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Abstract

Safety, as one of the key consumer issues in modern 
vehicles, benefits significantly from the new hardware 
components. There are three main factors in the new 
perception-based vehicle safety paradigm: perception 
ability, working environment, and application scenario. 
Traditionally, the safety problem is generally tackled by 
considering expertise knowledge of problems is well 
known. In this paper however, the research problem is 
formulated as an unsupervised anomalous sound detection 
(ASD) problem with unknown problem knowledge. In 
this paper, a novel four-step procedure is presented to 
tackle such problem including multiple streams of signal 
representation, onboard anomaly event candidates list 
generation, cloud-based anomaly event recommendation 
and bigdata driven anomaly event detection accordingly. 
The detection system’s robustness is enhanced against 
adversarial examples (adv), which pose a growing threat to 
audio perception systems. Our approach not only detects 
anomalies in vehicle operation sounds but also bolsters the 
model’s reliability against adversarial attacks, offering a 
comprehensive solution for modern vehicle safety.

Keywords: Vehicle safety, Anomalous sound detection, 
Unsupervised learning, Adversarial robustness

1  Introduction

In recent years, the trend of automotive intelligence 
has become increasingly obvious and irresistible. In 
particular, the application of new energy technology 
such as electricity, has provided a solid foundation for 
automotive intelligence. With the rapid development of 
the new information and perception technology, more and 
more intelligent, convenient, and personalized services 
are created and developed to serve the consumers except 
transportation. Moreover, some traditional issues are also 
be further addressed through new technologies with more 
significant performance improvements.

Safety is obviously one of such key consumer issues in 
modern vehicle system. Actually similar anomaly detection 
issue is studied within the electronic consumer area [1-
3]. The rapid development of the intelligent automotive 
industry has triggered the use of a large number of new 

types of intelligent perception sensors on the intelligent 
vehicles, including visual perception devices, light 
detection and ranging (Lidar), radio detection and ranging 
(Radar), infrared sensor and microphone array etc. At 
the same time, with the significant improvement of 
computing power both in the cloud and on-board vehicles, 
more complex perception algorithms can also be used in 
intelligent vehicles. 

In general, there are four factors which are involved in 
the new perception-based vehicle safety. The first factor 
is the perception ability, which the current perception 
ability for intelligent automotive safety is mainly based on 
visual scene analysis including computer vision, Lidar and 
Radar. Acoustic perception, as one of the basic perception 
abilities of the human being, is still not fully utilized for 
the automotive safety scenario. 

The second factor is the working environment, which 
is highly related with application scenario. In general, the 
working environment is divided into two categories. The 
first category is when the vehicle is operated. And the 
second is when the vehicle is when the vehicle is in the 
workshop with the specific equipment available. 

The third factor is the application scenario. Roughly 
speaking, there are three kinds of application scenarios 
on the perception-based vehicle safety, including out-
vehicle safety, in-vehicle safety and vehicle faulty safety. 
In fact, determine whether or not an invisible police car or 
ambulance is approaching, is a typical out-vehicle safety 
scenario which is also preferred to the acoustic ability. 
Detecting children’s emotions, as a in-vehicle safety 
scenario, can also use the auditory detector as one of the 
detection approaches. Moreover some vehicle equipment 
faults are well indicated based on the information of 
acoustic perceptions.    

The fourth factor is the resilience against adversarial 
examples (adv), which is paramount across all application 
scenarios. Adv such as fabricated anomaly sounds or 
noises from other vehicles, pose a significant threat to 
the reliability of acoustic perception systems. Defending 
against these malicious inputs and ensuring this level 
of security is imperative for consistent and trustworthy 
operation across a range of scenarios, from emergency 
vehicle detection to the accurate identification of 
mechanical faults.

The proliferation of electric and autonomous vehicles 
introduces new acoustic challenges, such as silent engine 
operations and increased susceptibility to adversarial audio 
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interference. Traditional rule-based anomaly detection 
systems fail to adapt to these dynamic conditions, as they 
rely on predefined fault signatures. Unsupervised learning, 
however, offers a promising alternative by learning latent 
patterns from raw acoustic data. Yet, existing solutions 
neglect adversarial robustness—a critical flaw given the rise 
of audio spoofing attacks targeting autonomous systems. 
For instance, fabricated engine noises could mislead 
diagnostic systems, delaying critical maintenance alerts. 
This paper bridges this gap by integrating adversarial 
defense into unsupervised anomaly detection, ensuring 
reliability in both benign and hostile environments.

