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Abstract

With the rapid development of the service industry 
and increasing customer expectations, traditional mystery 
shopper audit methods face several challenges, such as 
time-consuming manual analysis, significant subjective 
bias, and difficulty in accurately quantifying complex 
service behaviors. To overcome these limitations, this paper 
introduces an innovative approach called Surveillance 
Monitoring and Recognition Techniques (SMRT) for 
analyzing service behavior. The proposed SMRT achieves 
precise classification of service behaviors through a two-
phase process: coarse-grained and fine-grained analysis. In 
the coarse-grained phase, the proposed SMRT preprocesses 
blurred video to extract and emphasize relevant external 
features, specifically detecting and capturing ‘person’ 
objects in video frames, thereby effectively filtering out 
irrelevant frames and reducing computational load. In 
the fine-grained phase, it performs spatiotemporal feature 
extraction and utilizes Transformer models to conduct a 
detailed comparison of target behavioral features across 
video segments. Simulation results demonstrate that 
the proposed SMRT significantly enhances recognition 
performance in terms of accuracy, and F1-score compared 
to existing methods.

Keywords: Blurred and unsteady video, Mystery shopper 
audit, Service behavior recognition

1  Introduction

In an era of increasingly fierce business competition, 
companies must continuously improve and innovate to 
meet customer demands and maintain a competitive edge. 
To ensure the highest standards of customer service, 
a mysterious role has quietly emerged in the retail 
and service industries, known as ‘mystery shoppers.’ 
These individuals discreetly evaluate customer service 
interactions, providing companies with critical insights 
into the quality of their services. However, the videos 

recorded during these evaluations often present significant 
challenges for automated analysis, such as camera shake, 
blurriness, complex backgrounds, and low resolution.

With the rapid development of Artificial Intelligence 
(AI) technology, the application of image processing 
techniques in various industries is increasingly expanding 
[1-3]. Technologies such as Faster Region-Convolutional 
Neural Networks (Faster R-CNN) [4], You Only Look 
Once (YOLO) series [5-7], Single Shot Multibox Detector 
(SSD) [8], and others demonstrate fast and high accuracy 
in object detection, making them commonly used and 
compared in various tasks. In behavior recognition, the 
usual objective is to identify and understand actions and 
patterns of motion in videos and to classify or score the 
accuracy of these actions. Technologies such as two-
stream CNN [11-14], 3DCNN [15-17], and Long Short-
Term Memory (LSTM) [19-20], among others, are utilized 
for this purpose. However, achieving both fast and high-
precision results requires high-quality datasets, which are 
crucial for the effectiveness of these techniques. 

To address these issues, this paper introduces a 
behavior recognition mechanism called SMRT. The 
proposed SMRT leverages the capabilities of multi-model 
to identify the behavior of service providers in mystery 
shopping audit videos. Initially, it preprocesses blurred 
video to extract and emphasize relevant external features 
for ‘person’ object detection to filter out irrelevant frames. 
It then extracts key behavioral features, followed by the 
Transformer model [10] to analyze temporal features. The 
contributions of this paper are detailed as follows:

1) Effectively Filtering out Irrelevant Frames
The proposed SMRT utilizes the coarse-grained phase 

to filter out irrelevant frames, reducing computational 
load and allowing the system to focus on frames that 
contain actual service behaviors. This strategy significantly 
enhances processing efficiency, particularly in long or low-
frame-rate videos, and addresses video blurring issues.

2) Employing a Transformer to Capture Temporal 
Dependencies
The proposed SMRT utilizes the Transformer model 

to analyze the temporal dependencies between video 
frames in fixed-duration segments. This allows for the 
identification of complex behavioral patterns and accurate 
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classification of service behaviors, providing detailed 
assessments of service quality.

3) Integrating Multimodal Feature Fusion
The proposed SMRT emphasizes the fusion of visual 

and temporal features, leveraging both static and dynamic 
information for behavior recognition. By integrating 
multiple models, SMRT captures both the static features of 
individual frames and the temporal variations across frame 
sequences, enabling a comprehensive and precise analysis 
of service behaviors. 

