flow
number

Test
path
number

PCR (%) FCR (%) DDR (%)

Ruoyi 16 94 100 9 15 100 96. 92 17. 43
Kexin 10 57 95. 26 5 7 100 93. 54 39. 06
Suixing 8 28 94. 95 5 8 100 94. 74 22. 58

Table 5. Maintainability comparison results

System
name

Variable
interface
number

Variable
flow
Number

Functions
involved
number

Processes
involved
number

Cases
change
number

Spend time (min)

Labour Our Labour Our
Ruoyi 3 1 3 4 10 7 26. 3 2. 73
Kexin 2 2 2 2 17 9 18. 58 2. 15
Suixing 2 2 2 4 14 12 12 3. 08

5.2 Answering Research Question 2
RQ2: Can the method we propose improve the

maintainability of test cases?
Due to the frequent changes that occur in software

systems during development and evolution, test cases need
to have good maintainability. To assess the maintainability
of generated test cases, we selected modules that
underwent changes during the testing process in three
systems, re-maintained the test cases, and calculated the
manual cost of re-maintenance and the number of test
cases changed. Meanwhile, we also compare the proposed
method with the traditional manual test case generation
approach. The comparison results are shown in Table 5.

From Table 5, it can be concluded that our proposed
method is better suited to adapt to system changes
compared to the manual approach. Not only are there
fewer changes in test cases, but also the incurred manual
costs are lower. This is primarily due to the following two
reasons. Firstly, we divide the test cases into interface
and flow, separating the interface from the flow. When
either the interface or the flow changes, it does not affect
the other. Secondly, we automate the process of updating
test cases. When there is a change in the interface, users
only need to upload the new interface diagram, and the
system can automatically update the original interface test

cases. Similarly, when there is a change in the flow, users
only need to upload the new flowchart and input the new
flow information to automatically update the original test
paths. Additionally, complete test cases consist of both test
flow paths and interface test cases. Hence, when there are
changes in either the interface test cases or the test paths,
the complete test cases will also be automatically updated.

5.3 Answering Research Question 3
RQ3: How does our proposed approach perform in

defect discovery rates?
The defect detection rate is an important metric for

evaluating the quality of testing and software, which
can assess the level of risk in software development. A
high defect detection rate may indicate significant issues
within the software, while a low defect detection rate
may be due to two main reasons. Firstly, the generated
test cases may miss certain functionalities; secondly, the
software has undergone several rounds of testing and
corrections, resulting in fewer existing defects. As the
systems selected for this study have all undergone internal
testing and have few existing defects, we calculated both
the functional coverage of the generated test cases and the
defect detection rate during the experiment. Furthermore,
to validate the feasibility of the proposed method, we

376 Journal of Internet Technology Vol. 26 No. 3, May 2025

compared it with the method of generating test cases
using ChatGPT3.5, a natural language processing model
developed by Open AI capable of generating dialogues,
answering questions, providing suggestions, and more. In
the comparative experiment, we inputted the requirement
documents into ChatGPT3.5 allowing it to automatically

generate test cases based on the requirements documents.
The comparative results are shown in Table 6. Through
experiments on defect detection rates, we find that the
discovery rate of defects is influenced by various factors.
Among them, there exists a certain correlation between
functional coverage rate and defect detection rate.

Table 6. Comparison of defect discovery rate

System name Generate use cases number Functional coverage rate(%) Defect discovery rate(%)
ChatGPT3.5 our ChatGPT3.5 our ChatGPT3.5 our

Ruoyi 70 109 81. 53 96. 92 8. 57 17. 43
Kexin 43 64 74. 19 93. 54 18. 6 39. 06
Suixing 31 36 88. 88 94. 74 9. 67 22. 58

Generally, the higher the functional coverage
rate, the more defects may be discovered. As shown
in Table 6, the functional coverage rate and defect
detection rate of the test cases generated in this study
are higher than those generated by Chat ChatGPT3.5.
There are mainly two reasons for this. First, due to oral
requirements changes during development that are not
synchronized with the requirement documents, and the
issue of insufficiently detailed requirement document
writing, the actual developed functionalities may not
align with the requirement documents. As a result, the
functional coverage rate of the test cases generated by
ChatGPT3.5 based on the requirement documents is lower,
thereby affecting the defect detection rate. Second, our
proposed method utilizes the Faker library for secondary
development to generate test cases containing both valid
and invalid equivalence class test data. In contrast, the test
data generated by ChatGPT3.5 only includes positive test
data, neglecting negative test data. However, negative test
data often helps discover various defects when the system
encounters abnormal or unexpected inputs.