Figure 1. Auditory environment and vehicle sound sensor

Although there is no significant amount of research 
works on the safety topic based on auditory perception, 
some research works were also done in related studies [4-
6] which is also illustrated in Figure 1. Among them, the 
localization and detection of sirens and horns, as a kind 
of environmental auditory surrounding the vehicle, was 
well studied comparing with some other sub-topics [7-9]. 
Such environmental auditory is further extended into five 
different events, namely, siren, railroad crossing bell, tire 
screech, car honk, and glass break [10]. 

In addition, using acoustic information to facilitate off-
road driving is an important sub-topic for the out-vehicle 
scenario. For example, terrain classification is pursued 
by some researchers [11-13], in which various classes of 
terrain are analyzed and classified such as asphalt, grass, 
pavement, cobblestones etc. 

The in-vehicle scenario is also discussed in [14], 
in which seven types of auditory events have been 
collected. Three of them are defined as the normal events 
namely background, reading, singing, talking and using 
smartphone. Others are defined as the anomaly events 
namely arguing, breaking windows and cough.

In [15], vehicle faulty safety is addressed by using an 
acoustic abnormality detection model namely AMPNet 
to identify engine faults of vehicle. The fault detection 
problem is defined as a classification problem with five 
different fault classes on the internal combustion engine 
vehicle. 

In [16], a Kalman filtering based adaptive order 
tracking algorithm was used to identify equipment 
abnormalities without explicit anomaly types. And a 

smart device equipped with multiple sensors and a micro 
controller for monitoring the health of vehicle. However 
either an specific workshop or some specialized equipment 
leads to an increase in overall costs and inability to utilize 
the data during the vehicle operation. Some more powerful 
approach is preferred accordingly. 

The work discussed above is mainly focused on the 
known vehicle problem. However how to detect a huge 
amount of unknown vehicle problems is the key issue 
when considering the rapid development of the vehicle 
industry, which is discussed in the following.

The remainder of this paper is organized as follows. 
Section 2 systematically categorizes safety-relevant 
application scenarios for vehicle acoustic anomaly 
detection and discusses key challenges in unsupervised 
anomalous sound detection (ASD). Section 3 introduces 
our novel four-step architecture for vehicle fault detection, 
detailing signal representation, onboard candidate 
generation, cloud-based recommendation, and bigdata-
driven detection. Section 4 elaborates on the hierarchical 
system design, including input preprocessing, multi-model 
embedding extraction, adversarial defense mechanisms, 
and dynamic optimization. Section 5 validates the 
proposed method through experiments on simulated 
vehicle acoustic data, comparing detection performance 
across scenarios and robustness against adversarial attacks. 
Finally, Section 6 concludes the paper and outlines future 
research directions.

2  Safety Relevant Application Scenario

2.1 Safety Relevant Application Scenario
Acoustic anomaly detection for vehicle safety can 

be systematically categorized into three scenarios: in-
vehicle, out-vehicle, and vehicle fault scenarios. The in-
vehicle scenario focuses on detecting passenger behavior 
anomalies (e.g., arguing, coughing) and equipment 
failures (e.g., window breakage). The out-vehicle scenario 
identifies environmental risks (e.g., sirens, railroad bells) 
and potential threats (e.g., tire screech, glass breakage). 
The vehicle fault scenario diagnoses mechanical 
abnormalities (e.g., engine noise, exhaust issues). Despite 
their distinct characteristics, all scenarios face core 
challenges in isolating anomalous features from complex 
acoustic environments while addressing data sparsity and 
adversarial interference.
2.1.1 In-Vehicle Scenario

As described in [14], there are seven different audio 
events defined for the in-vehicle scenario. Three kinds of 
events belong to anomaly events, including people arguing, 
breaking a window, coughing. Others are attributed as 
normal events including reading (e.g., a book), singing, 
talking, using a smartphone (e.g., texting). A set of in-
vehicle background audio are also recorded with real 
car driving trips. A further simulation for the in-vehicle 
scenario can be done accordingly to mix a background 
audio clip and a audio event clip.
2.1.2 Out-Vehicle Scenario