The remainder of the paper is structured as follows: 
Section 2 reviews related work. Section 3 outlines the 
problem and research objective. Section 4 details the 
proposed SMRT. Section 5 evaluates its performance and 
Section 6 summarizes the key findings and future research 
directions.

2  Related Work

This section reviews existing research relevant to the 
proposed SMRT mechanism, categorized into two areas: 
behavioral identification based on image analysis and 
skeleton data.

2.1 Behavioral Identification Based on Image Analysis
Deep learning methods like two-stream CNN [11-14], 

3DCNN [15-17], and LSTM [19-20] have been widely 
used for behavior identification. Simonyan and Zisserman 
[11] introduced a two-stream CNN for separating spatial 
and temporal features in videos. Khan et al. [12] improved 
spatial stream robustness through dataset augmentation 
techniques like rotation and flipping to mitigate overfitting. 
Wang et al. [13] integrated bidirectional gated recurrent 
unit into the two-stream CNN, capturing temporal 
dependencies across frames for nuanced action recognition. 
However, these approaches are incapable of distinguishing 
some roughly similar actions in videos. 

To address this, Zhou et al. [14] introduced a Multi-
head Attention-based Two-stream EfficientNet, combining 
multi-head attention and two-stream EfficientNet for 
key action recognition. While effective for short-term 
dependencies, it faced limitations in handling longer 
video sequences. Tran et al. [15] introduced 3DCNN for 
spatiotemporal feature learning but suffered from high 
memory consumption due to treating spatial and temporal 
dimensions equally. Zhou et al. [16] and channel attention-
based 3DCNN [17] reduced computational overhead and 
enhanced feature selection, but frame-by-frame processing 
remained inefficient.

Tran et al. [15] proposed a method for spatiotemporal 
feature learning using 3DCNN trained on a large-
scale supervised video dataset. However, they treated 
the temporal and spatial dimensions equally, leading to 
significant memory consumption in practical applications. 
To address this issue, Zhou et al. [16] and Zhao et al. [17] 
employed 3DCNN to reduce computational overhead and 
enhance feature selection, but frame-by-frame processing 
remained inefficient.

LSTM-based approaches [18-20] focused on temporal 

feature modeling. Ng et al. [18] utilized a dual-stream 
network with LSTM to extract spatial and optical flow 
features, while Li et al. [19] incorporated attention 
mechanisms into LSTM to leverage spatial correlations. 
Although effective in improving feature representation, 
these methods struggled with computational efficiency 
for long-duration videos. Dai et al. [20] employed two-
stream attention-based LSTM but faced similar efficiency 
challenges.

To address these limitations, the proposed SMRT 
introduces a pre-filtering step by detecting ‘person’ objects, 
focusing on frames with relevant behaviors and reducing 
computational overhead. By extracting key behavioral 
features and employing a Transformer model for temporal 
analysis, it captures dependencies across frames, enabling 
accurate recognition of complex and extended behaviors.

2.2 Behavioral Identification Based on Skeleton Data
Skeleton data, compared to RGB and depth data, 

is less influenced by background noise, lighting, and 
appearance variations, making it effective for behavior 
recognition. Yan et al. [21] introduced Skeleton-based 
Spatiotemporal Graph Convolutional Network, utilizing 
graph convolutional networks to capture spatiotemporal 
relationships in skeleton sequences. However, its local 
convolution structure failed to fully exploit global joint 
relationships, limiting its ability to model complex, long-
duration actions involving co-movement of distant joints.

To enhance feature representation, Wu et al. [22] 
proposed the Multi-grain Contextual Focus module, 
which captured relational information between body 
parts and joints, providing more interpretable skeleton 
representations. Yin et al. [23] introduced a lightweight 
double-feature triple-scale motion network to improve 
efficiency and accuracy. However, in real-world scenarios, 
videos often suffer from poor image quality, leading to 
inaccuracies in skeleton detection and recognition.