6 Validity Threats Discussion

This section discusses experimental validity and
existential threats

Internal validity: We utilized the same tool to generate
test cases for all three systems to ensure consistency in
experimental operations and employed identical metrics to
evaluate experimental outcomes.

External validity: Variations may exist in experimental
results across systems with different styles and business
domains; hence, we selected three systems representing
diverse styles and businesses for the experiment. The
proposed method exhibited satisfactory accuracy and
coverage across the three systems, suggesting its potential
generalizability.

Threat: Due to constraints imposed by the controlled
dataset and text-generated code, the proposed method
can only identify 8 common controls on the interface,
failing to encompass other controls within the interface.
Additionally, the method, starting from the interface and

flowcharts, is unable to generate test cases for hidden
functionalities without interface representation or covered
by the flow.

7 Conclusion

In this paper, an automatic test case generation method
based on an interface and flow chart is proposed to reduce
labor costs and improve test efficiency. This method
integrates YOLOv8 and other object detection technology,
EasyOCR text recognition technology and cyclic traversal
algorithm. To our knowledge, this is the first way to
separate processes and interfaces to enhance test case
maintainability. In addition, it is the first to leverage the
Faker library to generate positive and negative test data,
enhancing the comprehensiveness of test cases. On this
basis, we developed a tool to automatically generate
test cases and used it to generate 209 test cases for 17
functional modules of three web systems. We find that
the test cases generated by our method can improve the
test efficiency. Compared to ChatGPT3.5, our approach
achieved an average of 13.53% improvement in functional
coverage and 14.08% improvement in defect detection.
However, due to the influence of experimental data sets,
there is still room for improvement in the generality and
accuracy of our method. Therefore, in the future, we will
collect more UI interface diagrams for training to enhance
the universality of the control recognition model. We will
also conduct more experiments for different systems to
generate test cases, aiming to identify and solve problems,
optimize code, and improve the efficiency and accuracy of
automated test case generation procedures.

Acknowledgment

This work is supported by Natural Science Foundation
of Fujian Province under grant No. 2022J011238), Xiamen
Major Public Technology Service Platform under grant
No. 3502Z20231042), Research on Key Technologies
of Intelligent and Cloud Service Testing (2022 Central
Government Guide Local Development Science and
Technology Special Project) under grant No. 2022L3029,

Research and Application of Automatic Test Case Generation Method Based on User Interface and Business Flow Chart 377

Research on regression test optimization method based on
historical execution information in continuous integration
environment under grant No. 303021003.

References

[1] C. E. Lai, C. Y. Huang, Developing a Modified Fuzzy-GE
Algorithm for Enhanced Test Suite Reduction Effectiveness,
International Journal of Performability Engineering, Vol.
19, No. 4, pp. 223-233, April, 2023.
https://doi.org/10.23940/ijpe.23.04.p1.223233

[2] X. L. Chen, A Review of Test Case Automatic Generation
Based on UML Models, Modern Computer, No. 7, pp. 61-
65, March, 2018.

[3] J. Wen, Research on automatic Generation of Test Cases
based on code block coverage, M.D. Thesis, Xi’an
University of Technology, Xi’an, China, 2017.
https://doi.org/10.27398/d.cnki.gxalu.2017.000016

[4] Q. Y. Liu, Q. H. Yang, M. Hong, M. Y. Liu, Y. Y. Liu, Test
case reuse and generation method based on code similarity,
Computer Engineering and Design, Vol. 44, No. 10, pp.
2950-2955, October, 2023.
https://doi.org/10.16208/j.issn1000-7024.2023.10.010

[5] J. J. Li, W. E. Wong, Automatic test generation from
communicating extended finite state machine (CEFSM)-
based models, Proceedings Fifth IEEE International
Symposium on Object-Oriented Real-Time Distributed
Computing. ISIRC 2002, Washington, DC, USA, 2002, pp.
181-185.
https://doi.org/10.1109/ISORC.2002.1003693

[6] F. Belli, C. J. Budnik, A. Hollmann, T. Tuglular, W. E.
Wong, Model-based mutation testing—approach and case
studies, Science of Computer Programming, Vol. 120, pp.
25-48, May, 2016.
https://doi.org/10.1016/j.scico.2016.01.003

[7] P. Samuel, A. T. Joseph, Test Sequence Generation from
UML Sequence Diagrams, Ninth ACIS International
Conference on Software Engineering, Artificial Intelligence,
Networking, and Parallel/Distributed Computing, Phuket,
Thailand, 2008, pp. 879-887.
https://doi.org/10.1109/SNPD.2008.100

[8] H. Zhao, W. L. Gao, A Comparison of Methods for
Software Test Case Generation Based on Model, Modern
Computer, No. 4, pp. 20-26, February, 2017.
https://doi.org/10.3969/j.issn.1007-1423.2017.04.005