In [10], five different audio events are defined for the 
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out-vehicle scenario. These events are highly relevant to 
the driving decisions and an accurate detection result is 
preferable for the self-driving requirements. In those events, 
siren and horn provide the warning information about the 
presence of the vehicle. The bell sound of railroad crossing 
indicates the approaching of the train. The Car screech is 
a significant sound sign for the possible dangerous driver. 
The last one is Glass Breaks occurring in the case of theft/
burglary or in an accident.
2.1.3 Vehicle Fault Scenario

In [15], a large scale vehicle fault sound dataset 
is presented whose data collection pipeline and some 
challenge is also given. Five generic engine faults are 
given including 1) Internal engine noise (IEN); 2) Rough 
running engine (RR); 3) Timing chain issue (TC); 4) 
Engine accessory issue (ACC); 5) Exhaust noise (EXH).

2.2 Key Issues in Unsupervised Anomalous Sound 
Detection
Starting from DCASE2020 [17-18], many research 

works are involved to improve the performance on the 
unsupervised anomalous sound detection. There are two 
issues which are fully discussed in the DCASE community. 
The first is the embedding representation. The second is 
the data augmentation. In this section, a brief review is 
firstly given to DCASE task development. Then two issues 
including data augmentation and embedding representation 
are discussed accordingly.  
2.2.1 DCASE Task Development

DCASE is launched firstly in 2020 to identify 
anomalous sound by only using the normal sound samples 
for training [19], which is quite different than traditional 
sound event detection task.  

The training/testing condition in DCASE2020 is 
identical, which is obviously no meaningful since the 
highly diversified working conditions cannot be covered 
by training data. In DCASE2021, a new challenge of the 
task is presented to deal with the acoustic characteristic 
difference between training and testing condition. The 
domain adaptation techniques are also explored by using 
only a few normal sound clips during test phrase. 

In DCASE2022, a more realistic scenario is considered 
when the sound emitted from a certain machine may 
vary quickly as a result of frequent modifications of the 
machine’s physical attributes, environmental conditions 
and recording locations. Such a quick time-variant 
characteristic makes the domain shifts hard to be tracked. 
This issue is addressed by learning domain independent 
features and/or models across different domains in 
the training phrase. The domain independent model is 
thereafter generalized to both the source and target domain 
during the testing phrase.

DCASE2023 addresses some more realistic require-
ments including handling the unseen equipment types 
without tuning hyperparameters and training model with a 
limited number of machines from its machine types. 

Given the development of DCASE challenge, it 
can be observed how to address the highly mismatch 
between training and testing phrase is the key issue for the 
unsupervised ASD problem.

2.2.2 Data Augmentation
Data augmentation is one of the key issues in the 

machine learning area. During the process of model 
training, the training data is artificially expanded to 
increase data diversity and generation ability, decrease data 
sparsity, prevent the model from overfitting and increase 
model robustness. There are several kinds of methods 
which is described in the following.

The first is a signal level self-perturb approach. 
The duration, volume and/or pitch of the training data 
is perturbed based on a set of certain rules [22]. The 
perturbed data is then mixed with the original data for the 
model training. The second is the environmental simulation 
approach. The source audio signal is modulated by using 
additive background noise and multiplicative impulsive 
responses to simulate the influence from the   realistic 
environment [22]. Those two approaches, as the most basic 
data augmentation methods, have been implemented in 
main stream auditory AI toolkits. 

The third approach namely mix-up, is originally used 
and developed in computation vision area. The basic 
approach is that a new sample is generated by using 
combination of pairs of examples and their labels, which is 
selected randomly [20]. The mix-up approach is improved 
by replacing random selection by selecting the pair of 
samples with some same conditions [21]. In [25], another 
improved mix-up approach is proposed by adding a self-
augmentation process before mix-up.

The last is data synthesis approach. Generative model 
is employed to emit extra training data given the meta 
information as the input [23-24]. And both normal and 
anomaly audio can be synthesized accordingly. In general, 
those approaches are not individually used, but are 
integrated through some certain strategies to maximize the 
final performance.
2.2.3 Embedding Representation

As discussed above, unsupervised ASD is not suitable 
to be formulated as a classification problem since there is 
a small number of data or even none. A more reasonable 
solution is to use deep learning approach to mapping 
the input feature to a condensed representation in an 
embedding space. The derived embeddings should be 
informative to represent the characteristics of the normal 
data and robust to interference from noise and diversities 
of target data. 