The proposed SMRT addresses these challenges by 
integrating visual features from RGB frames with temporal 
dependencies. This approach combines the strengths of 
image-based and skeleton-based methods, providing a 
comprehensive analysis of service behaviors, even in 
complex and noisy environments.

3  Notations, Assumptions and Problem 
Descriptions

This section introduces the notations, assumptions, 
problem descriptions, and objective.

3.1 Notations and Assumptions
Mystery shopping is a popular strategy for businesses 

seeking to gain a competitive edge. Mystery shoppers, 
acting as regular consumers, discreetly assess products 
and services, often using concealed cameras to provide 
authentic feedback.

A mystery shopping audit video V consists of m 
continuous segments V = (v1, v2, …, vm), where each          
vi ∈V is a fixed-duration segment. The video captures 
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a set of service behaviors B = (b1, b2, …, bn), where n 
denotes the total number of distinct behaviors. Each bj∈B 
corresponds to a specific service behavior (e.g., five-finger 
guidance, hands offering, or maintaining good posture).

3.2 Problem Descriptions
To evaluate the performance of service behavior 

identification across n categories, this paper utilizes a 
confusion matrix C n×n= [cx, y]n×n . Each element cx, y∈C 
represents the number of samples, where the true label is 
the category bx∈B and the predicted category is by ∈B . 

For each video segment vi ∈V, if the actual category 
of the segment vi is bx and the predicted category is by, the 
corresponding value of cx,y in the confusion matrix Cn×n is 
updated as follows:

, , 1.x y x yc c= +                                  (1)

Let TP M
j , FP M

j  and FN M
j  denote the true positive, false 

positive, and false negative, respectively, for the category 
bj predicted using the mechanism M. These values can be 
calculated using the following equations:
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where n denotes the total number of categories.
Let TPM, FPM and FNM denote the true positive, false 

positive, and false negative for all service behaviors B 
using mechanism M, respectively. These values can be 
calculated using the following equations.
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Let PM, RM and F1M denote the precision, recall, and 
F1-score for mechanism M, respectively. These values can 
be calculated using the following equations.
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3.3 Objective
Let Ω denote a set of potential mechanisms that 

are utilized to identify the specific service behavior. 
The primary goal of this paper is to find the optimal 
mechanism, denoted by M, which satisfies Eq. (11).

Objective Function:

M arg max 1 .M

M
F

∈Ω
=                              (11)

To achieve the above objective function, it is essential 
to satisfy the following constraints. Let αi,k denote whether 
the segment vi contains behavior bk. That is 

,
1,       ,
0,                .              

i k
i k

if v contains behavior b
otherwise

α


= 


The following Category Constraint, which is described 
in Eq. (12), ensures that each audit segment vi ∈V contains 
at most single service behavior bk ∈B.

1) Category Constraint

,
1

,   1.
n

i i k
k

v V such that α
=

∀ ⊆ ≤∑                    (12)

The following Spatial-Temporal constraint described 
in Eq. (13), ensures that the same behavior bk remains 
consistent across videos vi and vj within specific spatial and 
temporal bounds, accounting for variations in movement 
amplitude and action speed. Despite differences, both 
videos represent the same behavior.

2) Spatial-Temporal Constraint

, ,( ) ( ),i i j j i jS t S tγ δ= ⋅ ⋅                          (13)

where Si(∙) and Sj(∙) denote the spatial features at a time 
slot for vi and vj, respectively. The factor γi, j denotes the 
difference in the amplitude of movements between vi and 
vj , while δi, j denotes a time-scaling factor.

The following Intra-Class similarity and Inter-Class 
Dissimilarity Constraint, described in Eqs. (14) and 
(15), ensures that different behaviors bk and bl (k ≠ l) are 
represented by significantly distinct feature vectors. Let 
ϕ(vi ∙ αi,k) and ϕ(vj ∙ αj, l) denote the high-dimensional feature 
vectors of vi, belonging to the class bk, and vj, belong to 
the class bl, respectively.