[9] R. Pan, Behavior Analysis in Scripting of Web Function
Test Based on Selenium Script, M. D. Thesis, Nanjing
University of Posts and Telecommunications, Nanjing,
China, 2021.
https://doi.org/10.27251/d.cnki.gnjdc.2021.000741

[10] Y. F. Hou, Research on Selenium Automated Test
Framework Based on User/Browser Pool Task Scheduling
Method, M. D. Thesis, Beijing Jiaotong University, Beijing,
China, 2021.
https://doi.org/10.26944/d.cnki.gbfju.2021.000462

[11] D. H. Gao, Study of Test Data Generation Based on SVR-
MChOA Algorithm, M. D. Thesis, Qingdao University of
Science and Technology, Qingdao, China, 2023.
https://doi.org/10.27264/d.cnki.gqdhc.2023.000718

[12] W. Z. Liao, X. Y. Xia, X. J. Jia, Test Data Generation for
Multiple Paths Coverage Based on Ant Colony Algorithm,
Acta Electronica Sinica, Vol. 48, No. 7, pp. 1330-1342,
July, 2020.
https://doi.org/10.3969/j.issn.0372-2112.2020.07.011

[13] Q. L. Pu, Y. P. Wang, T. Liu, Y. Sun, J. X. Li, Use Case
Generation Method Based on Model Testing, Computer
Measurement and Control, Vol. 29, No. 12, pp. 22-26,
December, 2021.
https://doi.org/10.16526/j.cnki.11-4762/tp.2021.12.005

[14] Y. M. Li, Research on test case generation algorithm
based on sequence diagram and construction of automated
test platform, M. D. Thesis, Beijing Jiaotong University,
Beijing, China, 2018.
https://kns.cnki.net/KCMS/detail/detail.aspx?dbname=CM
FD201802&filename=1018104264.nh

[15] X. X. Wang, Method of software test paths generation for
train control center based on UML state chart diagram,
Railway Computer Application, Vol. 25, No. 8, pp.
9-12+15, August, 2016.
https://doi.org/10.3969/j.issn.1005-8451.2016.08.003

[16] L. X. Yang, Research and Application of Model Driven
Web Automated Testing Platform, M. D. Thesis, Southwest
University of Science and Technology, Sichuan, China,
2022.
https://doi.org/10.27415/d.cnki.gxngc.2022.000975

[17] X. H. Gao, The Research of GUI Test Cases Generation
Based on Models, M. D. Thesis, Shanghai Normal
University, Shanghai, China, 2014. https://kns.cnki.net/
KCMS/detail/detail.aspx?dbname=CMFD201501&filena
me=1014334011.nh

[18] W. X. Zhang, M. Zhang, Z. H. Dou, M. Y. Ma, B. Wei,
Aerospace Application Software Testing Method Based on
Process and Scenario Analysis, Measurement & Control
Technology, Vol. 39, No. 1, pp. 30-35, January, 2020.
https://doi.org/10.19708/j.ckjs.2020.01.006

[19] S. Y. Wang, J. N. Zheng, J. Z, Sun, Test case generation
method for Web applications based on page object, Journal
of Computer Applications, Vol. 40, No. 1, pp. 212-217,
January, 2020.
https://doi.org/10.11772/j.issn.1001-9081.2019060969

[20] Q. R. Zhang, S. Huang, L. L. Sun, A Survey of Web
Function Automation Testing, Software Guide, Vol. 22, No.
3, pp. 227-236, March, 2023.
https://doi.org/10.11907/rjdk.222368

[21] J. Hou, N. J. Gu, S. J. Ding, Y. K. Du, UI Automating Test
Method for Cross-Device Based on Widget Path, Computer
Systems & Applications, Vol. 27, No. 10, pp. 240-247,
October, 2018.

[22] W. Y. Zhang, APP component recognition method based on
object detection, Journal of Computer Applications, Vol.
40, No. z1, pp. 157-160, July, 2020.
https://doi.org/10.11772/j.issn.1001-9081.2019081420

[23] L. Jia, J. Xu, X. Jin, H. Tian, Test case auto-execution
system for Web application, Computer Engineering and
Applications, Vol. 45, No. 4, pp. 82-85, February, 2009.
https://doi.org/10.3778/j.issn.1002-8331.2009.04.023

[24] V. A. S. Júnior, E. Özcan, J. M. Balera, Many-objective test
case generation for graphical user interface applications
via search-based and model-based testing, Expert Systems
with Applications, Vol. 208, Article No. 118075, December,
2022. https://doi.org/10.1016/j.eswa.2022.118075