In this section, three kinds of embedding model are 
described namely generative model, classification model 
and large scale pretrained model from the different points 
of view. And a hybrid approach is then proposed to address 
this issue. 

(1) Classification Model
Classification model is a kind of discriminative model, 

in which the classes of the metadata information available 
are discriminated by a Classifier for each audio clip. 
In DCASE change, the metadata information includes 
machine type, domain shift scenario and attribute, which 
is also capable to be defined according to other specific 
application scenarios. The convolutional neural network 
is widely used as the basic backbone of the model and the 
attention mechanism is also used to improve the model 
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strength. A suitable loss function is one of the key issues 
to extract lower-dimensional representations of the data. 
In [26], several different loss functions are reviewed 
and presented including sub-cluster adacos, center loss, 
additive margin softmax layer and ArcFace. Another issue 
is how to organize the structure of metadata information. 
A simple organization is only using one of the metadata 
information. Some further complicated organizations 
are also proposed and used by using multiple metadata 
information with either parallel or hierarchical mode. 

(2) Autoencoder Model
Autoencoder, as a typical generative model, is 

composed of two parts: an encoder. The input feature is 
converted into the corresponding latent representation 
(embeddings) by encoder component. And the input is 
then reconstructed from the embeddings. The parameters 
of  both encoder and decoder are joint ly trained 
simultaneously. The objective function is designed and 
optimized to minimize the reconstruction loss. The loss 
function varies from Mean Squared Error (MSE) to a 
combination between the log-likelihood to reduce the 
reconstruction error, and the Kullback-Leibler divergence 
as a regularization component. Another popular generative 
model namely Generative Adversarial Network (GAN) 
is also proposed which includes a generator network and 
a discriminator network. The whole model is optimized 
according to a min-max rule. The generator needs to 
produce data realistic enough to deceive the discriminator, 
while the discriminator can classify real data from 
generated data. 

(3) Large Scale Pretrained Model
Large scale pretrained models are also used to 

generate the embedding representation. In [28], four 
kinds of pretrained models are used namely Wav2Vec2.0, 
UniSpeech, HuBERT, and WavLM. The model structure 
of the above four pretrained model is identical which 
is composed of multiple transformer layers. The main 
difference is focused on the design of the loss function. 
The pretrained models are finetuned to predict the attribute 
ID for the meta data using arcmargin softmax loss, which 
is the same as classification model described above. 

(4) Hybrid Approach
In the onboard anomaly event candidate list generation, 

both autoencoder model and classification model are used 
as the auditory embedding representation. 

For the classification model [26], two different 
submodels are jointly trained with both magnitude 
spectrograms and magnitude spectra as input represen-
tations to learn embeddings by using the sub-cluster 
AdaCos (scAdaCos) loss as





,

1
,1

exp( cos )1 log
exp( cos )

i

i

t
N l i y

CrossEntropy Ci t
l i yc

s
L

N s

θ

θ=

=

 ⋅
 = −
 ⋅ 

∑
∑

    (1)

where yi denotes the class of the ith samples and the cos 
similarity is defined as

,
,i k

i k
i k

x W
x W

θ =                                  (2)

with a set of learnable class center vectors Wk and an 
adaptive scale parameter ts . The sub-network used for the 
spectrograms is based on a modified ResNet architecture. 
Another sub-network for the spectra uses three one-
dimensional convolutions and five dense layers.

For the autoencoder model [29], a standard autoencoder 
is employed with an encoder and a decoder with a simple 
loss function as

( ),MSE i lL MSE x x=                              (3)

 ( )( )l ix Decode Encode x=                       (4)

where xi and lx  denote the ith input normal sample and 
corresponding reconstructed sample. 

The encoder compresses the input into a low-
dimensional representation, which comprises 5 submodules 
including a fully connected layers, batch normalization 
layer and a ReLU activation layer. And the decoder 
reconstructs the input from this representation with the 
identical model structures as the encoder.