3) Dissimilarity Constraint
A. Intra-Class Similarity

, ,( ) ( )i i k j j kv vφ α φ α⋅ − ⋅ ≤ ϵk ,                   (14)



350   Journal of Internet Technology Vol. 26 No. 3, May 2025

where ∥∙∥ denotes an appropriate norm that measures the 
distance between feature vectors vi and vj , and ϵk controls 
the tolerance of intra-class similarity.

B. Inter-Class Dissimilarity

, , ,( ) ( ) ,i i k j j l k lv vφ α φ α ξ⋅ − ⋅ ≥                    (15)

where ξk,l specifies the tolerance for dissimilarity between 
different classes bk and bl .

4  The Proposed SMRT Mechanism

This paper introduces an innovative service behavior 
identification mechanism, called SMRT, designed to 
accurately identify service behavior for mystery shopping 
audit videos. SMRT focuses on actions like five-finger 
guidance, hand offerings, and proper posture. As shown in 
Figure 1, SMRT operates in two phases: coarse-grain and 
fine-grain identification. The coarse-grain phase detects 
‘person’ objects in video frames, filtering out irrelevant 
ones, while the fine-grain phase extracts key behavioral 
features from the remaining frames. These frames are 
grouped into fixed-duration segments and analyzed using 
a Transformer model to capture temporal features. This 
integrated approach ensures precise identification and 
classification of service behaviors for comprehensive 
evaluations.

Figure 1. The process of the proposed SMRT mechanism

4.1 Coarse-Grained Identification Phase
This phase aims to identify ‘person’ objects in each 

frame of the mystery shopping audit video. As shown in 
Figure 2, frames without ‘person’ objects are filtered out, 
focusing the analysis on relevant frames and significantly 
reducing data volume. This enhances computational 
efficiency and accelerates processing, enabling SMRT 
to improve both detection speed and accuracy while 
optimizing resource utilization.

Figure 2. The process of coarse-grained identification

Formally, consider a mystery shopping audit video V, 
consisting of 𝓅 continuous frames, represented as V = ( f I

1, 
f I

2, …, f I
𝓅), where f I

i∈V denotes i-th frame. The proposed 
SMRT processes each frame f I

i  for predicting the presence 
of a ‘person’ object. Let �̂�i represent the confidence score 
provided by this phase for the ‘person’ object in the frame 
f I

i , indicating the likelihood that a ‘person’ object is 
present. That is 

�̂�i = Y ( f I
i ),                                   (17)

where Y(∙) denotes the coarse-grained identification model.
During the training phase, let 𝒫i denote the true label 

for the frame f I
i , where 𝒫i = 1 if a ‘person’ object is present 

in the frame f I
i , and otherwise 𝒫i = 0. Let ℒ(𝒫i, �̂�i) denote 

the classification loss function for the ‘person’ object. The 
value of ℒ (𝒫i, �̂�i) can be calculated by Eq. (18).

ℒ(𝒫i, �̂�i) = − (𝒫i log �̂�i + (1 − 𝒫i) log (1 − �̂�i)).       (18)

During the inference phase, SMRT determines whether 
each frame f I

i  contains a ‘person’ object based on the 
confidence score �̂�i. 

Assume that τ denotes a threshold, which decides if the 
frame f I

i  should be kept for further analysis. Let VY denote 
the filtered subset of the original video V. VY consists of 
frames likely containing a ‘person’ object. It is defined as 
Eq. (19).

VY = {f I
i ∈V | �̂�i  ≥ τ}.                        (19)

By isolating frames based on the confidence score �̂�i 

and the threshold τ, this approach focuses the analysis on 
the most relevant parts of the video while significantly 
reducing the data volume for subsequent detailed analysis. 
This efficient filtering mechanism not only enhances the 
accuracy of the proposed SMRT in identifying frames 
with service provider behaviors but also improves 
computational efficiency, making the system more robust 
and scalable.