[25] J. Fischbach, J. Frattini, A. Vogelsang, D. Mendez, M.
Unterkalmsteiner, A. Wehrle, P. R. Henao, P. Yousefi,
T. Juricic, J. Radduenz, C. Wiecher, Automatic creation
of acceptance tests by extracting conditionals from
requirements: NLP approach and case study, Journal of
Systems and Software, Vol. 197, Article No. 111549, March,
2023. https://doi.org/10.1016/j.jss.2022.111549

[26] X. Y. Dang, J. F. Li, An Evolutionary Generation Method

378 Journal of Internet Technology Vol. 26 No. 3, May 2025

for Path Coverage Test Data based on Mutation Testing,
Software Engineer, Vol. 26, No. 1, pp. 46-49, January,
2023.
https://doi.org/10.19644/j.cnki.issn2096-
1472.2023.001.010

[27] E. Alégroth, R. Feldt, P. Kolström, Maintenance of
automated test suites in industry: An empirical study on
Visual GUI Testing, Information and Software Technology,
Vol. 73, pp. 66-80, May, 2016.
https://doi.org/10.1016/j.infsof.2016.01.012

[28] Z. Khaliq, S. U. Farooq, D. A. Khan, A deep learning-based
automated framework for functional User Interface testing,
Information and Software Technology, Vol. 150, Article No.
106969, October, 2022.
https://doi.org/10.1016/j.infsof.2022.106969

[29] S. R. Choudhary, D. Zhao, H. Versee, A. Orso, WATER:
Web application test repair, ETSE ’11: Proceedings of the
First International Workshop on End-to-End Test Script
Engineering, Toronto Ontario Canada, 2011, pp. 24–29.
https://doi.org/10.1145/2002931.2002935

[30] Q. M. Guo, N. B. Liu, Z. X. Wang, Y. L. Sun, Review
of Deep Learning Based Object Detection Algorithms,
Journal of Detection & Control, Vol. 45, No. 6, pp. 10-
20+26, December, 2023.

[31] L. Wang, Y. Zhai, H. Hou, Genetic algorithms and its
application in software test data generation, Proceedings
of the International Conference on Computer Science and
Electronics Engineering (ICCSEE), Hangzhou, China,
2012, pp. 617-620.
https://doi.org/10.1109/ICCSEE.2012.36

[32] A. Kumar, G. S. Lehal, Layout Detection of Punjabi
Newspapers using the YOLOv8 Model, International
Journal of Performability Engineering, Vol. 20, No. 3, pp.
186-193, March, 2024.
https://doi.org/10.23940/ijpe.24.03.p7.186193

[33] S. P. Fang, B. Y. Ma, X. Y. Wang, C. G. Gao, Research on
Classification of Software Test Data Automatic Generation
Methods, SOFTWARE, Vol. 44, No. 8, pp. 41-43, August,
2023.
https://doi.org/10.3969/j.issn.1003-6970.2023.08.008

[34] J. N. Rao, Research and Analysis on GUI Testing
Technologies, Journal of Xichang College (Natural Science
Edition), Vol. 33, No. 2, pp. 94-98+115, July, 2019.

[35] C. H. Feng, Z. P. Xie, B. W. Ding, Selective generation
method of test cases for Chinese text error correction
software, Journal of Computer Applications, Vol. 44, No. 1,
pp. 101-112, January, 2024.
https://doi.org/10.11772/j.issn.1001-9081.2023010080

Biographies

Lei Xiao received her Ph.D. degree
from Shanghai University in Shanghai,
China in 2020. Since 2014, she has been
working as an Associate Professor in the
School of Computer and Information
Engineering at Xiamen University of
Technology. Her research interests are
code security and software testing. She

is the deputy director of the Fujian Province Software
Evaluation Engineering Technology Research Center and
a member of the Software Quality Engineering Standard
Working Group of the Software and System Engineering

Sub-Technical Committee of the China Information
Technology Standardization Technical Committee.

Ru-Xue Bai is pursuing a MS degree in
Computer and Information Engineering
at Xiamen University of Technology. Her
current research direction is software
testing.

Ke-Shou Wu received his Ph.D. degree
from Huazhong University of Science
and Technology in 2011. From 2013 to
October 2023, he served as a member of
the Party Committee and Vice President
of Xiamen University of Technology. In
2023, he assumed the position of Deputy
Secretary of the Party Committee and

Dean of Fujian Polytechnic Normal University. His current
main research interests include software architecture,
embedded system security, cloud computing, and its
applications.

Rong-Shang Chen, born in1982, senior
engineer. His main research interest in
cludes software defect prediction.