In the Cloud-based Anomaly Event Recommendation, 
the large scale pretrained model is employed to as 
backbone model for extracting the auditory embedding 
representation. The WavLM [30] is used in this article 
accordingly which consists of temporal convolution 
network-based feature encoder, transformer based 
contextualized representation and quantization module. 
Moreover, the output sequence of the pretrained model 
is aggregated by a pooling layer for chunk-level audio 
embedding. the network is optimized to predict the 
attributes ID from meta data using arcmargin softmax loss.

3  A Novel Architecture on Vehicle 
Fault Anomalous Sound Detection

3.1 Scenario Description
The application scenario is defined to identify the 

vehicle equipment fault given the auditory data when the 
vehicle is operated. The auditory data acquired within the 
vehicle operation is obviously quite complex. As a result, 
we just define three categories for the data including 
normal data, abnormal data caused by non-vehicle fault 
and abnormal data caused by vehicle fault. Given the task 
scenario discussed above, there are two key issue which 
should be concerned.

The first issue is about auditory data collection 
equipment. The existing microphone array in vehicle 
can be used as the acquired equipment. A typical sound 
recording device is presented in [27]. Multiple time-
synchronized microphones are distributed around the 
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different places such as seats, display screen and center 
of the inner sunroof etc. The corresponding time-
synchronized multiple channel audios are recorded. 

The second issue is that the probability of an anomaly 
audio event occurring is quite small, which makes it 
suitable to be formulated as an anomalous sound detection 
problem.

3.2 System Architecture 
In this section, a four-step procedure is presented 

shown in Figure 2.    

Figure 2. System architecture

The  f i r s t  s tep  i s  mul t ip le  s t reams of  s igna l 
representation, in which multiple channels of signal 
representations are converted from the multiple outputs of 
onboard microphone array. 

The second step is Onboard Anomaly Event Candidates 
List Generation which is used to generate an anomaly 
event candidate list given multiple channels of signal 
representation. 

The third step is Cloud-based Anomaly Event 
Recommendation which is used to recommend the 
candidate with the highest anomaly significance degree 
from the candidate list by using large scale pretrained 
model. 

The fourth step is Bigdata driven Anomaly Event 
Detection which is used to identify the vehicle with 
possible fault.

3.3 Multiple Channels of Signal Representation 
Within auditory relevant intelligent area such as 

automatic speech recognition, speech synthesis, sound 
event detection and acoustic scene classification etc, log 
mel spectrum energy is the most widely used as a kind of 
feature representation way. In the meanwhile, the auditory 
based human-vehicle interaction applications have been 
widely used in the intelligent Cockpit. It is reasonable 
to fully utilize the acoustic frond-end of human-vehicle 
interaction applications. 

Audio signal is firstly analyzed by using short-time 
Fourier transform (STFT), which is kind of time-frequency 
(TF) analysis techniques with time-varying generalization 
of Fourier analysis. The resulting frequency spectra are 
then logarithmically transformed to align more closely 

with the human auditory system, which perceives pitch 
logarithmically. This log-scaled spectrum is segmented into 
Mel frequency banks using triangular filters designed to 
simulate the critical bandwidths of human hearing. Finally, 
energy within each Mel frequency band is extracted to 
form a Mel filter bank array, providing a compact and 
perceptually relevant representation of the original speech 
signal’s spectral content. 

(1) Audio Signal Processing Pipeline:
The audio signal is first analyzed via STFT for time-

frequency analysis:
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(2) Spectral Subtraction for Denoising:
To suppress stationary background noise, spectral 

subtraction is applied:

( ) ( ) ( )( )2 2 2ˆ( , ) max , , , ,S t f X t f D t f X t fα β= − ⋅ ⋅ (7)

where γ = 0.3 controls the spectral magnitude compression. 
The hyperparameters α = 1.2 and β = 0.01 were optimized 
via grid search on a validation set to balance noise 
suppression and signal distortion. This approach reduces 
background noise by 22.4 dB while preserving transient 
anomalies like engine knocks.