4.2 Fine-Grained Identification Phase
In this phase, the remaining frames in VY undergo 

detailed processing in two steps: Feature Extraction, and 
Temporal Analysis. The feature extraction aims to identify 
key behavioral attributes from each frame in VY . These 
frames are reassembled into fixed-duration segments. 
Temporal analysis employs a Transformer model to 
capture temporal features of these behaviors across the 
sequence of fixed-duration video segments. This enables 
precise identification and classification of specific service 
behaviors. 
4.2.1 Features Extraction Module

This step aims to extract key behavioral features from 
each frame in VY . Assume that VY consists of 𝓆 frames, 
represented as VY = { f Y

1, f
Y
2, ..., f

Y
𝓆}, where each frame 

f Y
j ∈VY contains a ‘person’ object detected. This can be 

represented as Eq. (20). 
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( ),R Y
j jf R f=                                 (20)

where R(∙) denotes the features extraction model, and f R
j 

is the resulting feature vector for the j-th frame f Y
j . After 

processing each frame in VY , a set of feature vectors is 
obtained, denoted by VR = {f R

1 , f R
2, …, f R

𝓆}. This collection 
VR represents the extracted key behavioral features for all 
𝓆 frames in VY .

Figure 3. The process of the feature extraction module

As shown in Figure 3, to capture the temporal 
relationships between these frames, the feature vectors in 
VR , are grouped into segments of a fixed duration, each 
containing β frames. This segmentation allows for effective 
temporal analysis using the Transformer model. The 
segmented set VR is defined as VR = {v1, v2, …, vm}, where 
each segment vi comprises β feature vectors. These feature 
vectors within each segment vi are denoted by vi = {fi,1, fi,2, 
…, fi,β} where each feature vector fi, j denotes that the j-th 
frame within i-th segment vi , corresponding to the ((i −1)× 
β + j)-th feature vector from the VR . That is

, ( 1) .R
i j i jf f β− × +=                               (21)

This structured segmentation process prepares the 
data for the Transformer’s temporal analysis, allowing 
it to effectively capture and model the relationships and 
dynamics across the sequence of video frames.
4.2.2 Temporal Analysis Module

This step uses a Transformer to analyze the temporal 
features of fixed-duration segments, enabling precise 
identification of service behaviors. By leveraging its self-
attention mechanism, the Transformer captures each 
segment of β frames to understand the temporal dynamics 
and dependencies within each segment vi . This analysis 
allows the model to discern patterns and relationships 
both within and across segments, identifying key actions 
and interactions that constitute various service behaviors. 
Its ability to weigh the importance of each frame ensures 
accurate classification of both simple gestures and 
complex service interactions. The resulting predictions 
provide detailed insights into service quality, supporting 
performance assessment and training.

As shown in Figure 4, the process begins with 
each fixed-duration vi = {fi,1, fi,2, …, fi,β}. Each vi is first 
transformed through an input embedding layer, which 
converts the feature vectors into a suitable format for 
the Transformer model. This embedding layer yields Ei 
= {εi,1, εi,2, …, εi,β}, where εi, j ∈Ei denotes the embedded 

representation of the j-th frame in the i-th segment. 
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Figure 4. The process of the temporal analysis module

To incorporate positional information, which is 
important for the model to understand the order of the 
frames, position embedding, Pi = {𝒫i,1, 𝒫i,2, ..., 𝒫i, β} are 
added to the input embeddings. This combination results in 
Fi = {Fi,1,Fi,2, ...,Fi,β}, where each Fi, j can be derived from 
Eq. (22).

Fi, j = εi, j + 𝒫i, j .                                (22)

Then, Fi is fed into the Transformer Encoder, which 
consists of ℒ layers. Each layer of the Transformer Encoder 
comprises a multi-head attention mechanism followed 
by a feed-forward network. The multi-head attention 
mechanism is important for capturing different aspects of 
the relationships between frames within each segment. It 
operates on the input Fi using h heads to perform parallel 
attention operations. For the k-th attention head, let Qi,k, 
Ki,k , and Vi,k denote the query, key, and value matrices of 
the input Fi , respectively. Let WQ

i,k, WK
i,k and W V

i,k denote 
the weights matrices of the Qi,k, Ki,k, and Vi,k , respectively. 
The values of Qi,k, Ki,k, and Vi,k  can be derived from Eqs. 
(23) to (25), respectively.

, ,i k i i kF W= × QQ ,                               (23)

, ,i k i i kF W= × KK ,                               (24)

, ,i k i i kF W= × VV .                                (25)

Each head then computes the attention scores using a 
scaled dot-product mechanism. Let Qi,k denote the output 
of the k-th head, calculated by Eq. (26).

, ,
, ,*

T
i k i k

i k i kSoftMax
d

 
 =
 
 K

Q K
 V ,                (26)

where d𝕂 denotes the dimensionality of the key vectors, 
and the SoftMax function is applied to normalize the 
attention scores.

Instead of relying on a single-head attention 
mechanism, the Transformer employs multi-head 
attention to capture different aspects of the relationships 
between frames. The outputs from each attention head 
are concatenated and projected back into the original 
dimensionality. That is
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( ),1 ,2 ,, , , ,i i i i h iconcat W= … ×               (27)

where 𝔸i denotes the combined output of the multi-head 
attention for the first layer, Wi is a learned weight matrix, 
and h denotes the number of attention heads.

After the multi-head attention mechanism, each layer 
of the Transformer Encoder includes a feed-forward 
network (FFN) applied independently to each position. 
That is 

( )i i iFFN= +   ,                        (28)

where 𝕆i denotes the output of the FFN for the first 
layer. The output 𝕆i is then fed into the next layer of the 
Transformer Encoder. This process is repeated for all ℒ  
layers using Eqs. (21) to (26).

After processing through all ℒ layers, the final output 
of the Transformer model represents the input segment 
vi. This output is then passed through a SoftMax layer 
to generate a probability distribution over the possible 
service behaviors. During training, the Transformer model 
is optimized using a loss function. Let yi, j be the true label 
for segment vi, where yi, j = 1 if vi corresponds to behavior 
bj , and yi, j = 0 otherwise. Let ŷi, j denote the predicted 
probability of behavior bj for the segment vi. Let ℒ(yi, j, ŷi, j) 
denote loss function, defined as Eq. (29).

, , , ,
1 1

ˆ, ˆ( ) 
m n

i j i j i j i j
i j

y y y logy
= =

= −∑∑ ,                 (29)

where m and n denote the numbers of segments and 
behavior categories, respectively. By minimizing this loss, 
the Transformer model learns to improve predictions, 
enhancing its ability to identify and classify service 
behaviors.

5  Performance Evaluation

This section evaluates the proposed SMRT against the 
existing Lightweight Double-feature Triple-scale motion 
Network (LDT-NET) [23] and TinyVIRAT mechanisms 
[24]. LDT-NET, a skeleton-based method, struggled with 
poor image quality in covert videos, leading to inaccuracies 
in skeleton detection. TinyVIRAT, designed for low-
resolution action recognition, incurs high computational 
overhead. In contrast, the proposed SMRT uses YOLO [9] 
for efficient ‘person’ detection, reducing computational 
load. It then employs ResNet-50 [10] to extract action 
features and a Transformer model for temporal analysis, 
improving accuracy in behavior recognition for services.

5.1 Dataset
The evaluation utilizes a custom dataset known as the 

Mystery Shopping Dataset, which includes 531 video clips 
capturing service-related activities—313 with standard 
service actions and 218 with non-standard actions. The 

dataset is split into 80% for training and 20% for testing. 
Notably, each frame in the videos is annotated, providing 
detailed frame-level information that enhances the model’s 
accuracy in recognizing and distinguishing service actions.