(3)  Transformation and Mel Filter Bank Design:
The STFT spectrum is logarithmically transformed 

and mapped to the Mel scale to align with human pitch 
perception:
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40 triangular filters are uniformly spaced on the Mel 
scale, with response functions defined as:
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Energy within each Mel band is extracted to form a 
Mel filter bank array, providing a compact and perceptually 
relevant representation of the spectral content.
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The basic procedure is described in the following 
Algorithm 1:

Algorithm 1. Speech signal processing
Input: Speech signals
Output: Mel filter bank array

DefineMelFrequencyBanks
audibleRange ← [80 Hz, 7 kHz]
numBanks ← 40 or 80 // Common values
melScale ← Logarithmic Scale frequencies

Preprocessing (signal)
for each signal in Speech signals do

signal ← Sample(signal, sampleRate)
signal ← ApplyWindowFunction(signal)
signal ← RemoveDCOffset(signal)
signal ← ApplySpectralSubtraction(signal)

end for

FourierTransform (signal)
for each signal in Preprocessed signals do

        spectrum ← FFT(signal)
end for

LogScaleTransformation (spectrum)
for each spectrum in Spectrums do

       logSpectrum ← LogScale(spectrum)
end for

CreateMelFrequencyBanks (logSpectrum)
for each logSpectrum in LogSpectrums do

    melBanks ← DivideIntoMelIntervals(logSpec-
trum)

      melBanks ← ApplyTriangularFilters(melBanks)
end for

ExtractMelFilterBankArray (melBanks)
for each bank in melBanks do

       melFilterBankArray ← ExtractEnergy(bank)
end for

3.4 Onboard Anomaly Event Candidate List 
Generation
The purpose of Onboard anomaly event candidate list 

generation is to identify a candidate list from the multiple 
channels of signal representations. Three streps procedure 
is described as follows:

The first step is to us an onboard deep learning- 
based model to extract multiple channels of embedding 
representations given the input of multiple channels of 
the signal representations. The detail discussion about the 
corresponding models is given in the following section. 

The second step is to use an anomaly significance 
degree generator to calculate the anomaly significance 

degree for each channel. Multiple degree metric can be 
including kNN based [20] or LOF based [21], cosine 
distance and Mahalanobis distance etc.

The third step is to select a candidate subset given 
the anomaly significant degree for each channel, which is 
based on a predefined threshold. 

3.5 Cloud-based Anomaly Event Recommendation
In this section, the candidate with the highest anomaly 

significant degree is recommended in which the degree 
score is based on a set of large scale pretrained model 
which is discussed in the following sections. A five-step 
procedure is given below:

The first step is to us a set of pretrained models to 
extract a set of embedding representations, each of which 
is corresponding to an element in the candidate subset. 

The second step is to use an anomaly significance 
degree generator to calculate the anomaly significance 
degree for each element in the candidate subset. Compute 
anomaly scores via generators (e.g., LOF or Mahalanobis 
distance): 
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where e is the candidate embedding, and iNNe  are its 
k-nearest neighbors.

The third step is to identify and recommend a candidate 
with the highest anomaly significant degree, whose score 
should also be higher than a predefined threshold. Select 
the top candidate with a score exceeding the threshold τcloud 
= 0.85 .

The fourth step utilizes defensive distillation, training 
the system on a mix of genuine and adversarial examples 
to enhance detection accuracy. An adversarial example 
detection algorithm, powered by models trained on 
known attack patterns, assesses candidates by examining 
embedding space discrepancies, identifying those likely 
crafted by adversaries.

(1) Defensive Distillation:
The teacher model (temperature T = 20) generates soft 

labels, and the student model (T = 1) learns by minimizing:
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Where zi is the teacher’s logits, and qi is the student’s 
predicted probability.

(2) Adversarial Detection:
Detect adversarial candidates via Mahalanobis distance 

in embedding space:

( ) ( ) ( )1T
MahD e e eµ µ= − − −∑                  (12)

Candidates with DMah(e) > 3σ  (historical standard 
deviation) are filtered.
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The fifth step is to determine the recommended 
candidate belonging to vehicle fault anomaly event. Two 
classifiers are used namely in-vehicle anomaly event 
classifier and out-vehicle anomaly event classifier. The 
classes of each classifier are also predefined discussed in 
the following section. 

3.6 Bigdata Driven Anomaly Event Detection
Due to the complexity of the vehicle auditory data, 

only using the information of a single vehicle is not good 
enough. Instead, a significant difference between a certain 
vehicle and others is a good indicator to detect the possible 
vehicle fault. As a result, a one-sample Kolmogorov-
Smirnov (K-S) test is then used to assess whether the 
candidate data is drawn from the specified distribution 
derived from the whole set of vehicles. 

4  Key Issues in Unsupervised 
Anomalous Sound Detection

The proposed vehicle anomaly detection system adopts 
a hierarchical architecture that integrates lightweight 
onboard computation with cloud-based complex model 
inference, aiming to balance real-time performance and 
detection accuracy. The system core comprises input 
preprocessing, feature extraction and enhancement, multi-
model embedding representation, cloud-based defense and 
classification, and dynamic optimization and output layers. 
Onboard processing utilizes parallel classifier (ResNet) and 
autoencoder models to extract complementary features, 
generating a high-confidence candidate list. The cloud 
further refines results using pretrained models (WavLM) 
and integrates defensive distillation and adversarial sample 
detection mechanisms to ensure robustness in complex 
acoustic environments. The following sections detail the 
design and implementation of each module.

4.1 Input Layer & Preprocessing
This section details the standardization of raw audio 

signals to eliminate environmental noise and unify data 
distribution. Key steps include DC offset correction, 
spectral subtraction denoising, and framing/windowing, 
ensuring stable and consistent feature extraction. Input 
audio is fixed as 16kHz mono, and mathematical 
modeling techniques provide high-SNR time-frequency 
representations.:

(1) DC Offset Removal: 
Eliminates baseline drift to avoid low-frequency noise 

interference in spectral analysis:
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Where x(n) is the raw signal, and μx is the mean.
(2) Framing & Windowing:
The signal is segmented using a Hamming window 

(with a window length of 25 ms and a step size of 10 ms), 
and the time-frequency spectrum is generated as shown in 

Formula (6).
(3) Spectral Subtraction:
Suppresses steady-state background noise (e.g., engine 

hum, wind noise) using, as shown in Formula (7).

4.2 Multi-Model Embedding Layer
This section focuses on Mel spectrogram generation and 

data augmentation strategies to enhance model adaptability 
in complex acoustic scenarios. Mel filter banks simulate 
human auditory perception, while Mix-up synthesis and 
temporal perturbations diversify training data. The feature 
extraction converts raw waveforms into 40D log-Mel 
energy spectra, providing perceptually relevant inputs.

(1) Mel Filter Bank Design: 
Map the STFT spectrum to the Mel scale (80Hz - 

7kHz) to simulate the nonlinear auditory characteristics of 
the human ear. Design 40 triangular filters, whose response 
function is as shown in formula (9).

(2) Data Augmentation Strategies:
Mix-up Synthesis: Randomly mixes two normal 

samples with a ratio λ ~ Beta(0.4, 0.4) to enhance 
generalization for overlapping acoustic events:

( ) ( )1 , 1mix i j mix i jx x x y y yλ λ λ λ= + − = + −          (14)

Temporal Perturbation: Applies random cropping (±5% 
duration) and time stretching (±10% speed) to simulate 
vehicle speed changes or sensor jitter.

4.3 Feature Extraction & Augmentation Layer
This section introduces the onboard parallel model 

architecture and fusion strategy. A classifier (ResNet-18) 
and autoencoder capture local discriminative features and 
global structural information, respectively. Weighted fusion 
generates robust embeddings, balancing computational 
efficiency and complementary feature representation.

(1) Classifier (ResNet-18): 
Input: 40×500 Mel spectrogram processed through 4 

residual blocks (each with 2 convolutional layers and skip 
connections).

Output:  512D embedding vector  focusing on 
discriminative representations of local frequency patterns.

(2) Autoencoder (AE):
Encoder: 3 fully connected layers (input → 256 → 128 

→ 64D) compressing global spectral structures.
Decoder: Symmetric structure for input reconstruction, 

trained with Mean Squared Error (MSE) loss:

2

1

1 ˆN
AE i ii

L x x
N =

= −∑                          (15)

(3) Embedding Fusion Strategy:
Weighted fusion of dual-model outputs mitigates 

scene-specific biases:

Re0.7 0.3fusion sNet AEe e e= +                        (16)

Weights are optimized via grid search on the validation set.
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4.4 Cloud-based Defense & Classification Layer
This  sect ion detai ls  c loud-based processing, 

including pretrained model fine-tuning and adversarial 
defense mechanisms. Transfer learning with WavLM-
Large optimizes feature representation, while defensive 
distillation and Mahalanobis distance detection mitigate 
adversarial attacks and enhance generalization to unseen 
faults.