5.2 Simulation Results
Figure 5 illustrates the performance of the proposed 

SMRT across different behaviors (five-finger guidance, 
hands offering, and maintaining proper posture) in terms 
of precision, recall, and F1-Score under thresholds ranging 
from 0.3 to 1. Precision consistently increases with the 
threshold. The reason is that a higher threshold makes 
the model more confident in classifying instances as 
positive, thereby reducing false positives and boosting 
precision. In contrast, recall and F1-Score initially rise but 
then decrease as the threshold rises. Recall measures the 
model’s ability to capture all relevant instances. At lower 
thresholds, the model tends to classify more instances 
as positive, including many true positives, which boosts 
recall. However, as the threshold rises, the model becomes 
more selective, reducing the number of true positives 
and causing recall to drop. F1-Score improves when both 
precision and recall are balanced but further increases in 
the threshold lead to a decline in F1-Score, as the loss 
in recall outweighs the gains in precision. Thus, careful 
threshold selection is crucial for optimizing SMRT’s 
effectiveness in accurately recognizing and scoring 
behaviors.

Figure 6 compares SMRT with LDT-NET and 
TinyVIRAT in terms of precision, recall, and F1-Score 
as training videos increase from 100 to 400. Metrics 
improve with more training data due to enhanced learning 
and generalization. SMRT consistently outperforms 
both models, leveraging YOLO for object detection 
and ResNet-50 with Transformer models for spatial and 
temporal feature analysis. This combination enables 
SMRT to effectively capture and predict complex service 
behaviors.

Furthermore, Figure 7 uses the Friedman test to 
compare the F1-Score distributions of LDT-NET, 
TinyVIRAT, and SMRT. The box plots show that SMRT 
exhibits a higher median F1-Score and more consistent 
distribution, indicating robustness and reliability. In 
contrast, LDT-NET and TinyVIRAT show a lower median 
F1-Score, suggesting less stability. The Friedman test 
results (chi-square = 8, p-value = 0.01832) confirm that 
these differences are statistically significant, supporting 
SMRT’s superior performance over the other methods.

Table 1 presents an ablation study on the Mystery 
Shopping Dataset to evaluate the impact of YOLOv8, 
ResNet-50, and the Transformer encoder on SMRT’s 
performance. The baseline model using only YOLOv8 for 
‘person’ detection, achieves an F1-Score of 0.498. Adding 
ResNet-50 increases the F1-Score to 0.675, highlighting 
its role in improving feature extraction. Incorporating the 
Transformer encoder further boosts the F1-Score to 0.81, 
demonstrating its effectiveness in capturing temporal 
dynamics and contextual information.
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(a) Precision (b) Recall (c) F1-Score

Figure 5. Comparison analysis of different behaviors in terms of precision, recall, and F1-Score

(a) Precision (b) Recall (c) F1-Score

Figure 6. Comparison analysis of different mechanisms in terms of precision, recall, and F1-Score

Figure 7. Comparison analysis of different mechanisms 
using the Friedman test

Table 1. The ablation study of the proposed SMRT

Method F1-Score
YOLOv8 0.498

YOLO+ResNet-50 0.675
SMRT 0.81

6  Conclusion

This paper presents SMRT, an innovative service 
behavior identification mechanism for recognizing service 
provider actions in mystery shopping audit videos. SMRT 

effectively detects ‘person’ objects in the coarse-grain 
phase, even in blurred videos, and extracts key behavioral 
features in the fine-grain phase, using a Transformer model 
for temporal analysis. Experimental results demonstrate 
that SMRT excels in both accuracy and processing 
efficiency for behavior recognition tasks. Future work 
will focus on enhancing real-time processing to enable 
instant detection and analysis of service behaviors in video 
streams for real-time monitoring.
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