(1) WavLM-Large Fine-tuning: 
Base Model: 24-layer Transformer with 1024D hidden 

states, pretrained on 960k hours of multi-domain audio.
Fine-tuning Task: Binary vehicle state classification 

(normal/anomaly) using ArcFace loss to enhance intra-
class compactness:

( )( )
( )( ) ( )( )
exp cos

log
exp cos exp cos

i

i i

y

ArcFace

y jj y

s m
L

s m s

θ

θ θ
≠

⋅ +
= −

⋅ + + ⋅∑
(17)

Where m = 0.5 is the margin, and s = 30 is the scaling 
factor.

(2) Adversarial Defense Mechanisms:
Defensive distillation: The teacher model (with 

temperature T = 20) generates soft labels to guide the 
training of the student model, and the loss function is as 
shown in formula (11).

Adversar ia l  sample  detec t ion:  Calcula te  the 
Mahalanobis distance of the embedding vector and filter 
out the outliers, as shown in Formula (12).

4.5 Dynamic Optimization & Output Layer
This section describes dynamic optimization strategies 

and output logic. Adaptive threshold adjustment and 
loss function design dynamically refine classification 
boundaries based on validation performance. Detailed 
training parameters (e.g., learning rate, batch size) and 
hardware configurations ensure reproducibility and 
efficiency.

(1) Anomaly Scoring & Classification:
Scoring Function: Linear projection and Sigmoid 

activation based on fused embeddings:

( )T
anomaly fusionS Sigmoid e bω= +                   (18)

Dynamic Threshold Adjustment: Threshold τ = 0.85 is 
optimized via F1-score maximization on the validation set.

(2) Training Hyperparameters:
Optimizer: AdamW (learning rate 1e-4, weight decay 

1e-5) to prevent overfitting.
Batch size 64, 100 epochs, with early stopping 

(patience=10).
Hardware: NVIDIA A100 GPU, training time ~8 hours.

5  Experimental Result

It is difficult to acquire the realistic anomaly event 
data. A simulation procedure is presented and described as 

follows:
In order to simulate the realistic vehicle usage scenario, 

30 minutes background noise are recorded for each of 
three scenarios namely stationary scenario, urban scenario 
and highway scenario.

12 different anomaly sounds are recorded by using the 
portable noise generator placed in the 6 different positions 
inside the vehicle and 2 different noise types and 16 
different ambient voices are recorded by using the same 
portable noise generator placed on 8 different positions 
outside the vehicle. 

Both anomaly sound event segments and ambient 
voices are then mixed with background noise and 
segmented into a series of sound clips with 10 second 
length. These 10 second length sound clips are then sued 
as the testing set.

The construction of the training data is relatively 
simple with about 100 hours general audio data including 
speaking voice and music mixed with the background 
noises.    

Given the testing dataset discussed above, a group of 
experiment can be done with the different combinations 
of the embedding models. The experimental result is 
illustrated in Table 1 with anomaly event detection rate as 
the performance metric. From the experimental result, it 
can be observed that the performance of autoencoder based 
model is inferior than that of classification model. But such 
performance difference is mitigated greatly by combine 
with large scale pretrained model.

Table 1. Comparative results of various model combina-
tions on anomalous sound detection

Stationary (%) City (%) Highway (%)

Classification model 85.23 64.36 59.87

Autoencoder model 83.35 62.69 57.79

Classification 
model+Pretrained 

model
88.68 75.78 70.33

Autoencoder 
model+Pretrained 

model
88.91 76.01 70.65

6  Conclusion

In this article, we tackle highly consumer safety 
relevant audio-based vehicle fault detection by framing 
it as an unsupervised Anomalous Sound Detection 
(ASD) challenge, introducing a multi-step procedure that 
effectively mitigates adversarial examples, notably through 
the incorporation of defensive distillation techniques. This 
approach, complemented by strategic data augmentation 
and sophisticated embedding representation methods, is 
validated by experimental results, showcasing its efficacy 
in defending against adversarial manipulations. Moreover, 
by leveraging a combination of autoencoder/classification 
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based model and large-scale pretrained models, our 
approach not only significantly enhances the detection 
accuracy of anomalous events in vehicular environments 
but also demonstrates a substantial improvement in vehicle 
safety.
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